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Introduction 

 
This paper describes [self.], an open source art installation that embodies artificial 
intelligence (AI) in order to learn, react, and respond to stimuli from its immediate 
environment. Biologically inspired models are implemented to achieve this behavior, 
and Csound is used for most parts of the audio processing involved in the system. The 
artificial intelligence is physically represented by a robot head, built on a modified 
moving head for stage lighting. Everything but the motors of the stage lighting unit was 
removed and a projector, camera and microphones added. No form of knowledge or 
grammar have been implemented in the AI, the system starts in a ``tabula rasa'' state and 
learns everything via its own sensory channels, forming categories in a bottom-up 
fashion. The robot recognizes sounds and faces, and is able to recognize similar sounds, 
link them with the corresponding faces, and use the knowledge of past experiences to 
form new sentences. Since the utterances of the AI is solely based on audio and video 
items it has learned from the interaction with people, an insight into the learning process 
(i.e. what it has learned from who) can be glimpsed. This collage-like composition has 
guided several design choices regarding the aesthetics of the audio and video output. 
This paper will focus on the audio processes of the system, herein audio recording, 
segmentation, analysis, processing and playback. 
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Figure 1   [self.] talking to a person 

 
 

1   Background and overview 

 
The project started out as an attempt to reflect on the effect AI will have on society in 
the general case, and how artificially intelligent machines will interact with human 
beings. The original intent was to explore a biologically inspired architecture that would 
strive towards the ultimate goal in AI; consciousness. The authors are well aware that 
this goal is out of range for the current architecture; still it has been a guiding principle 
in the design and conception of [self.]. The ability to learn and categorize concepts 
learned from interaction with the environment without a prior knowledge base is an 
example of such a design choice. As an artwork, [self.] plays on the relationship 
between technology and humans, and it relates to language, philosophy and the 
contemporary (over-)focus on self-realization. Ideas from Derrida (and his interpretation 
of the myth of Echo and Narcissus [1]), Heidegger (the essence of technology [2]), 
Benjamin (reproduction [3]), Rutsky [4], and Stiegler (transindividuation [5] and [6]) 
can be said to form a philosophical back-drop for the work. The intent is not for the 
artwork to relay in any rigorous manner the content and ideas of these great thinkers, 
but for the aesthetic object to embody aspects of and perspectives on the technology 
currently in question. As the techno-philosophical backdrop also relates to cultural and 
economic questions of access to the technology, it is only fitting that the source code11 
for the whole project is made available under an open source license. 
 
 
Technical overview of [self.] 

 

The robot has two forms of input: video (USB camera) and audio. Two microphones are 
mounted in a simple X-Y stereo configuration for the purpose of sensing the horizontal 
position of the sound source. The stereo image analysis is used to rotate the robot’s head 
towards the position of the incoming sound, so it will turn towards the person speaking 
to it. This works in tandem with image analysis, where the face tracking is used for fine 
adjustment of the robot head orientation. The robot uses its sensory input to learn. The 

                                                 
11 github.com/axeltidemann/self_dot 
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signals are sent to three different modules; these are face tracking (video), audio/video-
association (audio and video) and sound processing (audio). The outputs of these 
modules are propagated to higher-level functions (``Learning'' and ``Responding''). 
 
Audio input and output is done via Csound. Automatic calibration of the input signal 
level and capture of a background noise image is done at startup and during runtime. 
The input signal is analyzed for transients and this is used as a crude segmentation 
marker. Transient detection is based on amplitude slope and as such is independent of 
the absolute amplitude. Silent (or noisy) parts of the recording are stripped before 
passing on the audio to other parts of the system. A biologically inspired model of the 
cochlea[7] is used to analyze the raw WAVE files created by Csound. The model 
performs sound analysis based on a bio-mimetic cascade of asymmetric resonators with 
fast-acting compression. The output is called a neural activation pattern (NAP). This is 
somewhat similar to a spectrogram based on FFT, but different in the respect that a 
NAP has features that correspond to auditory physiology both in terms of the resolution 
and distribution of the frequency bands, and in terms of the dynamic compression 
algorithm used on the amplitude data. The NAP is used for learning audio concepts, as 
well as for building a transformation from audio to video. The AI aspects are covered 
more in depth in other articles by the authors ([8]and [9]) , and are only briefly 
recounted here, however, some contextualization is given in section III. The focus of 
this article is on the low level functions of audio input and segmentation as well as the 
aesthetic shaping of the audio output.  
 

