
Andrés Cabrera. Interactive Sonification with Csound

 106

I
C
S
C
 2
0
1
5

INTERACTIVE SONIFICATION WITH CSOUND

INTRODUCING ICSOUND

Andrés Cabrera

andres AT mat.ucsb.edu

Auditory displays present information through sound. As part of an auditory display, the

process of rendering information and interaction as sound is called sonification.

Sonification can take many forms and be applied to many different problems: from

understanding radiation through the clicks from a Geiger counter to developing the

complex sound language presenting information in some computer games today. The

study of sonification is very developed and a scientific community with expertise in

sound synthesis, big data, user interaction, computer science and cognition (among

others!) has gathered together around it [1].

There are essentially three ways to sonify data:

• Audification: The direct mapping of one-dimensional data to an audio signal. A

typical example of audification is the earthquake data, where the measurements

from seismographs are directly transformed into audio. Audification of

earthquakes allows researchers to understand and compare properties of

earthquakes from their sonic signature [2].

• Parameter mapping sonification: Data is used to control parameters of

synthesis. This can be as simple as mapping a value to the frequency of an

oscillator or as sophisticated as controlling multiple parameters of a granular

synthesizer. This technique allows sonification of multidimensional datasets, but

the great challenge is mapping parameters and ranges in a way that makes sense

for the data and that allows characteristics in the data to be perceived.

• Model based sonification: The data itself is the model. The user interacts by

“exciting” the model. There have been various techniques of this sort proposed,

for example by mapping the data in space and then using physical interfaces

(tactile, 2D, 3D, etc.) that trigger and affect sound according to the data

currently being “scrubbed” [3]. Another example called “particle trajectory

sonification model” turns data into a multidimensional gravitational field, where

the user interacts by shooting “masses” into the field, and their speed affects the

phase from oscillators. This technique can help identify clusters, which will

produce a very different sound to very regularly spaced “masses” [4].

Andrés Cabrera. Interactive Sonification with Csound

 107

I
C
S
C
 2
0
1
5

Although much effort has been put into developing models and techniques for

sonification, it seems that there is less thought put into the process of sonification

design: exploring and defining sonification models to select one that works with the

data. What “works” means here depends entirely on the data and the purpose of the

sonification. Some techniques will display the data better, some techniques might be too

obnoxious when used for a long time for the purpose of data exploration and discovery,

some techniques might have better aesthetic values and possibly provide poetic

resonances which might be important when the sonification is part of an artwork. For

example like in Chris Chafe's “Oxygen Flute”, where CO2 and oxygen levels from

sensors within a chamber filled with bamboo plants generate music through a physically

modeled flute.

1 Sonification and Csound

Csound by itself provides the necessary tools for interactive sonification. It is a

powerful synthesis engine with various mechanisms for interactive control. However,

one thing it lacks is simple and performant data management and processing tools.

When working with sonification it is common to have large multidimensional data sets.

Although recent additions to Csound like multidimensional arrays can make this

simpler, it can still be cumbersome to import, slice, transform and segment data.

Additionally data for sonification is often stored in formats like matlab, XML, or JSON

that can be challenging to import and work with using only Csound. For this reason,

combining Csound with a language like python is ideal for sonification, as Csound can

produce a robust and rich audio synthesis engine, while python can provide a means to

interface with the data, to visualize it and to assist in the exploration of sonification

models and synthesis techniques applied to the data.

2 Sonification Workflow

There are three stages involved in the process of sonification of data:

1. Data loading: This involves bringing the data from some container format or

remote server into the sonification engine. The data may need to be trimmed to

select only parts of it, or in some cases multiple diverse sets of data may need to

be bundled together.

2. Sonification design: This is the process of trying out different synthesis

techniques using the data as synthesis parameters, as well as developing

different mapping techniques and

3. Interaction with the sonification: Once the sonification design is complete, the

user can interact with the sonification through the controls/parameters available.

Ocasionally, there might be no interactivity as the data itself might just be

presented without any user control. This third step might also be part of the

iterative design process where the experience of interaction serves to inform

further sonificaiton design and data pre-processing.

