
Journal of Neuroscience Methods 360 (2021) 109269

Available online 24 June 2021
0165-0270/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

The role of electroencephalography electrical reference in the assessment of 
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A B S T R A C T   

Background: The choice of EEG reference has been widely studied. However, the choice of the most appropriate 
re-referencing for EEG data is still debated. Moreover, the role of EEG reference in the estimation of functional 
Brain-Heart Interplay (BHI), together with different multivariate modelling strategies, has not been investigated 
yet. 
Methods: This study identifies the best methodology combining a proper EEG electrical reference and signal 
processing methods for an effective functional BHI assessment. The effects of the EEG reference among common 
average, mastoids average, Laplacian reference, Cz reference, and the reference electrode standardization 
technique (REST) were explored throughout different BHI methods including synthetic data generation (SDG) 
model, heartbeat-evoked potentials, heartbeat-evoked oscillations, and maximal information coefficient. 
Results: The SDG model exhibited high robustness between EEG references, whereas the maximal information 
coefficient method exhibited a high sensitivity. The common average and REST references for EEG showed a 
good consistency in the between-method comparisons. Laplacian, and Cz references significantly bias a BHI 
measurement. 
Comparison with existing methods: The use of EEG reference based on a common average outperforms on the use of 
other references for consistency in estimating directed functional BHI. We do not recommend the use of EEG 
references based on analytical derivations as the experimental conditions may not meet the requirements of their 
optimal estimation, particularly in clinical settings. 
Conclusion: The use of a common average for EEG electrical reference is concluded to be the most appropriate 
choice for a quantitative, functional BHI assessment.   

1. Introduction 

The advantages of electroencephalography (EEG) for measuring 
scalp brain activity, i.e., high time resolution or non-invasiveness, have 
allowed it to be used as a reference tool for clinical studies and cognitive 
neuroscience research. The critical role of the electrical reference in the 
evaluation of neural activity through spontaneous brain responses or 
event-related potentials was explained in a previous study (Hagemann 
et al., 2001). Indeed, EEG recordings require a physical reference to 
measure the differences in electrical potentials. However, the mea
surement of potentials at the selected reference electrode may capture 
some ongoing neural activity, which may contaminate the overall 

measurement (Lehmann, 1984). Moreover, the computation of EEG 
markers, i.e., indices computed from EEG data to describe the under
lying physiological phenomena, may be affected by the specific EEG 
reference (Hagemann et al., 2001). These EEG reference issues have 
been widely studied, with researchers advocating for the necessity of 
offline re-referencing of data to overcome the problem (Miller et al., 
1991; Hagemann et al., 2001; Kayser and Tenke, 2010; Hu et al., 2018). 
Although there is a general consensus in the scientific community on the 
necessity of EEG re-referencing, the choice of the most appropriate 
method is still debated (Desmedt et al., 1990; Pascual-Marqui and 
Lehmann, 1993). Most state-of-the-art EEG reference studies have 
arrived at the conclusion that the best EEG reference is different for 
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different experimental paradigms and the underlying neural sources 
(Dien, 1998; Kayser and Tenke, 2010). 

In this study, we demonstrate that it is necessary to properly define 
the methodological standards of an EEG reference for existing markers 
made for functional brain-heart interplay (BHI) assessment. In fact, the 
role of the EEG reference in the estimation of BHI markers has not been 
investigated thoroughly yet, and preliminary studies were only recently 
published (Candia-Rivera et al., 2020a, 2020b). The effects of changing 
the EEG reference could be translated into several distortions, including 
temporal dynamics disparities or even power spectrum variations (Yao 
et al., 2005; Lei and Liao, 2017). These distortions may lead to inaccu
rate BHI assessment, affecting specifically the measurement of 
event-related evoked activity or tonic oscillatory activity in specific 
frequency bands. Moreover, an improper EEG reference may mislead to 
topographical changes among scalp electrodes that may not be related to 
actual spatial differences in directional functional BHI. 

To avoid these issues, in this study we investigate different BHI 
methods together with specific EEG references. In fact, it is expected that 
the level of sensitivity would change depending on the underlying 
computation strategies used to assess the functional BHI. Some BHI 
methods rely on specific cardiac-event-related amplitudes in either the 
time domain or the frequency domain (Schandry et al., 1986; Grosselin 
et al., 2018), while others rely on the level of agreement with parallel 
cardiac oscillations (Valenza et al., 2016a; Catrambone et al., 2019b). 
Next, we review the most used EEG references over four methods for 
assessing functional BHI. The experimental results were gathered from 
two different dataset: the first comprises data from 28 healthy subjects 
in resting state, and the second publicly available dataset comprises data 
from up to 23 healthy subjects undergoing emotional video elicitation 
(Soleymani et al., 2012). 

1.1. The role of electrical reference on EEG 

Proper measurement of cortical potentials, through studies on brain 
dynamics using EEG and event-related potentials, has led to the devel
opment of several methods for the EEG reference (Miller et al., 1991). 
The methods range from such simple solutions as using individual or a 
combination of electrodes located either within or outside the scalp 
electrodes to more complex methods that use analytical estimations to 
derive the actual scalp potentials. In this study, we present an overview 
on five common methods (Hagemann et al., 2001; Kayser and Tenke, 
2010). 

Uni-polar references have been vastly employed in the past, with 
midline electrodes such as Fz, Cz, Pz or Oz being used (Lehmann, 1984). 
One of the most used methodologies is the vertex reference (CZ), which 
is usually employed as the physical reference in EEG recordings. One 
issue reported for unipolar references is related to possible distortions in 
within-electrodes measurements, such as connectivity, correlations, 
phase synchrony, or coherence, depending on the relative amplitude or 
power with respect to the signal recorded from the reference electrode 
(Hu et al., 2010). The main questioning of using the CZ reference stems 
from the computation of potential difference with respect to an active 
cortical area (Lehmann, 1984; Hagemann et al., 1998). 

Another strategy involves selecting electrodes outside the scalp that 
might not capture neural activity, such as body parts (Wolpaw and 
Wood, 1982; Hu et al., 2012) or mastoids (Stephenson and Gibbs, 1951). 
In this study, we explored the mastoids average reference (MA), which, 
in a previous study, was associated with a reduced neural activity area 
with respect to cephalic sites (Hagemann et al., 1998). However, pre
vious studies demonstrated a reduced robustness to changes in the EEG 
montage of the MA reference, when compared with other EEG refer
ences (Hu et al., 2018). The MA reference also presented challenges 
when evaluating connectivity (Qin et al., 2010) or event-related po
tentials in adjacent regions (Kayser et al., 2007). The reference electrode 
may cause distortions in nearby regions due to the electromagnetic field 
it generates (Miller et al., 1991). 

The common average reference (AV) is a common method used in 
EEG studies (Dien, 1998; Picton et al., 2000). The AV reference corre
sponds to the potentials measured in the EEG dataset averaged across 
the whole scalp or a subset of channels (Offner, 1950; Bertrand et al., 
1985). Earlier studies have proposed the AV reference given its inde
pendence to specific scalp regions (Kayser and Tenke, 2010), besides 
possessing other advantages such as the robustness to changes in 
experimental conditions (Bertrand et al., 1985). Nevertheless, it still has 
a few disadvantages, e.g., its performance varies with the number of EEG 
electrodes used in the experimental setup, and with the criterion of se
lection of the electrode subset in high-density EEG systems (Bertrand 
et al., 1985; Junghöfer et al., 1999). The spectral analysis might also get 
affected by the influence of the electrodes’ average power on the EEG 
measurement. (Fein et al., 1988). 

In response to the distortions produced by EEG channels when 
directly used as reference, researchers have proposed analytical 
methods as the Laplacian reference (LP) (Nunez, 1989). This method 
considers the current sources captured in space dimensions. It considers 
the changes in current density across the scalp with respect to the brain’s 
electrical field curvature and models the head as a concentric sphere. 
The LP reference has been mainly tested on scalp potentials, and its 
advantage in detecting smaller potentials generated from localised 
sources has been reported (Nunez, 1989; He et al., 2001). Even though it 
is an analytical method, the LP reference is not exempt from the effects 
of the number of EEG electrodes, as mentioned for the AV reference as 
well (Nunez et al., 1994). Other issues with the use of LP reference that 
have been reported include variation of performance with respect to the 
frequency bands studied (Srinivasan et al., 1998) or with the electrode 
location used (Carvalhaes and de Barros, 2015). The main limitation of 
this method is that it was mostly designed and tested for high-density 
EEG systems (He et al., 2001; Kayser and Tenke, 2015). 

The reference electrode standardisation technique or REST (RS) at
tempts to standardize the EEG to a point tending to infinity (Yao, 2001). 
Despite being a more recent development, this method has been tested 
for various experimental setups as well as in different frequency-related 
studies (Yao et al., 2005; Marzetti et al., 2007) and default network 
analysis (Qin et al., 2010). Most importantly, this method considers the 
temporal dynamics of waves from EEG recordings (Yao, 2001), 
demonstrating its robustness to various EEG setups with different 
channel numbers (Hu et al., 2018). Nevertheless, this method is sensitive 
to added noise, compared with AV reference, and therefore not recom
mended for use with noisy experimental setups (Hu et al., 2018). 