 
Figure 2   Overview of signals and modules, also indicating implementation 

languages for the different modules 
 
 

2   Audio input processing  

 
Calibration and noise reduction 

 

The [self.] robot is intended to operate as an art installation in a public gallery, where 
the level of background noise may vary according to audience attendance. Similarly, the 
audio input level from a person speaking to [self.] may vary significantly due to the type 
of conversation, closeness to the microphone etc. Mechanical vibration from the robot’s 
motors can also result in disturbances of the audio input via the microphone, and the 
sound that [self.] makes through the speakers can also be picked up by its microphone.  
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To counteract these signal irregularities, a number of techniques were combined. We 
use automatic calibration of the input noise floor, a spectral analysis of the background 
noise, suppression of [self.]’s own output (both spectrally, and as a simple amplitude 
ducking), and finally the input is muted whenever the robot’s head need to move so 
much that significant vibrational bleed occurs. 
 
The background noise print is taken by analyzing a couple of seconds of input audio, 
assuming that no intended communication with the robot is taking place during the 
analysis. The audio is analyzed via pvsanal, spectral frames transferred to an array, and 
we make a running average of the spectral content, writing the result to a Csound ftable. 
The spectral template in this ftable is then subtracted12 from the spectrum of the live 
audio input during normal conversation. A scaling factor can be applied to set the 
degree of background noise filtering. With the spectral filtering in place, a measure of 
the level of remaining background noise is taken, using this as the general noise floor 
throughout the signal chain. A noise gate ftable is generated on the basis of the noise 
floor measurement, allowing sounds above the noise floor to pass unmodified, while 
damping softer sounds. Sound softer than 8 dB below the noise floor is muted 
altogether. The noise gate is implemented by using the RMS level of the input signal as 
a lookup to the noise gate table and using the table value as an amplitude adjustment 
value. 
 

 
Figure 3   Analysis of noise level in input creates the noise gate 

shape, application of gate to the right 
 
To enable suppression of [self.]’s own output from the speakers to the microphone, we 
need to measure the roundtrip latency of the audio system. This is done by generating a 
series of enveloped noise bursts at 1-second intervals, registering the time of the noise 
burst onset and comparing this to the time when the noise burst is received via audio 
input. The method assumes that no significant external sound is being made during the 
measurement and that the physical sound from the speaker can be picked up by the 
microphone. The resulting roundtrip latency of the audio system is written to file, so 
this measurement does not have to be done again until the audio configuration is 
changed. The Python program (self.py) will determine if a valid roundtrip latency file is 
found whenever audio calibration is initialized, and force latency measurement if the 
file is missing. 
 
The audio output from [self.] is (internally) fed back to the input section, delayed 
according to the roundtrip latency measurement, and analyzed with pvsanal. The output 
spectrum is then subtracted from the input spectrum to suppress [self.]’s own sounds 
from the input.  

                                                 
12 Subtracting the amplitudes of one spectrum from the other on a bin by bin basis 
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Figure 4   Subtraction of [self.]’s own output from microphone input 

 
The audio calibration routines run at system initialization, but can also be triggered 
during runtime. The rationale for this being that the external conditions regarding 
ambient noise etc. can be expected to change drastically during the span of a day in the 
gallery. A large group of schoolchildren can make a relatively dense ambient noise and 
the relative vocal input to the microphone may vary to a high degree. Conversely, it is 
also common for spectators to become shy of speaking to a machine, and so they will 
speak quite softly. A trigger for recalibration during runtime can be the lack of sound 
recording for a long time, which could be due an input level or noise suppression error. 
Excessively long recordings will also trigger recalibration as it may be a sign of too 
high release thresholds. 
 