Andrés Cabrera. Interactive Sonification with Csound

 108

I
C
S
C
 2
0
1
5

3 icsound

icsound is a python module designed to be used in the ipython notebook [5]. The

ipython notebook provides an interactive shell to python within a browser that can

display inline plots. It provides an interactive data exploration environment that is

widely used today in very diverse areas of science. But the nature of the notebook by

itself precludes easy interaction with sound as it is designed to evaluate a group of lines

(called a “cell”) at a time to then produce output, in diverse forms: graphs, files,

transformations of data in memory, etc. Although python provides facilities to read and

write audio files, what is needed for interactive sound work is a system like Csound

which can run and generate audio in a separate thread and which can act as a server

receiving commands to change and adjust the sound producing algorithms. So by

combining both python and Csound through the ipython module, we can bridge the gap

between data and sonification in an interactive environment.

In the ipython notebook, both Csound and python function as servers listening to

commands, which open the possibility of collaborative sonification design and

exploration. One option is to use Csound as the interactive server where various users

can send commands to the icsound server to affect parameters and define instruments

and note events. This method is somewhat limited, because it means that each user is

running its own instance of python, and is only sending commands through the network

to a single running instance of icsound (see section on Collaborative Server below).

This can be sufficient in many instances, but since users are only controlling Csound,

the state and data in the python interpreter is different for each participant. Another

interesting possibility is running the ipython server and icsound in a single machine, and

having multiple participants connecting to it across a network through the ipython

notebook facilities.

Basic Usage

The icsound module is distributed with recent versions of Csound, starting with version

6.04. To use the icsound module, it should be imported like any other python module:
import icsound

This will bring in the icsound class as well as activate the csound “magics” for ipython

(see below for details). Then a csound engine can be instantiated:
cs = icsound.icsound()

cs.start_engine()

The engine can be started with the default parameters, or arguments to the

start_engine() function can define the audio engine parameters. The full signature for

the function is:
start_engine(self, sr=44100, ksmps=64, nchnls=2, zerodbfs=1.0,

dacout='dac', adcin=None, port=12894, buffersize=None)

The meaning of the arguments should be self explanatory, except for the port argument,

which sets the port on which the csound engine will listen to on the network for

commands and the buffersize argument which sets. This can allow the csound engine to

act as a server which can receive instruments and score events from other machines.

A useful debugging command is:
cs.print_log()

Andrés Cabrera. Interactive Sonification with Csound

 109

I
C
S
C
 2
0
1
5

This will print the Csound message buffer. When the message queue is long and

becoming cumbersome, you can call this function to clear the message buffer:
cs.clear_log()

To stop a running engine, or disconnect from a remote engine instance, call:
cs.stop_engine()

More verbose debugging information can be printed by icsound if the verbosity is set to

True:
cs.setVerbose(True)

Collaborative server

As discussed above, an icsound engine is by default a server, so it can be controlled

directly from te same python process as well as through the network.

To connect to a running Csound server, you can create a new icsound object and then

call the start_client() function instead of start_engine().
cs_client = icsound.icsound()

cs_client.start_client()

This client is only useful when it connects to a running server. By default, a client will

send commands on the local host on port 12894, but the address and port can be set

using the full signature of the function:
start_client(self, address='127.0.0.1', port=12894)

Sending instruments to Csound engines

Csound language code can be entered directly in the ipython notebook shell using what

ipython calls “magics”. For example, a cell containing:

%%csound

gkinstr init 1

Will set the global variable gkinstr to 1. Notice that you can evaluate any i-rate code or

send instrument definitions using the “csound magic”: %%csound.

%%csound

instr 1

asig oscil 0.5, 440

outs asig, asig

endin

This will send instrument 1 to the current icsound engine. The “current” icsound engine

is the last one to be created, so if you are handling multiple instances, be aware that you

can only send Csound through the “csound magic” to that specific instance. To

communicate with other instances, you will need to use the send_code() and

send_event() functions:

send_score(self, score)

score_event(self, eventType, pvals, absp2mode = 0)

If the orchestra code fails to compile, the error output from Csound will be printed

directly in the ipython notebook.

Andrés Cabrera. Interactive Sonification with Csound

 110

I
C
S
C
 2
0
1
5

Exchanging function tables

An important practical aspect of sonification is being able to transfer data to and from

the audio engine. Data will likely be stored in python either as a python list or as a

numpy array. For Csound to make use of it, one simple way is to copy that data from

python into a Csound f-table. To do this, icsound provides the fill_table() function that

takes a table number and a python array (either a python list or a numpy array) and

transfers it into a Csound f-table:

fill_table(self, tabnum, arr)

The following two lines are valid for icsound:

cs.fill_table(1, [4,5,7,0,8,7,9])

cs.fill_table(2, array([8,7,9, 1, 1, 1]))

If the table does not exist, it is created, and if it does, it will be resized to the length of

the python array. You need to be careful here if the table is being used by a running

instrument, as this could cause a crash! Also, be aware that you need to pass one

dimensional arrays, so you might need to slice the numpy array if it has more than one

dimension.