1.2. Functional brain–heart interplay assessment 

The brain communicates with peripheral organs through processes of 
sensing, integration, and regulation of bodily activity (Chen et al., 2021; 
Quigley et al., 2021). Indeed, the heart continuously relays on the ce
rebral cortex in specific structures in order to perform cardiac moni
toring and maintain neural homeostasis (Critchley and Harrison, 2013). 
The central autonomic network has been defined as a complex of brain 
regions and connections, controlling autonomic regulation in a variety 
of physiological conditions (Thayer and Lane, 2009; Silvani et al., 2016; 
Valenza et al., 2019, 2020). This network spans from high order regions, 
i.e., medial prefrontal cortex and insula, to the forebrain, i.e., hypo
thalamus and amygdala, and several nuclei in the medulla, e.g., nucleus 
of tractus solitarius, nucleus ambiguous, parabrachial Kolliker fuse nu
cleus (Silvani et al., 2016; Valenza et al., 2020). 

The neural processing of cardiac activity has been studied from 
heartbeat-related scalp potentials (Schandry et al., 1986), as well as 
heartbeat-evoked changes in specific EEG frequency bands (Grosselin 
et al., 2018; Kim and Jeong, 2019). Over the past few years, abundant 
clinical evidence has been gathered showing a correlation between brain 
conditions and cardiac outputs in terms of diagnoses and outcomes. This 
correlation indicates that cardiac-based markers may reveal the overall 
mental-health state of a patient (Esler, 1998; Craig, 2003; Thayer et al., 
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2012; Beissner et al., 2013; Silvani et al., 2016). Moreover, research has 
shown that autonomic activity is altered by such conditions as brain 
damage (Tahsili-Fahadan and Geocadin, 2017; Candia-Rivera et al., 
2021a), insomnia (Jiang et al., 2015), epilepsy (Calandra-Buonaura 
et al., 2012), Parkinson’s disease (Valenza et al., 2016c), anxiety (San
chez-Gonzalez et al., 2015) and depression (Valenza et al., 2014a, 2015, 
2016b). 

In the other functional direction, clinical trials have characterised 
bidirectional brain–heart interactions during sleep (Faes et al., 2014; 
Lechinger et al., 2015; Perogamvros et al., 2019), and reported that 
external cardiac modulations could improve outcomes in patients with 
depression (Karavidas et al., 2007; Martin and Martín-Sánchez, 2012), 
and the contribution of the heart in the evaluation of consciousness after 
brain damage (Raimondo et al., 2017; Candia-Rivera et al., 2021a). 
Besides, selfhood and bodily states have been associated with aspects 
involving emotions, attention and subjectivity in healthy subjects 
(Damasio, 1999; Park and Tallon-Baudry, 2014; Blanke et al., 2015; 
Tallon-Baudry et al., 2018; Candia-Rivera et al., 2021b). Although there 
is no scientific consensus on the mechanisms involved in emotions and 
bodily states (Craig, 2002, 2009; Damasio, 2010; Pace-Schott et al., 
2019), there is plenty of evidence suggesting that fluctuating mood and 
emotion elicitation involve autonomic responses that affect cardiovas
cular dynamics (Taggart et al., 2011; Valenza et al., 2014b). More 
recently, the parallel observation of EEG dynamics and instantaneous 
heart rate changes have revealed a relationship between emotions pro
cessing and the brain–heart axis (Valenza et al., 2016a; Catrambone 
et al., 2019a; Candia-Rivera et al., 2021b). Initial observations of 
heartbeat-related scalp potentials were related to the neural processing 
of cardiac activity and interoceptive awareness (Montoya et al., 1993; 
Schandry and Montoya, 1996; Pollatos et al., 2005). Subsequently ob
servations uncovered that the neural responses to heartbeats are related 
to subjective perception (Park et al., 2014; Kim et al., 2019; Al et al., 
2020), preference-based decisions (Azzalini et al., 2021), and 
self-related cognition (Blanke et al., 2015; Babo-Rebelo et al., 2016; Park 
et al., 2016; Sel et al., 2017). 

The central nervous system continuously interplays with the internal 
organs of the body. Biological signals within the body are transmitted by 
such mechanisms as pain and visceroreceptive and spino- 
thalamocortical pathways (Craig, 2002). More specifically, the contin
uous functional interaction between the cardiac activity and brain 
structures including, but not limited to, the insula, anterior cingulate 
cortex, medial prefrontal cortex, and the amygdala has been reported 
(Thayer and Lane, 2009; Critchley and Harrison, 2013; Park et al., 2014, 
2018; Silvani et al., 2016; Valenza et al., 2019, 2020). As heartbeats may 
influence the perception and processing of the external world—hence, 
the production of spontaneous cognition—observing neural activity 
while considering the cardiac oscillations may uncover certain aspects of 
subjectivity from a first-person perspective (Azzalini et al., 2019; Chen 
et al., 2021). 

The understanding of these processes involving BHI may lead to 
relevant scientific findings and novel clinical applications, as several 
cardiovascular, neurological, and psychiatric disorders may be linked to 
BHI dysfunctions. For example, cerebrovascular accidents may be linked 
to ischaemic attacks with cardiac arrhythmias (Pyner, 2014), sudden 
cardiac death may be caused by severe brain damage (Silvani et al., 
2016), and heart transplant may affect interoception, i.e. the sensing of 
body signals (Salamone et al., 2020). Moreover, autonomic dysfunctions 
may occur in the presence of stress (Taggart et al., 2011), insomnia 
(Jiang et al., 2015), psychosomatic disorders (Salvioli et al., 2015), 
depression (Penninx et al., 2013), schizophrenia, anxiety, and related 
mood disorders (Leistedt et al., 2011; Valenza et al., 2017). These evi
dences have motivated the development of BHI-related biomarkers to 
assess depressive conditions (Terhaar et al., 2012; Catrambone et al., 
2021a), sleep disorders (Perogamvros et al., 2019), or dysfunctional 
emotion recognition (Salamone et al., 2021). Functional BHI measure
ments are also effective in detecting residual consciousness in 

post-comatose patients (Candia-Rivera et al., 2021a). 
To this extent, several signal processing methods have been exploited 

for the assessment of functional BHI, and the main approaches are here 
summarized in Table 1. General analysis methods refer to signal pro
cessing methods that were not specifically devised for brain-heart time 
series but have been successfully exploited for a BHI estimation (referred 
as ‘general’ in Table 1); ad-hoc processing tools have been particularly 
devised for a quantitative BHI assessment (defined as ‘ad-hoc’ in 
Table 1). While the former category embeds standard signal processing 
techniques estimating correlation, directional coupling, co-occurrences, 
or phase synchronization between dynamical systems, the latter cate
gory exploits a priori knowledge or modelling specifically linked to 
brain and heartbeat dynamics. BHI estimation methods are further 
divided in three categories: physiological modelling-based approach, 
synchronisation measurement, and transient neural responses to heart
beats. Methods based on physiological modelling consider the brain and 
heartbeat oscillations within a framework of mutual influence, thus the 
measurement of BHI via these methods may allow a causality assess
ment. BHI synchronisation measurements mainly exploits information 
theory, whereas transient neural responses to heartbeats analyse neural 
activity in specific periods defined by the cardiac cycle. The functional 
BHI quantification methods have also been categorized with respect to 
the directionality assessment; for example, while Maximal Information 
Coefficient does not quantify a directional coupling, Heartbeat-evoked 
potentials provide information on the heart-to-brain direction, and 
Granger-causality and Synthetic data generation models account for 
both BHI directions. Finally, we consider the capability of estimating 
linear and/or nonlinear BHI and time-varying estimates in accordance 
with recent evidences (Samuels, 2007; Silvani et al., 2016; Catrambone 
et al., 2019b, 2019a). Note that neural responses to heartbeats give a 
time course limited to a specific time window defined by the cardiac 
cycle, and are usually averaged across several cardiac cycles, therefore 
these are considered markers with no time-varying properties. 

In this study, we investigate the impact of the EEG reference in the 
estimation of the functional BHI, and an overview of the study workflow 
is shown in Fig. 1. In the frame of physiological modelling approaches, 
we selected the Synthetic Data Generation because it provides bi- 
directional and time-varying features (Catrambone et al., 2019b); in 
the frame of synchronisation measurements, we selected Maximal In
formation Coefficient as it has been tested in different BHI settings 
including physiological and cognitive conditions (Valenza et al., 2016a; 
Catrambone et al., 2019a). Finally, in the frame of transient neural re
sponses to heartbeats we implemented the calculation of standard 
heartbeat-evoked potentials (Schandry and Montoya, 1996) and 
heartbeat-evoked oscillations (Grosselin et al., 2018). 

2. Materials and methods 

2.1. Dataset description 

Dataset I (resting state). A group of 32 young healthy adults were 
recruited to participate in the study (Catrambone et al., 2019b). Data 
from 4 subjects were discarded due to excessive artifacts during the 
recordings; consequently, data from a total of 28 subjects (age range 
21–41 years, median 27 years, 15 males) were retained for further 
analysis. Subjects were directed to rest for 4 min and the corresponding 
high-density 128-channels EEG with a physical electrical reference 
located in the vertex, and one-lead ECG were synchronously recorded 
through a Geodesics Polygraph input box (Electrical Geodesics, Inc.) 
with a 500 Hz sampling frequency. 