 
Transient detection and audio status 

 

Amplitude transient detection is used as a crude segmentation marker in [self.], it will 
initiate the recording of audio segments, and transients within recorded segments are 
used as “word” markers. The transient triggers are also used to update the stereo image 
analysis (described later), initiating movement of the robotic head towards the sound 
source. Transient detection is made using rate of change analysis of the filtered 
amplitude. The signal is conditioned with an envelope follower filter (follow2 opcode) 
and mapped to a perceptual scale (dB) before transient detection. The sensitivity of the 
transient detection can be adjusted with an attack threshold parameter. To limit the 
amount of false trigging, some filtering methods have been implemented. When a 
transient is detected, the current signal level is recorded, and a decay threshold sets the 
relative negative change needed before a new transient is allowed to be registered. The 
envelope filtering has an adjustable envelope release time to smooth out fluctuations 
after a peak in the signal, and this works in tandem with the decay threshold. Finally, a 
timer is used as a secondary means to limit the rate of transients, ensuring that a certain 
double trig limit amount of time must pass after a transient has been recorded before 
another transient is allowed. The transient detector is wrapped as a user defined opcode, 
and has also been used in other projects for transient detection on a variety of signals. 
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Figure 5   Transient detector. The arrows from the parameter names indicate skipped 

transients due to adjustment of that parameter. 
 
Following the transient detection, an audio status indicator is generated. This indicates 
sections of realtime audio input where something interesting is happening, something 
we will want to record and analyze. The audio status is set to 1 when a transient is 
detected, keeping its value until the signal has dropped below a release threshold 
(typically -9 dB), similar to the decay threshold of the transient detector.  In addition, 
we wait for an extra period of time (status release time) before setting the status to zero. 
Audio recording follows the audio status indicator. In this manner, several transients are 
allowed within one audio status segment (one audio file), and we can keep a contiguous 
recording of one complete utterance (sentence) received by [self.]. This mechanism is 
intendedly low level and provides a course selection of sounds that we may want to 
keep. Higher level processes later in the signal chain refines this selection, the objective 
at this point is to grab everything that may be of interest. 
 
 
Stereo image analysis 

 

To allow the robot to turn towards the person speaking to it, an analysis of the stereo 
image of the input sound is made. If the input sound is coming from the left, the robot 
will turn in that direction, and vice versa if the sound is coming from the right. The pan 
position value is a float in range 0.0 to 1.0. Since the utility of this analysis is to trigger 
relative movement of the robot head, we will use a center pan position of 0.5 to indicate 
that no adjustment to the robot head position is necessary. An imbalance in the stereo 
image occurring in tandem with an amplitude transient will trigger relative movement. 
The amplitude transient is thus used to limit the rate of spatial-induced movement. 
Otherwise, the head would spin rather erratically and nervously. Two methods of stereo 
image analysis have been tested, one based on relative amplitude analysis of the left and 
right channel with this formula: 
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The other spatial analysis method is based on correlation between audio signals at 
different fractions of the expected time delay between the two input channels, similar to 
the interaural time difference (ITD) in human hearing. Based on a microphone spacing 
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of 20 cm, and using 340 m/s as an approximation of the speed of sound, we have a 
maximum ITD of 0.6 milliseconds. For practical purposes, we assumed that a resolution 
of 10 steps in the resolution of the stereo position was sufficient. 10 copies of the left 

signal were made, each being delayed by a fraction of the maximum IDT. The 
correlation between each delayed copy and a reference signal (input right, delayed by 
ITD*0.5) were calculated by writing each signal to a temporary table, multiplying each 
delayed signal with the reference signal and use the one with the highest sum as the 
estimate of the stereo position of the sound.  
 
The correlation based method was significantly more prone to noise and spurious peaks, 
and also more expensive to calculate than the amplitude difference method. We assume 
that the method could be refined by filtering the audio signal to remove frequency 
content outside of the range where ITD cues are reliable (< 1500 Hz). For the current 
version of [self.] the amplitude difference method was used, as it gave sufficient 
precision of stereo position analysis for our purposes. 
 
 
Recording and segmentation 

 

Whenever someone speaks to [self.], it records the received sound to file for further 
processing. Audio recording is initiated by the audio status indicator and continues as 
long as the status indicator is positive. The sound files are automatically named using 
the date and time of the start of the recording. To accompany each sound file, a marker 
file with the same name is generated, containing information about the time of each 
detected transient during the recording. The marker file also contains additional segment 
info, like interquartile mean values for amplitude, pitch and centroid for each segment, 
maximum amplitude and total duration. These values are later used to determine the 
most significant (stressed) word in a sentence, and determining whether the utterance 
was a question (pitch profile). This marker file is written by Python, and the data is 
transferred using common functions of the CsoundAPI. A separate continuous pitch 
data file is also recorded, to be used for pitch synchronous granular synthesis playback 
of the sound segments (see later description of the output sound characteristics of 
[self.]). 
 