It's also possible to generate tables using Csound's GEN functions using the

make_table() function:

make_table(self, tabnum, size, gen, *args)

For example, to create an f-table that holds a sine wave, you would use Csound's GEN

function 10 with a single argument of 1:

cs.make_table(3, 1024, 10, 1)

You can also bring data from Csound back to python using the get_table_data()

function:

get_table_data(self, t)

For example:

In [10]: cs.get_table_data(1)

Out[10]: array([4., 5., 7., 0., 8., 7.], dtype=float32)

And you can use icsounds plotting facilities to generate graphs that are styled in a

convenient way for the common usage in Csound:

cs.plot_table(1)

cs.plot_table(2, reuse=True)

If reuse is set to True then the graph will be plotted in the existing figure, overlaid onto

the previous graphs, otherwise a new figure is created.

If the ctypes python module is available then copying data back and forth will be

relatively fast, as pointers are exchanged between the python kernel and the Csound C

Andrés Cabrera. Interactive Sonification with Csound

 111

I
C
S
C
 2
0
1
5

API, so copying is an operation in C rather than python which can make a significant

difference for large data.

Control parameters

Values can be sent to the Csound engine using Csound's bus mechanism. This is a

convenient way to set parameters for an audio alorithm. It might be less efficient and

there is no way to control accurate timing for this data since it is transmitted

asynchronously, but it provides a simple and clear way to handle parameters. Buses in

Csound are referred by name, and you can use the invalue/outvalue chnset/chnget

Csound opcodes to read and write to/from channels. You can set/get values from python

with the icsound functions:

set_channel(self, channel, value)

get_channel(self, channel)

Recording the output from Csound

The icsound module provides simple functions to record the output from Csound to an

audio file without needing to write Csound code. This is done through new facilities in

the Csound API, using an efficient and thread-safe lock-free queue, which prevents

dropouts while maintaning responsiveness and low latency.

start_record(self, filename, samplebits = 16, numbufs=4)

cs.stop_record()

4 icsound in practice

This section will present two examples that can illustrate how icsound simplifies and

assists in the design of sonification. The first example will deal with audification of

seismographic data and the second with parameter based sonification of market data.

The acquisition of data will be presented which is an important part of the process.

Audification with icsound

Audification of earthqueakes was one of the early applications of sonification. This

simple technique turns the vibrations picked up by seismographs directly into sound

vibrations. The ear is an instrument that is very good at picking up variations and

changes in timbre over time, and these are characterized by the auditory system to give

each earthquake audification a unique and distinguishable sound. Also, the ear can

gauge how similar or different two events are. Audification can also provide other

interesting “physical” cues as they can sound like rumbling, scraping, hammering, etc.

The first challenge in sonification is often the acquisition and injection of data,

particularly if the data was generated by a third party. The Incorporated Research

Institutions for Seismology (IRIS) provides an online API to retrieve earthquake events.

Python can be used to access this web API, and get the data as a string:

prefix = 'http://service.iris.edu/irisws/timeseries/1/query?'

SCNL_parameters = 'net=IU&sta=ANMO&loc=00&cha=BHZ&'

Andrés Cabrera. Interactive Sonification with Csound

 112

I
C
S
C
 2
0
1
5

times = 'starttime=2005-01-01T00:00:00&endtime=2005-01-02T00:00:00&'

output = 'output=ascii'

import urllib2

f = urllib2.urlopen(prefix + SCNL_parameters + times + output)

timeseries = f.read()

The data in this case is separated by new lines with the first line being metadata and the

last line being empty. To turn the data within this string into a python data structure we

can use this code:

data = timeseries.split('\n')

dates = []

values = []

for line in data[1:-1]:

 date, val = line.split()

 dates.append(date)

 values.append(float(val))

We can then plot the data:

plot(values)

To sonify the data, we can push it to a csound table:

import icsound

cs = icsound.icsound()

cs.start_engine()

cs.fill_table(1, values)

and then use an instrument to play it back. The instrument can be defined using csound

code using the ipython magic:

%%csound

instr 1

idur = p3

itable = p4

asig poscil 1/8000, 1/p3, p4

outs asig, asig

endin

Then we can hear the earthquake with:

cs.send_score('i 1 0 3 1')

Andrés Cabrera. Interactive Sonification with Csound

 113

I
C
S
C
 2
0
1
5

By changing the duration of the note event, the pitch of the audification is also altered.