Dataset II (emotion elicitation). We have included in our study a sec
ond dataset, recorded in a different experimental condition, and by an 
independent research team, as recommended for biomarkers validation 
studies (Woo et al., 2017). The MAHNOB-HCI dataset of emotion elici
tation (Soleymani et al., 2012) comprised data gathered from healthy 
subjects during the visualization of 20 emotional video trials. Two trials 
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were considered further in this study: in the first trial, labelled as “joy”, 
data from 23 subjects were considered (age range 20–37 years, median 
27 years, 11 males), whereas in the second trial, labelled as “anger”, data 
from 21 subjects were considered (age range 20–37 years, median 27 
years, 9 males). Disqualified subjects either did not give explicit consent 
to process their data, or physiological data were not available, or the 
signal quality of the ECG was not high enough to properly detect 
R-peaks. The selection of two trials to be included in this study relied on 
the circumflex model of affect (Russell, 1980), which considers a 
two-dimensional approach to classify emotions: valence related to 
pleasantness, and arousal related to emotion intensity. In this view, 
emotions can be determined by a linear combination of these two di
mensions. The selected trials correspond to the emotions of joy and 
anger, which are the ones with the highest median valence and arousal 
from the self-assessment, respectively (Joy; median valence = 8, median 

arousal = 5. Anger; median valence = 1, median arousal = 7. Values in 
a discrete scale between 1 and 9). The “joy” video trial refers to a 
wedding scene from the 2003 film “Love Actually”, a romantic comedy 
by Richard Curtis; and the “anger” video trial refers to an assassination 
scene from the 2002 film “The Pianist”, a war drama by Roman Polanski. 

2.2. EEG processing 

All physiological data were pre-processed using MATLAB R2017a 
and Fieldtrip Toolbox (Oostenveld et al., 2011). Data were bandpass 
filtered with a Butterworth filter of order 4, between 0.5 and 45 Hz. EEG 
channels outside the scalp were not considered in this analysis (97 out of 
the 129 channels were considered in the resting state dataset, and all 32 
channels were considered in the emotion elicitation dataset). Large 
movement artefacts were removed using the wavelet-enhanced 

Table 1 
State-of-the-art methods for the assessment of Brain-Heart Interplay from non-invasive recordings. The word ‘descending’ refers to the from-brain-to-heart direction 
only, as well as ‘ascending’ refers to the from-heart-to-brain direction only.  

Approach Method BHI 
Specificity 

Features Reference 

Physiological modelling Synthetic data generation Ad-hoc Bi-directional, time-varying (Catrambone et al., 2019b) 
Granger causality General Bi-directional, non-time- 

varying 
(Faes et al., 2015; Greco et al., 2019) 

Point-process transfer entropy Ad-hoc Descending, time-varying (Catrambone et al., 2021b) 
Synchronisation measurements Maximal information coefficient General Non-directional, non-time- 

varying 
(Reshef et al., 2011; Valenza et al., 2016a) 

Joint symbolic dynamics General Bi-directional, non-time- 
varying 

(Schulz et al., 2019) 

Transfer entropy General Bi-directional, non-time- 
varying 

(Faes et al., 2014) 

Convergent cross-mapping General Bi-directional, time-varying (Schiecke et al., 2019) 
Synchronisation likelihood General Non-directional, time-varying (Dumont et al., 2004) 
Time-delay stability General Bi-directional, non-time- 

varying 
(Bashan et al., 2012) 

Multifractal-MIC joint approach General Non-directional, non-time- 
varying 

(Catrambone et al., 2020) 

Transient neural responses to 
heartbeats 

Heartbeat-evoked potentials Ad-hoc Ascending, non-time-varying (Schandry et al., 1986; Park and Blanke, 
2019) 

Heartbeat-evoked potential variance Ad-hoc Ascending, non-time-varying (Candia-Rivera et al., 2021a) 
Heartbeat-evoked oscillations Ad-hoc Ascending, non-time-varying (Grosselin et al., 2018) 
Heartbeat-evoked network 
synchronisations 

Ad-hoc Ascending, non-time-varying (Kim and Jeong, 2019)  

Fig. 1. Computation of functional BHI markers from the combination of two time series, one from the heart and another from the brain. Some methods use time- 
frequency-derived series from either one or both physiological components. In this study, the BHI markers are computed for EEG reference as AV, RS, LP, CZ, and MA. 
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independent component analysis (Wavelet-ICA), which were identified 
using automated thresholding over the independent component and 
multiplied by ×10 to remove only very large artefacts as described in 
Gabard-Durnam et al. (2018). Consecutively, the ICA was re-run to 
recognise and reject the eye movements and cardiac-field artefacts from 
the EEG data (Dirlich et al., 1997). To do so, one lead from the ECG was 
included as an additional input in the ICA to simplify the process of 
finding cardiac artefacts. Once the ICA components with eye movements 
and cardiac artefacts were visually identified, they were set to zero to 
reconstruct the EEG series. The results of this step were eye-movements 
and cardiac-artefact-free EEG data. Thus, individual EEG channels were 
analysed successively. The channels were marked as contaminated if 
their areas under the curve exceeded 3 standard deviations (SDs) of the 
mean of all channels. The remaining channels were compared with their 
weighted-by-distance-correlation neighbours using the standard Field
trip neighbour’s definition. If a channel resulted in a 
weighted-by-distance correlation of less than 0.6, it was considered 
contaminated. A median quantity of 5 ± 1 channels among the trials 
were discarded in the resting state dataset, and 2 ± 1 channels in the 
emotion elicitation dataset. The contaminated channels were replaced 
by the neighbour’s interpolation as implemented on Fieldtrip. Channels 
were re-referenced offline using one of the methods mentioned below 
(see EEG reference section). 

The EEG spectrogram was computed for the BHI methods requiring 
EEG power components. The power spectrum was computed using the 
short-time Fourier transform with a Hanning taper. The calculations 
were performed with a sliding time window of 2 s with a 50% overlap, 
resulting in a spectrogram resolution of 1 s and 0.5 Hz. Successively, a 
time series was integrated within the alpha band (8–12 Hz). 

2.3. Computation of EEG electrical references 

For the EEG re-reference performed in the resting state dataset, we 
selected 97 out of 129 channels, discarding all channels located at the 
face, neck and ears. Subsequently, a subset of 64 channels (out of 97 
channels used until this part) were selected for the analysis, according to 
the 10–10 system (Luu and Ferree, 2000). The EEG re-referencing in the 
emotion elicitation dataset comprises all 32 channels. The references 
used were AV, LP, RS and CZ. The MA reference was studied in the 
resting state dataset only, since no mastoids electrodes were available in 
the MAHNOB-HCI dataset. 

For computing LP reference, the Fieldtrip toolbox was used to 
implement the finite method (Huiskamp, 1991; Oostendorp and van 
Oosterom, 1996). The EEG reference is performed by estimating an EEG 
montage based on a constructed spatial surface grid. The electrode 
montage is constructed by first doing an azimuthal projection of the 
electrodes considering their locations in 3-dimensions, followed by a 
triangulation of neighbouring points of the surface grid, resulting in 
head modelled by a finite number of triangles. Finally, the EEG channels 
are referenced as mathematical combination of datapoints, based on the 
spatial derivatives given by the differential operator (Δ), in Eq. (1) is 
shown the finite estimation for electrodes with variable distances: 

ΔΦ0 =
∑N

i=1
Li ∙ (Φi-Φ0) (1)  

Li =
4

r∙N
∙1

ri
(2)  

Where r is the average distance between neighbours, N is the number of 
neighbouring points and ri is the triangle edge, Φ0 the potential 
measured in the current point and Φi the potential measured in the 
neighbour i. 

RS reference codes were downloaded from https://github.com/sccn/ 
REST. Parameters used were 3000 default dipoles and a head model of 3 
concentric spheres of thickness {0.87 0.92 1} mm, and conductivities of 

{1 0.0125 1} S/m for brain, skull and scalp, respectively. The compu
tation of the RS reference is done through the measured scalp potentials 
and determines the electrical activity with a pipeline based on source re- 
construction and a head model. In Eq. (3) is shown the RS reference 
representation: 

Φ-Φref = G∙GAV∙RAV∙Φ (3)  

Where Φ is the measured potential, Φref is the estimated EEG reference, 
G is the lead field, GAV is the generalised Moore-Penrose inverse of 
demeaned G, RAV is a matrix that fulfils the following expression: ΦAV 
= RAV∙Φ, where AV stands for Average Reference. 

2.4. ECG processing 

ECG data were bandpass filtered using a Butterworth filter of order 4, 
between 0.5 and 45 Hz. The R-peaks from the QRS waves were identi
fied first via an automatized process, following a visual inspection of 
misdetections. The procedure was based on a template-based method for 
detecting R-peaks (Vehkaoja et al., 2013). First, 5 s were selected 
randomly, and the corresponding R-peaks were detected automatically 
by searching for the local maxima. With the detected heartbeats, an 
R-peak template was constructed by averaging the detected peaks at a 
latency of ± 0.2 s. The R-peak template was then cross-correlated with 
the complete ECG, and the R-peaks were detected using automated peak 
detection over the correlated time series. The settings of the R-peak 
detection method were tuned to identify peaks at a minimum distance 
defined by the mean inter-beat interval from the template window, 
adjusted by a factor of 0.8. All the detected peaks were visually 
inspected over the original ECG, along with the inter-beat intervals 
histogram. Manual corrections were performed where needed; 
0–40 manual corrections were performed per subject in the resting state 
dataset, and 0–3 in the emotion elicitation dataset. Subjects presenting 
segments with unintelligible R-peaks were disqualified from the anal
ysis, as described in datasets description section. 