 
Figure 6   Each recording consist of a set of 3 files 

 
In spite of the signal conditioning previously described, there is a realistic chance of 
intermittently recording background noise. Also, since the audio status indicator 
requires a quite generous drop of signal intensity followed by a release time, we will 
(always) have some silence (or noise) at the end of recordings. Similarly, we may have 
periods of silence or noise in the middle of a recording, for example as pauses between 
words in a sentence. To minimize the amount of audio that needs to be analyzed and 



Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.] 

 51 

I
C

S
C

 2
0

1
5

 

handled by the system, we want to strip off these unwanted sections of the recordings, 
and we want to discard altogether recordings that (after the fact) shows signs of being 
accidentally recorded noise. Now, there is an inherent problem here, since we want 
[self.] to be able to respond as quickly as possible to a received sound, we want to do 
segmentation and recording in realtime, but some indicators of the validity of a 
recording can only be determined after the complete sound segment has been recorded. 
For example, if an intermittent noise (like the closing of a door or clacking of a heel) 
initiates recording, and the recording continues for N seconds (status release), we 
would want to discard this recording, but there is no way of predicting if a valid 
utterance has been made during this period until the recording stops. Similarly, the 
duration of the silence (or low level noise) at the end of a recording cannot be 
determined to be at the end of a recording until the recording has stopped.  At the same 
time, we want to allow [self.] to analyze and process the sound as quickly as possible to 
minimize the total response time, so we would prefer to filter out silences and noise as 
soon as possible, preferably even before writing the audio to file. To facilitate this, 
incoming audio is temporarily written to a buffer (table), skipping sections that has a 
signal level dropping below a record threshold (set generously low, due to the previous 
noise gating). A running time indicator for the recorded segments and the skipped 
segments is kept, so that we could restore the skipped silences if needed. When audio 

status finally drops to zero, we have a compact recording with silences stripped in the 
buffer, and a k-rate loop is used to quickly write this buffer to file.  
 

 
Figure 7   Temporary recording to buffer, clean up 
(optimization) of audio, pitch data, and marker file 

 
The maximum signal level of all recorded segments in the file is saved, this serves two 
purposes: if the maximum signal is relatively low (currently set to 20dB above the noise 
floor), the whole recording is deleted before being written to file (as we can assume it 
was an accidental recording of intermittent noise). Secondly, the max level is written to 
the marker file to be used for normalization purposes during later playback of this 
sound. The pitch track signal is subjected to a similar buffering as the audio signal and 
is kept or discarded according to the same rules. The objective is to keep the pitch 
analysis synchronized with the audio recording during these optimizations. Segment 
markers are written to lists in Python, and a marker table is kept in Csound indicating 
segments to be kept or discarded. When recording stops, the segment marker list in 
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Python is filtered according to the Csound marker table, discarding and updating entries 
as needed. The valid segment markers are then written to the marker file along with the 
total duration and the max amplitude for the file. The whole recording optimization 
operation completes within 1 k-rate period after audio status has been set to zero, and 
the completed file is passed on to further analysis, as described in the next section. 
 
 
Audio analysis, Neural Activation Patterns, CARFAC 

 

A number of spectral analysis methods was implemented based on the timbre toolbox 
[10], including spread, skewness, kurtosis, flatness, crest and flux in addition to the 
centroid already available in Csound.  Several pitch tracking methods (ptrack, plltrack, 

pitchamdf) was tested and an additional methods has been implemented based on epoch 

analysis [11]. The raw spectral data was also transferred to Python together with the 
analysis data, with the intention of using the full set of analysis tracks as material for 
identification and learning.  Although this data provided initial stepping stones and 
promising results for learning and recognition, it did not result in robust and reliable 
learning methods for the AI.  
 
The current approach to analysis for recognition and classification is the CARFAC 
method [7] (Cascade of Asymmetric Resonators with Fast-Acting Compression), 
housed in an external C++ library and invoked as a separate subprogram running once 
on each sound file.  This biologically inspired model of the cochlea has been utilized 
earlier for recognizing sounds using machine learning. The output is called a neural 
activation pattern (NAP). Like a spectrum based on FFT, a NAP has channels for 
different frequency bands with a corresponding intensity value over time. The 
distribution of frequency bands are based on the model of the cochlea, as is the fast 
acting compression method used in the intensity analysis. The compression method acts 
on each band both separately and coupled, on several different time scales and as such it 
does a good job of modeling some of the perceptual masking effects. 
 