To expand the sonification, more data can be loaded into more csound f-tables, and they

can be played interactively to allow for easy comparison. This process of loading can be

automated to select time periods or geographical zones to quickly compare data. The

playback can also be automated -either in python or csound- to listen to sets of

earthquake data, for instance:

curtime = 0

padding = 1

score = ''

for ftable in range(10):

 for dur in range(5):

 score += 'i 1 %i %i %i'%(curtime, dur, ftable)

 curtime += dur + padding

Parameter based sonification

To realize parameter based sonification, one of the key decisions is the type of synthesis

whose parameters wil be modified by the data. In this example, Phase Modulation

synthesis will be chosen as it can produce rich timbral differences from few parameters.

The source of the data will be stock data pulled from the yahoo finance API in XML

format. The following code brings the data into python:

import xml.etree.ElementTree as ET

import urllib2

from datetime import datetime

symbols = 'MSFT', 'GOOG'

data = {}

for symbol in symbols:

 url = 'http://chartapi.finance.yahoo.com/instrument/1.0/' + \

 symbol + '/chartdata;type=quote;range=1y/xml'

 f = urllib2.urlopen(url)

 root = ET.fromstring(f.read())

 dates = []

 values = []

 for v in root[2].findall('p'):

 dateval = v.attrib['ref']

 date = datetime(year=int(dateval[0:4]),

month=int(dateval[4:6]), day=int(dateval[6:8]))

 dates.append(date)

 entryvalues = []

 for num in v:

 entryvalues.append(float(num.text))

 values.append(entryvalues)

 data[symbol] = [dates, array(values)]

We then need to instantiate the icsound engine and copy the data into csound f-tables:

import icsound

cs = icsound.icsound()

cs.start_engine()

cs.fill_table(1,data['GOOG'][1][:,1] - min(data['GOOG'][1][:,1]))

Andrés Cabrera. Interactive Sonification with Csound

 114

I
C
S
C
 2
0
1
5

cs.fill_table(2,data['MSFT'][1][:,1] - min(data['MSFT'][1][:,1]))

Finally we need to define a phase modulation index that uses these f-tables as

parameters to the synthesis:

%%csound

gisine ftgen 0, 0, 4096, 10, 1

instr fm

 amoddepth poscil 1/10, 1/p3, 2

 acarfreq poscil 3, 1/p3, 1

 icmratio = 5

 aphs phasor 220 + acarfreq

 aphsmod oscili amoddepth/2, acarfreq*(icmratio)

 asig table3 aphs + aphsmod, gisine, 1, 0, 1

 aenv linen 0.2, 0.01, p3, 0.01

 outs asig*aenv, asig*aenv

endin

To listen to the sonification, we just need to instantiate the PM instrument:

cs.send_score('i "fm" 0 20')

Conclusions

The icsound module for ipython provides a convenient mechanism for the exploration

and design of sonification. Since the design of interactive sonification experiences is a

mix between finding the right synthesis techniques, the right sonification model and the

right mapping of the data, it’s only natural that the environment for this should be a tool

that can integrate all these. The ipython notebook, together with the icsound module

simplifies the process of sonification design, allowing it as a collaborative exercise.

Acknowledgements

The icsound module is partially based on earlier work by François Pinot and Jacob

Joaquin.

References

[1] ICAD: International Commumity for Auditory Display. http://www.icad.org/

[2] Meier, M., & Saranti, A. (2008). Sonic Explorations with Earthquake Data. Paper

read at ICAD 2008, 24.–27.6.2008, at Paris, France.

[3] T. Bovermann, T. Hermann, and H. Ritter. Tangible data scanning sonification

model. Proceedings of the International Conference on Auditory Display (ICAD

2006), pp. 77–82, London, UK, 2006.

Andrés Cabrera. Interactive Sonification with Csound

 115

I
C
S
C
 2
0
1
5

[4] T. Hermann, J. Krause, and H. Ritter. Real-time control of sonification models

with an audio-haptic interface. In R. Nakatsu and H. Kawahara, editors,

Proceedings of the International Conference on Auditory Display (ICAD 2002),

pp. 82–86, Kyoto, Japan, 2002.

[5] Shen, Helen. Interactive notebooks: Sharing the code. Nature 515.7525 (2014):

151-152.