2.5. Heart-rate variability analysis 

The heart-rate variability (HRV) series were studied in the high- 
frequency range (0.15–0.4 Hz) in order to quantify the para
sympathetic activity from the autonomic nervous system (Acharya et al., 
2006). Once the heartbeats were detected from the ECG, the HRV series 
were constructed as an inter-beat intervals duration time course. 
Consecutively, the HRV series were evenly re-sampled to 4 Hz using the 
spline interpolation. The HRV power was computed using a smoothed 
pseudo-Wigner–Ville distribution (Orini et al., 2012). The pseudo-
Wigner–Ville algorithm consists of a two-dimensional Fourier transform 
with an ambiguity function kernel to perform two-dimensional filtering. 
The ambiguity function comprises ellipses whose eccentricities depend 
on the parameters ν0 and τ0, to set the filtering degrees of time and 
frequency domains, respectively (Costa and Boudreau-Bartels, 1995). 
An additional parameter λ was set to control the frequency filter roll-off 
and the kernel tails’ size (Costa and Boudreau-Bartels, 1995; Orini et al., 
2012). In this study, we set v0 = 0.03, τ0 = 0.06 and λ = 0.3 as per 
previous simulation studies (Orini et al., 2012). 

2.6. Computation of functional brain–heart interplay 

We investigated the role of EEG reference on the main BHI assess
ment methods for different strategies to quantify the interplay. Synthetic 
Data Generation markers from the methods based on physiological 
modelling, Maximal Information Coefficient from the methods based on 
synchronisation measures, and Heartbeat-Evoked Potentials from 
heartbeat-locked measures and its derivative Heartbeat-Evoked Oscil
lations. As illustrated in Fig. 1, BHI markers were computed using a 
time-series component from both heart and brain. The strategies 
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underlying the studied BHI quantification methods vary in terms of the 
inputs used for its computation, as well as the outputs that provide 
different information in terms of time resolution and directionality of 
the interplay. The functional BHI was computed to obtain a single value 
per EEG channel, thereby the marker time course was averaged on time. 

To reduce the number of confounding factors and ease the inter
pretation of results, we limited our investigation to time-varying EEG 
power series in the alpha band (8–12 Hz) and time-varying HRV power 
series in the HF band (0.15–0.4 Hz). This is because these features are 
known to characterise a resting state in healthy subjects (Acharya et al., 
2006; Sadaghiani et al., 2012; Stewart et al., 2014), as well as attention 
level (Ray and Cole, 1985) and behavioural responses and reactivity in 
active tasks (Porges et al., 1994). Moreover, previous BHI studies have 
highlighted the interactions between EEG oscillations in the alpha band 
and cardiovascular oscillations in the HF band (de Munck et al., 2008; 
Balconi et al., 2009; Yu et al., 2009; Magosso et al., 2019). 

2.6.1. Synthetic data generation (SDG) 
This mathematical model assesses the bi-directional modulations 

between EEG oscillations at a given frequency band and heartbeat dy
namics spectra integrated over low or high frequency bands (Catram
bone et al., 2019b). The functional interplay going from the brain to the 
heart is quantified through a model able to generate synthetic heartbeat 
intervals based on an Integral Pulse Frequency Modulation model, 
which is parametrized with Poincaré Plot features (Brennan et al., 
2002). The synthetic heartbeats are modelled as a summation of Dirac 
functions δ(t) in which heartbeats’ timings occur at tk. The beat-to-beat 
generation comprises an integration within the interbeat interval from tk 
to tk+1, in which the integral function reaches a threshold equal to 1, as 
shown in Eqs. (4) and (5), where µHR is the reference heart rate (in Hz) 
and m(t) is the modulation function. 

x(t) =
∑N

k=1
δ(t − tk) (4)  

1 =

∫tk+1

tk

[µHR +m(t)]dt (5) 

The modulation function m(t) corresponds to the combination of two 
oscillators associated with cardiac oscillations in the LF and HF bands, 
which represent sympathovagal and parasympathetic dynamics, 
respectively. In Eq. (6), the amplitudes defined by CLF and CHF indicate 
the time-varying coupling constants computed parametrically from the 
Poincaré plot (see (Brennan et al., 2002) for further details). Therefore, 
the coupling coefficients SDGbrain→LF and SDGbrain→-HF that represent the 
brain-to-heart interplay are computed as shown in Eqs. (7) and (8), 
where Powerf(t − 1) represents the EEG power time course in frequency f 
in the previous time window. 

m(t) = CLF(t)∙sin(ωLF ∙ t) + CHF(t)∙sin(ωHF∙t) (6)  

CLF(t) = SDGbrain→LF(t)∙Powerf(t-1) (7)  

CHF(t) = SDGbrain→HF(t)∙Powerf(t-1) (8) 

The functional interplay from the heart to the brain is quantified 
through a model based on the generation of synthetic EEG series using 
an adaptative Markov process, in Eq. (9) (Al-Nashash et al., 2004). The 
model estimates the ascending modulations from the heart to the brain 
using least squares in an auto-regressive process, in which the 
Markovian neural activity generation, with a specific EEG channel, 
frequency band and time window, uses its previous neural activity and 
the current heartbeat dynamics as inputs (Eq. (10)). 

EEG(t) =
∑fn

f=f1

Powerf(t)∙sin(2π f t+ θf) (9)  

Powerf(t) = κf∙Powerf(t-1) + Ψf (t) + εf (10) 

Thereby, the coupling coefficient SDGheart→brain is extracted from the 
estimated contribution of heartbeat dynamics HRVX (with X as LF or HF 
or their combination) to the auto-regressive model for EEG data gen
eration (Catrambone et al., 2019b): 

SDGLF→brain(t) = Ψf (t) / HRVLF(t) (11)  

SDGHF→brain(t) = Ψf (t) / HRVHF(t) (12)  

where f is the main frequency in a defined frequency band, θf is the 
phase, κf is a constant and εf is the adjusted error. As shown in Fig. 2A, 
the BHI markers are obtained for the studied time course, and this allows 
for assessing real-time changes with a resolution defined by the power 
spectrum time resolution. This method was tested under sympathovagal 
elicitation, whereby mutual brain–heart modulations to different de
grees were shown, of which the main influences observed were in the 
autonomic outflows toward brain dynamics involving very-low and 
very-high oscillations, while cortical activity between 10 and 30 Hz 
generally helmed part of the efferent autonomic tone (Catrambone et al., 
2019b). 

Source code implementing the SDG framework for functional BHI 
was retrieved online at https://github.com/CatramboneVincenzo/Brai 
n-Heart-Interaction-Indexes. In this study, functional BHI measure
ments were derived in the direction from-the-heart-to-the-brain using 
time-varying EEG spectra integrated in the alpha band (8–12 Hz) and 
time-varying heartbeat dynamics spectra integrated in the high fre
quency band (0.15–0.4 Hz). 

2.6.2. Maximal information coefficient (MIC) 
This method quantifies linear and non-linear functional coupling 

between two time series (Reshef et al., 2011). The Eq. (15) shows the 
MIC computation using the mutual information H(X,Y) between two 
time series X and Y. The mutual information is normalized by the min
imum joint entropy, resulting in an index in the range 0–1. 

MIC(X,Y) =
H(X,Y)

log2min{nX, nY}
(15) 

MIC may capture non-linear correlations, which is a capability not 
available in traditional correlation algorithms—such as Pearson’s coef
ficient—as it considers the similarities between two time series irre
spective of signals curvatures. MIC evaluates similarities between 
different segments separately at an adapted time scale, as illustrated in 
Fig. 2B. Then, the final measure wraps the similarities across the whole 
time-course. The MIC has been applied to couple the time series derived 
from the brain and heart, obtaining one value without a time resolution. 
In the frame of functional BHI assessment, MIC works as a measure of 
brain–heart synchronisation, rather than directional modulation 
(Valenza et al., 2016a). As with the SDG, the MIC uses brain-oscillations 
time series in a specific frequency band and the heart series derived from 
low or high frequency range (Acharya et al., 2006). This method has 
been tested in emotion elicitation studies, which revealed an increase in 
brain–heart synchronisation under positive emotion elicitation over a 
wide frequency range (1–30 Hz) (Valenza et al., 2016a; Catrambone 
et al., 2019a). 

Source code implementing MIC is available online at https://github. 
com/minepy. In this study, MIC was estimated between time-varying 
EEG spectra integrated in the alpha band (8–12 Hz) and time-varying 
heartbeat dynamics spectra integrated in the high frequency band 
(0.15–0.4 Hz). 

2.6.3. Heartbeat-evoked potential (HEP) 
This refers to the neural response triggered by each heartbeat 

(Schandry et al., 1986). It is computed using Eq. (13), which locks the N 
EEG epochs defined by the heartbeat time intervals and averages them 
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to obtain the HEP, as shown in Fig. 2C. 