 
Figure 8   Example NAP, [self.] hearing the phrase “hello world” 

 
The NAPs play a central part of the cognitive abilities of [self.], as is described in the 
following section. The NAP itself also serves as a filtering mechanism, as the system 
will discard sounds that have a very low overall neural activity. This has turned out to 
work well in conjunction with the techniques described in the earlier section. 
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3   The AI, learning and responding 

 
Learning 

 

Learning is the core element of [self.]. The robot clusters similar sounds together, based 
on the length and the similarity of the NAPs. The clustering is based on the Hamming 
distance [12] between the sounds of roughly the same length. This module also learns to 
recognize faces, and associate sounds with the face that uttered them.  The facial 
recognition is done by a Support Vector Machine [13]. The various techniques 
implemented are chosen based on empirical experimentation. The live video input is 
also used to train an Echo State Network (ESN,[14]), which is a neural network with a 
huge hidden layer and fast training algorithm. The ESN was trained to predict a 
sequence of images based on the NAP of the corresponding sound. The network is then 
used generatively during [self.]’s response. 
 
The recorded audio segments are analyzed with regards to the contexts in which the 
sound was perceived. This creates a set of quality dimensions for each sound and [self.] 
uses these as modes of association when it creates an output statement. One such 
context is the face recognition (“who said what”); another is the context of the sentence 
in which the sound was perceived. The position of the sound in a sentence (e.g. in the 
beginning or end) is also recorded, and there are also contexts for longer time spans 
(e.g. sounds perceived within a couple of minutes or within an hour). Sound duration 
and a similarity measure (Hamming distance) to other sound classes are used as yet 
another such context or quality dimension. In this manner, a multi-dimensional web of 
associations is built, where a dynamic weight can be applied to each. The balancing and 
weighting of the different associations is done in a manner inspired by fuzzy logic, 
where an item can have partial membership in each of the different relevant contexts. 
The most significant (loudest) sound in an input sentence is flagged, and this is used as 
the seed for the associations of [self.] when generating a response. 
 
The initial weights for the association contexts are manually adjusted, but [self.] will 
evolve new sets of weights (during the dream state at night) using a genetic algorithm. 
The purpose of automatic evolution of weights is to tune the bias of association relative 
to the balance of features in the collected database of sounds. In addition, the dream 
state iterates over the sounds in each category formed in the audiovisual memory of 
[self.], and removes sounds that are too dissimilar to the other sounds in the same 
category. This can be regarded as a mental hygiene process of sorts. 
 
 
Responding 

 

When a new sound (i.e. the NAP) reaches the responding module, the most similar 
sound in the audio-visual memory is retrieved, based on the Hamming distance to the 
other sounds of roughly same length. Using the most significant sound in the latest input 
sentence, [self.] looks for associations to this sound, to create a response sentence. The 
associations are created by looking up the different contexts as described above. In this 
manner a chain of associations is created, and this is used as a repository of sounds to 
construct a response. A sound’s original position in an input sentence is also used as a 
filter or rule for selection and placement of sounds in a responding statement. The 
output from [self.] will be in the form of audio and video, where the audio is a 
processed version of the recorded sound, and the video is a sequence of live generated 
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images from the ESN driven by the corresponding sound (i.e. NAP). The video is this 
affected by how closely the original NAP corresponds to the new NAP. Sounds that are 
relatively similar will produce sharp images where you can easily recognize the original 
training situation, while imperfections in the relation between input and memorized 
sounds will create more blurry images, noise, and in some cases oversaturated 
silhouettes.  
 

 
Figure 9   Examples of video output 

 
 

4   Audio output processing  

 
The audio output of [self.] is based on the recordings of the sounds it has learned, 
assembled into sentences by the association techniques described previously. Together 
with the neural network-generated video, this kind of collage can give an insight into 
the learning process of the AI by connecting each sound to the person it has learned the 
sound from. We wanted to give [self.] a characteristic voice quality while retaining 
recognizable features of the original input sound. To enable this, a number of 
alternatives for the voice of [self.] were developed, each providing a gentle twist to the 
sound file being played back.  In addition to the main voice of [self.], we wanted to 
have an auditory display of the AI’s secondary associations. We can think of this as “the 
things [self.] thinks of while considering its next response”. The secondary associations 
are sounds that are related to the words in the response, but not quite top matches. These 
secondary associations are played back by an auxiliary speaker, a motorized ultrasonic 
beam speaker, projecting the sound spatially within the room, to create a “cloud” of 
sound, as if we somehow are inside the mind of [self.] 
 
The available voice types for [self.] are made with spectral13 techniques and with 
particle synthesis [15], [16]. The spectral voices utilize small amounts of frequency 
scaling and frequency shifts, in opposing values so the shifting to some degree will 
counteract the effect of the scaling. The purpose of this is to gently tilt the composition 
of the spectrum while retaining a quite natural sound. As an example, one of the voice 
types scales the frequencies up one semitone, while shifting all frequencies above 200 
Hz down by 50 Hz.  Some voice types may have individual shifting of several 
frequency regions, for example +600 Hz in the region from 1500 Hz and up, and +100 
Hz in the region from 700 Hz to 1500 Hz. Some voice types also utilize a small 
randomization of the frequency values of the spectrum, creating a more robotic 
character. The sound file is analyzed and loaded into a pvsbuffer, so time modifications 
are available independently of pitch. Time modifications are currently only used for the 
secondary associations, providing them with a more sustained, slower and thoughtful, 

                                                 
13 www.csounds.com/manual/html/SpectralRealTime.html 
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ethereal sound. We could conceivably also use fluctuating time modification as a means 
of subtle expressive phrasing for the main voice. Typically, the spectral voices also 
utilize small amounts of spectral blurring (in the range 0.15 - 0.2 secs) and smoothing 
(amplitude smoothing in range 0.2 - 0.4 secs and frequency smoothing generally very 
low, around 0.06 secs). 
 
Particle14 synthesis is used for two different kinds of voices, one which we may call 
“slowdown but at original speed” and the other based on pitch synchronous granular 
synthesis [17]. The basic principle of the first of these is to use 4 different source 

waveforms (containing the same sound, but using individual samplepos pointers, which 
in turn determine the position in the sound from where to start reading a grain of sound). 
The samplepos pointer progresses through the sound at half the original speed, and 
when it is lagging significantly behind the “real” time of the sound, we crossfade to 
another source waveform (via channel masking) and reset the samplepos pointer. With 4 
source waveforms slowing down in interlapping patterns, we can create an illusion of 
the sound moving slower while playback still progress through the original recording at 
the original speed. The original speed can also be modified, independently of the 
overlapping slowdown procedure, creating additional time stretching effects. For this 
effect, we used quite high grain rates (120 Hz) and long grains (relative grain duration 
of 4.0). To minimize the artifacts of the time stretching, we utilize a gentle random 
deviation (approximately 1% of the duration of the source wave file) to the samplepos 
pointers, and we introduce a small irregularity in the grain placement (slightly towards 
asynchronous granular synthesis). The grain asynchrony is achieved both by using grain 

distribution (0.3) and by intermittently adjusting the grain clock via soft 
synchronization pulses to the partikkel sync input.  This kind of time manipulation 
techniques can also be used to create reverb-type effect, as referenced in [18] 
 
The second particle-based voice type is generated with pitch synchronous granular 
synthesis. Here we use pitch tracking of the source sound to control the grain rate. This 
allows modification of the voice formants without altering the perceived pitch of the 
sound.  To some degree, the perceived pitch can also be altered independently, but we 
use this method to create a gentle octaviation effect (dividing the grain rate by 2). To 
adjust the presence of the octaviation effect, we can alter the grain durations (here using 
relative grain duration of 1.5) and the grain shape (using a fast attack on each grain and 
applying an exponential decay). The effect is softened somewhat by using a small 
amount of grain distribution (0.1). 
 
Voice type is selectable on an event basis, and it is possible to use same range of voice 
types for the secondary as for the main voice. This aided in experimentation with the 
total aesthetic appearance during final mounting in gallery. In the exhibited version, we 
used a spectral voice type for the main voice and the slowdown partikkel voice type for 
the secondary voice. The secondary voice used a relative playback speed of 0.7 while 
the main voice used no time modification. The secondary voice was additionally treated 
with delay and reverb. 
 