HEP(t) =
1
N

∑N

k = 1
EEG(t, k) (13) 

Thus, heartbeats could be observed as brain stimulations emanating 
from the internal body, thereby generating a transient neural response 
(Azzalini et al., 2019), i.e., the HEP can be intended as a measure of BHI 
in the direction from-heart-to-brain. Particularly, with HEP, the neural 
changes can be measured with millisecond resolution. HEP features 
were computed by averaging the EEG epochs within the 200–500-ms 
interval, following each R-peak, without a baseline correction. This 
choice is in accordance with previous work challenging the definition of 
a “neutral” time window in the cardiac cycle (Park and Blanke, 2019). In 
order to avoid the presence of cardiac artefacts in EEG associated with 
the subsequent R-peak, the epoch associated with inter-beat intervals 
shorter than 500 ms were discarded (Park and Blanke, 2019). In this 
study, the HEP absolute values were considered for further analyses for 
consistency reasons with respect to other BHI estimation methods. HEP 
was computed using time-locked analysis tools from Fieldtrip toolbox, as 
implemented at https://github.com/diegocandiar/brain_heart_doc. 

2.6.4. Heartbeat-evoked oscillations (HEO) 
In the same vein, other types of heartbeat-evoked responses have 

been described in the domains of brain networks and brain oscillations 
in specific frequency bands (Grosselin et al., 2018; Kim and Jeong, 
2019). In this study, we included heartbeat-evoked oscillations referring 
to the neural response triggered by each heartbeat within the EEG alpha 
band, as shown in Fig. 2D. This method has been presented to study the 
changes in brain oscillations with respect to cardiac or respiratory cycles 
(Grosselin et al., 2018). As with HEP, HEO can be considered as a 
quantification of the interaction between heart and brain. Eq. (14) 
considers the N power epochs referenced to a power baseline and 
computes the power average of a defined interval with respect to the 
R-peak. 

HEOf(t) =
1
N

∑N

k = 1
[Powerf(t, k)/Powerf,baseline (t, k)] (14) 

Source code implementing HEO is available online at https://github. 
com/FannyGrosselin/CARE-rCortex. HEO features were computed 
within the alpha band (8–12 Hz) by averaging EEG epochs within the 

200–500 ms interval following each R-peak. The computed features 
account for the relative change with respect to a baseline value calcu
lated in the − 300 to − 200 ms interval (i.e., before the R-peak), as rec
ommended in (Grosselin et al., 2018). 

2.7. Statistical analysis 

We studied the role of the EEG reference when computing functional 
BHI indices. The BHI indices were computed for individual EEG chan
nels using different electrical EEG references, i.e., AV, LP, RS, CZ and 
MA. We assessed the functional BHI in three different conditions: a 
resting state, and two emotional trials from the MAHNOB-HCI dataset 
(Soleymani et al., 2012). The signal processing methods employed for a 
BHI assessment were i) Synthetic data generation model (HRV-HF to 
alpha band), ii) heartbeat-evoked potentials, iii) heartbeat-evoked os
cillations (alpha band), and iv) maximal information coefficient (be
tween HRV-HF and alpha band). 

Statistical analyses exploited non-parametric methods because the 
assumption of working with Gaussian random variables may not be 
verified for all samples; indeed, the Spearman correlation coefficient is 
bounded to the interval [− 1,1] and thus cannot be associated with a 
Gaussian distribution. Moreover, the evaluation of rank-based differ
ences allows for the statistical comparison between BHI assessment 
methods without biases due to the absolute value of the estimates; 
indeed, SDG, HEP, and HEO estimates are not in a normalized range 
[0,1] as the MIC. Accordingly, for a given variable X, group-wise 
descriptive statistics are expressed as Median(X) ± MAD(X), where 
MAD (X) = Median (|X − Median (X)|). 

The following statistical analyses were performed:  

I) Comparison between EEG references: using resting state data from 
Dataset I, for each EEG channel, we investigated group-wise 
differences between different EEG references for a given BHI 
assessment method through a Friedman test for paired samples; 
the analysis was repeated for each BHI assessment method. 
Moreover, using data from both Dataset I and Dataset II, for each 
EEG channel, we quantified pairwise similarities between 
different EEG references for a given BHI assessment method 
through Spearman correlation coefficients calculated among 
subjects; p-values associated with those correlation coefficients 

Fig. 2. Exemplary functional Brain-Heart Interplay estimates using different models. (A) SDG model (bottom panel) estimating functional coupling from the heart 
(HVR-HF, top panel) to the brain (EEG-α, central panel). (B) Maximal Information Coefficient (MIC) estimated between heart (HRV-HF, top panel) and brain dy
namics (EEG-α, central panel), and vertical green lines in the bottom panel illustrate the grid for the MIC computation. (C) Heartbeat-evoked potential (HEP, green 
line in the bottom panel) computed by averaging EEG epochs (vertical green shades in the central panel) locked to R-peaks from the ECG (red lines in the top and 
bottom panels). (D) Heartbeat-evoked oscillations (HEO, green line in the bottom panel) computed by averaging EEG epochs in the α-band (vertical green shades in 
the central panel) locked to R-peaks from ECG (red lines in the top and bottom panels); EEG epochs are normalised with respect to a baseline calculated before the R- 
peak occurrence (vertical grey shades in the central panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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were derived by a t-Student distribution approximation, and the 
analysis was repeated for each BHI assessment method.  

II) Comparison between functional BHI assessment methodologies: using 
data from both Dataset I and Dataset II, for each EEG channel, we 
investigated group-wise differences between different BHI 
assessment methods for a given EEG reference through a Fried
man test for paired samples; the analysis was repeated for each 
EEG reference. 

For all statistical tests, the significance level was corrected for mul
tiple comparisons in accordance with the Bonferroni rule considering 
the number of channels in each case, with a corrected statistical sig
nificance set to α = 0.05/Number of channels. 

3. Results 

3.1. Comparison between EEG references in the resting state 

3.1.1. Synthetic data generation model (SDG) 
The results are shown in Fig. 3. The Friedman tests provided signif

icant p-values on all electrodes on the scalp, indicating differences in 
SDG estimates between EEG references. Note that this result does not 
necessarily indicate uncorrelations between the EEG references; rather, 
it may indicate a significant change in the range wherein the values 
fluctuate. The most affected region according to the Friedman Q-stat is 
the vertex region (i.e, channel Cz and its neighbours). The median cor
relation coefficients among the channels are displayed in Table 2, with 
overall high correlations between SDG coefficients gathered from all 
EEG reference pairs (Median spearman correlation coefficient range 
between 0.79 and 0.98), in which the highest agreement was found 
between AV and RS, and the lowest between LP and MA. Despite there 
being high correlations between all methods, we observed that these 
correlations are reduced in some scalp topographies. A comparison of 
the LP reference with other EEG references revealed the lowest corre
lations between SDG coefficients, as opposed to any other EEG reference 
pair (Fig. 3). Conversely, the SDG coefficients computed with CZ refer
ence have a lower correlation as compared with AV, MA, and RS in the 
vertex region, showing the same trend as that of the Friedman test re
sults. Overall, the results from the SDG method indicate its robustness 
against the EEG reference change, given the high correlations, and the 
EEG reference changes cause the relative displacement of values rather 
than a distortion. 

3.1.2. Heartbeat-evoked potentials (HEP) 
The results of the Friedman test between HEP computed with 

different EEG references is significant for most electrodes, with higher 
effect size on the frontal region, as observed in Fig. 4. On the other hand, 
the correlations of HEP between its computations through different EEG 
references varies over a wide range, where the median Spearman cor
relation coefficients among the channels increase from 0 to 0.84, as 
presented in Table 3. While the highest agreement occurs between AV 
and RS (as seen in the SDG method), the lowest correlation is between 
CZ and MA. These results indicate high heterogeneity of the heartbeat- 
evoked potentials when changing the EEG reference. Fig. 4 presents 
the correlation scalp topographies for all EEG reference pairs, where 
region-specific changes can be observed when changing one EEG 
reference. The correlations including LP, namely AV–LP, LP–RS, LP–CZ 
and LP–MA, are low in magnitude compared with those evaluated be
tween other EEG reference pairs. Contrarily, HEP computed with the MA 
reference largely agrees with the AV and RS references. Despite the high 
correlations, however, the AV–MA and RS–MA correlation coefficients 
decrease in the regions closer to the mastoids, indicating that the MA 
reference has a region-specific effect. The central scalp region appears to 
have been affected by the changing of the EEG reference, as indicated by 
the very low correlation of HEP as compared when computed with 
AV–LP, AV–CZ, LP–RS, LP–MA, RS–CZ and CZ–MA references. Indeed, 
the least correlated pair is CZ–MA, where the whole central region is 
affected. Overall, HEP presents two main affected regions—the frontal 
electrodes, as presented in the Friedman test, and the vertex region. 