                                                 
14 www.csounds.com/manual/html/partikkel.html 
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Figure 10   Read pointers in 4 source waveforms to create a 

slowdown effect at original speed 
 
As an auditory backdrop to the voice sounds, we created an ambient texture using 
particle synthesis. This texture uses randomly reordered cut-ups from [self.]’s recently 
recorded sounds, played back in an asynchronous granular manner. Two parallel 
particle generators were used, with slightly different parameters. A low grain rate (12 
Hz) was used with random deviation to the grain rate, relatively short grains (0.2) with 
clear attacks. Grain transpose was modulated in the range of +/- one semitone. The 
second particle generator used somewhat higher grain rates and generally longer and 
softer grains, with separate gain- and channel masking. Every few seconds one of the 4 
source waveforms for the particle generators was replaced, choosing from the 10 latest 
input recordings. The intended effect is to create a fragmented background chatter based 
on recently perceived sounds. This assumed to create a sonic illustration of the ongoing 
mental processing of recent events. The stereo output of this ambient texture was sent to 
the main and secondary speakers. Even though the speaker setup does not really provide 
a clear stereo image in the traditional sense, it creates the impression of a spatially 
moving sound field.  
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Figure 11   Main robot head, with secondary speaker in front 

 
 

Conclusion 

 
We have described the art installation and artificial intelligence [self.], and its 
biologically inspired models of listening, learning and responding. We have also looked 
more closely into the audio processing methods implemented as part of the inner 
workings of [self.]. The sound recognition and classification coupled with face 
recognition allows a multidimensional association web to be spun, creating weighted 
connections between sounds [self.] has heard and learned, and it utilize these 
associations to assemble its output statements. As no dictionary, grammar or other body 
of knowledge is given [self.] from its inception, it has to learn communication only via 
its sensory channels. The output statements of the AI thus also bear a strong imprint of 
whomever it has learned the different sounds and concepts from. [self.] as an artwork 
intends to reflect on the relation between technology and human beings. As one of 
several philosophical backdrops we’ve used Derrida’s recollection of the Greek myth of 
Echo and Narcissus, providing an insight into what constitutes a self, and possibly in 
this context making an analogy between Echo and modern technology. As Echo, [self.] 
can only produce what it has heard, but also as Echo’s clever manipulations and 
selections of phrases to be repeated, [self.] may be able to express something else with 
its collage-like recollections of impressions, something that may be the seed of the 
constitution of a true self. 
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With regards to the audio processing techniques involved in this artwork, we have given 
detailed insights into the recording and segmentation methods, as well as the analysis of 
the spatial position of incoming sound.  In the classification and sonic analysis, we have 
used the CARFAC technique to create neural activation patterns for each sound 
segment. These are also used to find similarity measures between sound classes and to 
train audio-to-video associative neural networks.  
 
The design of the voices of [self.] has been given attention in terms of the signal 
processing and synthesis techniques used. Two kinds of voice function have been 
implemented: One main voice, creating a close-to-natural reproduction of recorded 
sound but with a slight twist to add [self.]’s own character to the output. The secondary 
voice is slower in pace and spatialized in the room, reflecting the thought processes 
underlying or paralleling the main voice’s output.  An ambient texture is created with 
granular techniques on a selection of recent sounds [self.] has experienced. This texture 
adds a timbral and spatial counterpoint to the more straightforward conversation-type 
sounds, and it acts as another layer of sonic interaction through the slow-paced updating 
of grain source waves from the recent sonic activity.  
 
The art installation [self.] has a mode of interaction and a way of learning that is in 
some ways similar to how a small child interacts with the world. In this manner it 
reflects its own status as a relatively newborn entity, with an abundance of room for 
improvement. The authors intend to follow up the work started here, and build more 
elaborate and potentially more powerful intelligence for the next [self.].  
The audio analysis techniques can be expanded and completed by adding perceptual 
feature analysis based on spectral statistics, and most possibly also features extracted 
from the stabilized auditory images used by Lyon [7]. A finer segmentation of 
perceived sounds can also aid [self.] in grasping a common stem or root for sounds 
pointing to the same semantic entity, but used in different contexts.  The currently 
implemented intelligence does allow for learning and interaction but not so much for 
internal reflection. Also it does not have an inbuilt desire to develop further, outside the 
limits currently set for it. Systems for positive and negative feedback on different kinds 
of behavior are examples of basic building blocks needed for the entity to generate a 
self-drive towards changing its own behavior or its own conditions for interacting with 
the world. 
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