3.1.3. Heartbeat-evoked oscillations (HEO) 
The Friedman test showed overall insignificant changes in the dis

tribution for this index when changing the EEG reference, with only a 
small significant cluster appearing in the central-posterior region of the 
left hemisphere, as shown in Fig. 5. The median Spearman correlation 
coefficients among channels range between 0.39 and 87, as presented in  
Table 4. In a similar direction as other BHI methods, HEO presents the 
highest correlation in the AV–RS comparison. High agreements were 
observed also between AV–MA and RS–MA (median correlation co
efficients of 0.72 and 0.73, respectively). Conversely, the effect of 
mastoids observed in the heartbeat-evoked potentials (Fig. 4) was not 
observed in this BHI index in the same manner. As indicated in Fig. 5, 
low correlations appear in all HEO computations with the LP reference, 
and the CZ–MA pair. These results indicate that heartbeat-evoked os
cillations are less sensitive to EEG reference than the EEG evoked 

Fig. 3. Friedman test and Spearman Correlation analysis for the SDG method in the resting state dataset. The Friedman test was performed for all the EEG reference 
methods studied in this paper. The Friedman colormap corresponds to the Friedman stat (Q) obtained for individual channels. The Spearman Correlation colormaps 
correspond to the Correlation Coefficients (R) obtained among subjects per channel. In all topographies, electrodes resulting as statistically significant following a 
Bonferroni correction are shown as thick dots across the scalp. 
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Table 2 
Group-wise Median(X) ± MAD(X) correlation coefficient among channels (R) in all EEG reference pairs for the SDG method.  

Pair AV–LP AV–RS AV–CZ AV–MA LP–RS LP–CZ LP–MA RS–CZ RS–MA CZ–MA 

R   0.81 ± 0.04  0.98 ± 0.01  0.93 ± 0.02  0.94 ± 0.02  0.81 ± 0.04  0.80 ± 0.06  0.79 ± 0.04  0.91 ± 0.03  0.96 ± 0.02  0.87 ± 0.04 

Note: AV: Average, LP: Laplacian, RS: Reference Electrode Standardisation Technique, CZ: Vertex, MA: Mastoids Average. 

Fig. 4. Friedman test and Spearman Correlation analysis for the Heartbeat-evoked Potentials method in the resting-state dataset The Friedman test was performed for 
all the EEG reference methods studied in this paper. The Friedman colormap corresponds to the Friedman-stat (Q) obtained for individual channels. The Spearman 
Correlation colormaps correspond to the Correlation Coefficients (R) obtained among subjects per channel. In all topographies, electrodes resulting as statistically 
significant following a Bonferroni correction are shown as thick dots across the scalp. 

Table 3 
Median(X) ± MAD(X) correlation coefficient among channels (R) in all EEG reference pairs for the Heartbeat-Evoked Potentials method.  

Pair AV–LP AV–RS AV–CZ AV–MA LP–RS LP–CZ LP–MA RS–CZ RS–MA CZ–MA 

R   0.54 ± 0.12  0.84 ± 0.05  0.43 ± 0.18  0.62 ± 0.11  0.46 ± 0.13  0.33 ± 0.13  0.34 ± 0.14  0.39 ± 0.17  0.64 ± 0.09  0 ± 0.14  

Fig. 5. Friedman test and Spearman correlation analysis for the heartbeat-evoked oscillations method in the resting-state dataset. The Friedman test was performed 
for all the EEG reference methods studied in this paper. The Friedman colormap corresponds to the Friedman-stat (Q) obtained for individual channels. The Spearman 
Correlation colormaps correspond to the Correlation Coefficients (R) obtained among subjects per channel. In all topographies, electrodes resulting as statistically 
significant following a Bonferroni correction are shown as thick dots across the scalp. 
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potentials, being LP and CZ the references causing major distortions. 

3.1.4. Maximal information coefficient (MIC) 
No significant changes occurred in the BHI index distribution, ac

cording to the results of the Friedman test in Fig. 6. Even then, the 
highest stats are in the frontal electrodes, as indicated by the SDG 
method and HEP. The median Spearman correlation coefficients range 
from 0.21 to 0.62, as shown in Table 5. MIC as computed with AV–RS 
presents the highest agreement, as in the other BHI methods, and LP–MA 
the lowest. As observed earlier, LP and CZ references affect this BHI 
method the most, as observed in Fig. 6, where the lowest correlations are 
found when MIC is computed with the LP and CZ references. To sum
marise Fig. 6, the results indicate that changing the EEG reference in the 
computation of MIC does not cause any major change in the index dis
tributions, but it does generate massive distortions when measured in 
the correlation analysis, with the exception of the AV–RS reference. 

3.2. Comparison between functional BHI assessment methodologies 

To assess the overall similarity between BHI methods when 
computed through different EEG references, we performed for each EEG 
reference a Friedman test between the BHI methods and assessed the 
most divergent scalp regions in terms of the BHI index distribution 
among all subjects. The results are summarised in Fig. 7. Under resting 
state, the entire scalp appears significantly affected, with the frontal 
electrodes with the highest Friedman Q-stat for AV, CZ, MA, and RS. The 
LP reference has a consistent high effect size throughout the scalp, which 
means it is the EEG reference with least similarities among the BHI 
methods, as well as the most divergent EEG reference method given its 
varying topography. To confirm these findings, we performed the same 
analysis in the emotion elicitation dataset, for the emotions of joy and 
anger. Friedman’s scalp topographies during joy elicitation presented a 
significant cluster in the midline parietal region, for AV, RS and CZ. 
Similarly, the same EEG references presented similarities for the anger 
elicitation trial in the three regions, with a relatively higher Friedman Q- 

stat—one left-frontal and another right-central and left-occipital. 
Nevertheless, none of them were statistically significant. Compared 
with other EEG references, the LP reference caused an inconsistent scalp 
topography in the three conditions studied, as observed in Fig. 7. This 
highlights the divergence of the LP reference with respect to other EEG 
reference methods for both the resting state and emotion elicitation. 

3.3. Analysis of correlation between EEG references: resting state and 
emotion elicitation studies 

We repeated the analysis of correlation between the EEG references 
over the emotion-elicitation dataset. This dataset considers the BHI’s 
raw effect, which is the average BHI value during the emotion elicitation 
subtracted from the average BHI value during the rest period before the 
commencement of the video trial. With the two trials, joy and anger 
elicitations, we verified if the results head in the same direction as the 
resting state dataset. We selected the RS reference, as it agrees the most 
with the AV reference, and the LP reference, which agrees the least (for 
comparisons between other EEG references please see Supplementary 
Material). 

Fig. 8 presents the scalp topographies for the AV–LP and AV–RS 
correlations for all BHI methods in the three datasets. Results of the SDG 
method showed overall high correlations as in resting state, but the 
anger-elicitation trial presented a reduced correlation between AV and 
LP. The results of HEP and HEO from emotion-elicitation data show the 
same trends. HEP computed with AV and LP references had a low cor
relation with each other, while computed with AV and RS references 
exhibited a high correlation. MIC also demonstrates the low correlations 
between AV and LP in the two trials of emotion elicitation. MIC 
computed with AV and RS references are more homogeneously corre
lated among the channels during emotion elicitation than during the 
resting state, where a few reduced correlations were observed towards 
both temporal regions. Nonetheless, MIC maintained the lowest corre
lations when changing the EEG reference, compared with the other BHI 
methods. 

Table 4 
Median(X) ± MAD(X)correlation coefficient among channels (R) in all EEG reference pairs for the Heartbeat-Evoked Oscillations method.  

Pair AV–LP AV–RS AV–CZ AV–MA LP–RS LP–CZ LP–MA RS–CZ RS–MA CZ–MA 

R   0.39 ± 0.16  0.87 ± 0.05  0.68 ± 0.12  0.72 ± 0.07  0.41 ± 0.16  0.41 ± 0.12  0.42 ± 0.16  0.68 ± 0.10  0.73 ± 0.07  0.53 ± 0.08  

Fig. 6. Friedman test and Spearman correlation analysis for the maximal information coefficient method in the resting-state dataset. The Friedman test was per
formed for all the EEG reference methods studied in this paper. The Friedman colormap corresponds to the Friedman-stat (Q) obtained for individual channels. The 
Spearman Correlation colormaps correspond to the Correlation Coefficients (R) obtained among subjects per channel. In all topographies, electrodes resulting as 
statistically significant following a Bonferroni correction are shown as thick dots across the scalp. 
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4. Discussion 

A number of studies have stated that a suboptimal electrical re- 
reference of EEG data may cause distortions, including mis- 
measurements of event-related potentials, or bias the estimation of the 
EEG spectrogram (Hagemann et al., 2001; Kayser and Tenke, 2010; Hu 
et al., 2018). To help meet the important concerns about the electrical 
reference raised in existing EEG-related studies, this discussion aims to 
provide experts with use guidelines on the installation of an optimal EEG 
reference for the assessment of functional BHI. We analysed EEG power 
series in the alpha band (8–12 Hz) and HRV power series in the HF band 
gathered from healthy subjects during resting state and emotion elici
tation. We are aware that emotional states may especially be charac
terised by BHI sustained by oscillations in different frequency bands, and 
a comprehensive investigation on the role of EEG references throughout 
EEG and HRV frequency bands in both functional directions, for 
different BHI estimation methodology, may be part of future endeavours 
(Candia-Rivera et al., 2021b). 

Experimental results suggest that the SDG method provides consis
tent estimates with respect to different EEG references, while the MIC is 
the most sensitive quantifier. For the EEG references, while AV and RS 
should be preferred because of the consistency between the BHI esti
mation methods, the LP reference introduces major distortions in a 
functional BHI estimation. 

4.1. Consistency between EEG references 

The use of AV and RS re-references methods led to consistent results 
in terms of functional BHI estimation, compared with the other EEG 
references, as observed in Fig. 8, while MA, LP and CZ showed differ
ences between different BHI methods. 

The use of an AV reference is founded with a theoretical background, 
indicating that the integral of the surface potential of a volume 
conductor is zero (Offner, 1950). Experiments have revealed the inde
pendence of AV reference to specific locations on the scalp (Kayser and 
Tenke, 2010), as well as robustness to different experimental conditions 
(Bertrand et al., 1985). However, the AV reference is not always ideal, 
and may be affected by such factors as the number of EEG electrodes 
used for AV calculations (Bertrand et al., 1985). 

The RS reference aims to standardize EEG to a point at infinity, based 
on a reference-independent approach of signal re-construction with 
respect to the equivalent sources from scalp EEG recordings (Yao, 2001). 
Though proven to be effective in capturing activity in the superficial 
cortical region, the RS reference faces challenges in high-noise condi
tions (Hu et al., 2018). Indeed, source reconstruction is not recom
mended in EEG with low signal-to-noise ratio (Cohen and Ridderinkhof, 
2013; Michel and Brunet, 2019). The critical conditions required to 
ensure optimal AV reference estimation are a wide scalp coverage and a 
threshold for the number of channels. 

The high agreement obtained between AV and RS reference could be 
owing to the experimental conditions of this study being sufficient to 
ensure an optimal reference, or more unlikely, these BHI markers 

Table 5 
Median(X) ± MAD(X)correlation coefficient among channels (R) in all EEG reference pairs for the Maximal Information Coefficient method.  

Pair AV–LP AV–RS AV–CZ AV–MA LP–RS LP–CZ LP–MA RS–CZ RS–MA CZ–MA 

R   0.23 ± 0.13  0.62 ± 0.08  0.42 ± 0.15  0.51 ± 0.09  0.29 ± 0.10  0.25 ± 0.10  0.21 ± 0.12  0.36 ± 0.14  0.49 ± 0.11  0.24 ± 0.13  

Fig. 7. Friedman test between BHI methods within each EEG reference, performed with three datasets—resting state, joy elicitation and anger elicitation. Colormaps 
indicate the Friedman-stat (Q). In all topographies, electrodes resulting as statistically significant following a Bonferroni correction are shown as thick dots across 
the scalp. 
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studied are not affected by the aforementioned critical conditions. 
The LP reference is computed through a linear combination of the 

data, estimating the changes in current density across the scalp, given 
the curvature of the brain’s electrical field (Nunez, 1989). The LP 
reference proved to be the most divergent reference to compute all BHI 
markers studied (Fig. 7), which implies that the experimental and pro
cessing conditions did not meet the necessity of ensuring an optimal 
scalp current estimation through the LP method. The LP method is 
largely dependent on the number of EEG electrodes, as it is a preferred 
reference for use in high-density EEG (Nunez et al., 1994). Furthermore, 
the LP reference is computed through an analytical method which is 
significantly affected in high-noise conditions. 

Finally, the use of single electrodes to reference EEG, such as the CZ, 
assumes that the specific single electrode taken as reference is a neutral 
point; however, CZ is electrically active and thus the use of single 
electrodes to reference EEG has been challenged (Lehmann, 1984; 
Hagemann et al., 2001). Indeed, Fig. 4 shows some electrodes with 
negative correlation coefficients when using samples associated with CZ 
reference. However, those estimates are not associated with a statisti
cally significant correlation, and such negative fluctuations should then 
be considered as sampling fluctuations of the true correlation co
efficients equal to 0. In this study, the use of CZ reference affected the 
measurement in nearby electrodes in the scalp’s central region. 

The case of the MA reference may be associated with a region of 

reduced neural activity with respect to other cephalic sites (Hagemann 
et al., 2001). However, previous studies revealed the inconsistent per
formances of MA references when compared with an AV reference (Hu 
et al., 2018). In this study, MA distorted the measurement of EEG ac
tivity in the temporal regions. Given that mastoids are located outside 
the scalp, the mastoid electrodes could capture brain activity in the 
temporal lobe (Stephenson and Gibbs, 1951), or even distort the mea
surement in nearby electrodes, given that the electromagnetic field 
generated on the mastoid electrodes may alter the flow of current in 
nearby regions (Miller et al., 1991). 

4.2. Region-specific effects 

To determine the scalp regions most affected by changing the EEG 
reference, for each EEG channel, we investigated group-wise differences 
between BHI assessment methods for a given EEG reference through a 
Friedman test. These results do not necessarily implicate a distortion in 
the BHI; rather, it shows changes in the range where values fluctuate 
with a possible constant relative displacement among the channels, 
maintaining a high correlation, as with the SDG method (Fig. 3). 

SDG and HEP underwent the most changes in the marker distribu
tions. Particularly, HEP showed more significant changes over frontal 
electrodes (Fig. 4, Friedman test). Previous studies have demonstrated 
the regions affected by changing of the EEG reference, which were 

Fig. 8. Spearman correlation analysis for the BHI methods studied in resting state and emotion elicitation datasets for joy and anger. The correlations correspond to 
the result of the comparison of the AV reference with the LP and RS references. The Spearman Correlation colormaps correspond to the Correlation Coefficients (R) 
obtained among subjects per channel. In all topographies, electrodes resulting as statistically significant following a Bonferroni correction are shown as thick dots 
across the scalp. 
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located at the frontal channels when measuring, for instance, the brain 
asymmetry (Hagemann et al., 2001). Regarding the most affected re
gions in the correlation analysis, HEP presented more disparities in the 
temporal electrodes in both hemispheres when using the MA reference 
and vertex region when using CZ reference (Fig. 4, Spearman 
correlation). 

Interestingly, the results of the Friedman test revealed non- 
significant changes in the HEO and MIC distributions when changing 
the EEG reference (Figs. 5 and 6, respectively), while MIC was the most 
affected method in the correlation analysis. This is reasonable, knowing 
that these methods have a restricted range, as HEO measures a pro
portional change in the EEG power before the heartbeat, and MIC 
measures signal agreements, both have a range of 0–1. While the tem
poral regions and the whole scalp showed significant changes in the MIC 
correlation analysis when using an MA reference and LP or CZ refer
ences, respectively, frontal regions showed significant changes in the 
HEO correlation analysis when using a LP reference. 

To determine the scalp regions most affected by changing the BHI 
estimation method computed with different EEG references, we per
formed the Friedman tests between the different BHI markers computed 
with the same EEG reference every time. Dataset I showed a more sig
nificant change between the BHI methods in the frontal regions, with the 
exception of cases with LP reference, where no focused effect was 
observed. Dataset II showed a significant cluster in the midline parietal 
channels for the joy-elicitation trial (Fig. 7). These results suggest the 
presence of latent functional BHI in the frontal channels during resting 
state. Indeed, the prefrontal and fronto-parietal cortex are known to be 
involved in the alpha band at rest (Sadaghiani et al., 2012; Stewart et al., 
2014). Our results suggest that different BHI markers capture different 
ongoing physiological activities, and the coupling could be measured as 
brain–heart connectivity or coordination, directional modulations, or 
instantaneous responses. 

On the emotion elicitation, our results show that BHI estimates in 
midline regions were significantly affected by a joy elicitation; further 
analyses are required to uncover the physiological meaning of these 
changes. 

4.3. Sensitivity of functional BHI biomarkers 

Estimates from the SDG method appears to have been affected only 
slightly (see Fig. 3, Spearman correlation). The robustness of SDG may 
be related to the way in which the indices are computed based on the 
relative changes of the two time series, rather than the specific ampli
tudes (Catrambone et al., 2019b). 

Unlike SDG, the largest variety of distortions are found in HEP when 
changing the EEG reference, obtaining median correlation coefficients 
among channels in the range between 0 and 0.84 (Table 2). These results 
indicate that some EEG reference may severely change the measurement 
of HEP. As stated earlier, the EEG reference may affect considerably the 
amplitudes of scalp potentials (Lei and Liao, 2017). When measuring 
HEP, the correlation of the marker decreased when comparing any of the 
EEG references with either LP or CZ references (Fig. 4, Spearman cor
relation). The specific effects of these EEG references on scalp potentials 
have been described before; LP reference may be less accurate in 
expressing the different components of an event-related potential 
(Kayser and Tenke, 2015), whereas the CZ reference causes some dis
parities between these potentials as they are referenced to an active 
neural site (Lehmann, 1984; Hagemann et al., 2001). 

Similarly, the effects on HEO when changing the EEG reference were 
mostly found when comparing one reference with LP or CZ. However, 
the median correlation coefficients in HEO are higher than in HEP. 
These results suggest that the distortions caused by the changing of the 
EEG reference are stronger in the scalp potentials than in the power 
spectrum amplitudes estimations. The previously reported event-related 
spectral changes caused by the EEG reference are related to the sum of 
linear and non-linear data transformations (Tenke and Kayser, 2005), 

even though the effects of LP reference on spectral data are related to 
reduced sharpness and a more even distribution across topographies 
(Kayser and Tenke, 2015). 

On the other hand, MIC is the most affected method changing the 
EEG reference (Figs. 6 and 8). Similarly to SDG, it does not consider the 
specific amplitude. Therefore, we hypothesize two reasons explaining 
why the method is affected. First, the EEG reference may affect the 
subjects differently, because of different conditions such as noise level. 
This would be reflected in the correlation measures. However, the other 
BHI methods using spectral components of EEG did not go through these 
levels of distortions. Second, MIC may be affected because of how it is 
computed. MIC computation starts building an adapted grid in the time 
domain based on the curvatures presented in the time series compared 
(Fig. 2) (Reshef et al., 2011). Thereby, changes the EEG reference would 
result in changes in the time-frequency domain which would be trans
lated in a different grid every time, leading to a different result. 

5. Conclusions 

The standardisation of methodologies in the assessment of functional 
BHI comes with the increasing use of these methods in important do
mains, such as clinical and methodological research and possible com
mercial applications. The results of this study suggest avoiding the use of 
the LP reference when performing a functional BHI assessment, sup
ported by the high estimation variability caused by this EEG reference. 
In the same direction, the use of EEG references based on single, or a pair 
of channels may cause distortions related to localised noise, and the 
capture of neuronally active regions might generate an overall 
distortion. 

We conclude that the AV and RS references are the safest options to 
be used in a quantitative, functional BHI study. However, an important 
issue to consider regarding the RS reference is the anatomical features, 
which in this study have been assumed to be constant, and the EEG 
sources. The sources are, however, part of future EEG studies with 
numerous constraints, especially with the possibility of high noise in the 
recordings. Noise is a sizeable concern, especially for studies performed 
in clinical environments, and the upcoming clinical applications of BHI 
may consider the same. 

We conclude that the arbitrary use of EEG references may signifi
cantly distort the measurement of functional BHI, depending on the 
estimation method. We confirm the crucial role of EEG electrical refer
ence and encourage researchers to consider using the AV reference with 
a wide scalp coverage for a functional BHI assessment. 
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García, A.M., Favaloro, R., Ibáñez, A., 2020. Dynamic neurocognitive changes in 
interoception after heart transplant. Brain Commun. 2. https://doi.org/10.1093/ 
braincomms/fcaa095. 

Salvioli, B., Pellegatta, G., Malacarne, M., Pace, F., Malesci, A., Pagani, M., Lucini, D., 
2015. Autonomic nervous system dysregulation in irritable bowel syndrome. 
Neurogastroenterol. Motil. 27, 423–430. 

Samuels, M.A., 2007. The brain–heart connection. Circulation 116, 77–84. 
Sanchez-Gonzalez, M.A., Guzik, P., May, R.W., Koutnik, A.P., Hughes, R., Muniz, S., 

Kabbaj, M., Fincham, F.D., 2015. Trait anxiety mimics age-related cardiovascular 
autonomic modulation in young adults. J. Hum. Hypertens. 29, 274–280. 

Schandry, R., Montoya, P., 1996. Event-related brain potentials and the processing of 
cardiac activity. Biol. Psychol. 42, 75–85. 

Schandry, R., Sparrer, B., Weitkunat, R., 1986. From the heart to the brain: a study of 
heartbeat contingent scalp potentials. Int J. Neurosci. 30, 261–275. 

Schiecke, K., Schumann, A., Benninger, F., Feucht, M., Baer, K.-J., Schlattmann, P., 2019. 
Brain-heart interactions considering complex physiological data: processing schemes 
for time-variant, frequency-dependent, topographical and statistical examination of 
directed interactions by convergent cross mapping. Physiol. Meas. 40, 114001. 

Schulz, S., Haueisen, J., Bär, K.-J., Voss, A., 2019. Altered causal coupling pathways 
within the central-autonomic-network in patients suffering from schizophrenia. 
Entropy 21, 733. 

Sel, A., Azevedo, R.T., Tsakiris, M., 2017. Heartfelt self: cardio-visual integration affects 
self-face recognition and interoceptive cortical processing. Cereb. Cortex 27, 
5144–5155. 

Silvani, A., Calandra-Buonaura, G., Dampney, R.A.L., Cortelli, P., 2016. Brain-heart 
interactions: physiology and clinical implications. Philos. Trans. R. Soc. A: Math. 
Phys. Eng. Sci. 374, 20150181. 

Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M., 2012. A multimodal database for 
affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3, 42–55. 

Srinivasan, R., Nunez, P.L., Silberstein, R.B., 1998. Spatial filtering and neocortical 
dynamics: estimates of EEG coherence. IEEE Trans. Biomed. Eng. 45, 814–826. 

Stephenson, W.A., Gibbs, F.A., 1951. A balanced non-cephalic reference electrode. 
Electro Clin. Neurophysiol. 3, 237–240. 

Stewart, J.L., Coan, J.A., Towers, D.N., Allen, J.J.B., 2014. Resting and task-elicited 
prefrontal EEG alpha asymmetry in depression: support for the capability model. 
Psychophysiology 51, 446–455. 

Taggart, P., Boyett, M.R., Logantha, S.J.R.J., Lambiase, P.D., 2011. Anger, emotion, and 
arrhythmias: from brain to heart. Front Physiol. 2. Available at: 〈https://www.ncbi. 
nlm.nih.gov/pmc/articles/PMC3196868/〉. 

Tahsili-Fahadan, P., Geocadin, R.G., 2017. Heart-brain axis: effects of neurologic injury 
on cardiovascular function. Circ. Res 120, 559–572. 

Tallon-Baudry, C., Campana, F., Park, H.-D., Babo-Rebelo, M., 2018. The neural 
monitoring of visceral inputs, rather than attention, accounts for first-person 
perspective in conscious vision. Cortex 102, 139–149. 

Tenke, C.E., Kayser, J., 2005. Reference-free quantification of EEG spectra: combining 
current source density (CSD) and frequency principal components analysis (fPCA). 
Clin. Neurophysiol. 116, 2826–2846. 

Terhaar, J., Viola, F.C., Bär, K.-J., Debener, S., 2012. Heartbeat evoked potentials mirror 
altered body perception in depressed patients. Clin. Neurophysiol. 123, 1950–1957. 

D. Candia-Rivera et al.                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref53
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref53
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref54
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref54
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref55
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref55
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref55
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref56
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref56
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref56
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref56
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref57
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref57
https://www.frontiersin.org/articles/10.3389/fnins.2017.00205/full
https://www.frontiersin.org/articles/10.3389/fnins.2017.00205/full
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref59
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref59
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref59
https://www.egi.com/images/HydroCelGSN_10-10.pdf
https://www.egi.com/images/HydroCelGSN_10-10.pdf
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref60
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref60
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref61
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref61
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref61
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref62
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref62
https://www.frontiersin.org/articles/10.3389/fneur.2019.00325/full
https://www.frontiersin.org/articles/10.3389/fneur.2019.00325/full
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref64
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref64
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref65
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref65
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref65
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref66
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref66
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref67
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref67
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref67
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref67
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref68
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref68
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref69
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref69
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref70
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref70
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref70
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref71
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref71
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref71
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref72
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref72
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref72
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref72
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref72
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref73
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref73
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref73
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref74
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref74
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref74
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref74
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref75
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref75
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref75
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref76
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref76
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref76
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref77
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref77
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref77
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref78
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref78
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref78
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref79
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref79
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref79
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref80
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref80
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref80
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref81
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref81
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref81
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref81
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref82
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref82
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref82
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref83
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref83
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref84
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref84
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref85
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref85
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref85
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref86
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref86
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref86
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref87
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref87
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref87
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref88
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref88
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref89
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref89
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref89
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref90
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref90
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref91
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref91
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref91
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref92
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref92
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref92
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref92
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref92
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref92
https://doi.org/10.1093/braincomms/fcaa095
https://doi.org/10.1093/braincomms/fcaa095
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref94
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref94
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref94
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref95
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref96
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref96
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref96
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref97
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref97
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref98
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref98
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref99
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref99
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref99
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref99
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref100
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref100
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref100
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref101
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref101
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref101
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref102
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref102
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref102
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref103
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref103
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref104
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref104
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref105
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref105
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref106
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref106
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref106
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196868/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196868/
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref108
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref108
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref109
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref109
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref109
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref110
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref110
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref110
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref111
http://refhub.elsevier.com/S0165-0270(21)00204-1/sbref111


Journal of Neuroscience Methods 360 (2021) 109269

16

Thayer, J.F., Ahs, F., Fredrikson, M., Sollers, J.J., Wager, T.D., 2012. A meta-analysis of 
heart rate variability and neuroimaging studies: implications for heart rate 
variability as a marker of stress and health. Neurosci. Biobehav Rev. 36, 747–756. 

Thayer, J.F., Lane, R.D., 2009. Claude Bernard and the heart–brain connection: further 
elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 33, 
81–88. 

Valenza, G., Citi, L., Garcia, R.G., Taylor, J.N., Toschi, N., Barbieri, R., 2017. Complexity 
variability assessment of nonlinear time-varying cardiovascular control. Sci. Rep. 7, 
42779. 
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