
Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 44

I
C
S
C
 2
0
1
5

ON AUDIO PROCESSES IN THE ARTIFICIAL

INTELLIGENCE [SELF.]

CALIBRATION, ANALYSIS, RECORDING, SEGMENTATION,

PLAYBACK

Øyvind Brandtsegg and Axel Tidemann

Norwegian University of Science and Technology,
Trondheim, Norway
oyvind.brandtsegg@ntnu.no, tidemann@idi.ntnu.no

Introduction

This paper describes [self.], an open source art installation that embodies artificial
intelligence (AI) in order to learn, react, and respond to stimuli from its immediate
environment. Biologically inspired models are implemented to achieve this behavior,
and Csound is used for most parts of the audio processing involved in the system. The
artificial intelligence is physically represented by a robot head, built on a modified
moving head for stage lighting. Everything but the motors of the stage lighting unit was
removed and a projector, camera and microphones added. No form of knowledge or
grammar have been implemented in the AI, the system starts in a ``tabula rasa'' state and
learns everything via its own sensory channels, forming categories in a bottom-up
fashion. The robot recognizes sounds and faces, and is able to recognize similar sounds,
link them with the corresponding faces, and use the knowledge of past experiences to
form new sentences. Since the utterances of the AI is solely based on audio and video
items it has learned from the interaction with people, an insight into the learning process
(i.e. what it has learned from who) can be glimpsed. This collage-like composition has
guided several design choices regarding the aesthetics of the audio and video output.
This paper will focus on the audio processes of the system, herein audio recording,
segmentation, analysis, processing and playback.

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 45

I
C
S
C
 2
0
1
5

Figure 1 [self.] talking to a person

1 Background and overview

The project started out as an attempt to reflect on the effect AI will have on society in
the general case, and how artificially intelligent machines will interact with human
beings. The original intent was to explore a biologically inspired architecture that would
strive towards the ultimate goal in AI; consciousness. The authors are well aware that
this goal is out of range for the current architecture; still it has been a guiding principle
in the design and conception of [self.]. The ability to learn and categorize concepts
learned from interaction with the environment without a prior knowledge base is an
example of such a design choice. As an artwork, [self.] plays on the relationship
between technology and humans, and it relates to language, philosophy and the
contemporary (over-)focus on self-realization. Ideas from Derrida (and his interpretation
of the myth of Echo and Narcissus [1]), Heidegger (the essence of technology [2]),
Benjamin (reproduction [3]), Rutsky [4], and Stiegler (transindividuation [5] and [6])
can be said to form a philosophical back-drop for the work. The intent is not for the
artwork to relay in any rigorous manner the content and ideas of these great thinkers,
but for the aesthetic object to embody aspects of and perspectives on the technology
currently in question. As the techno-philosophical backdrop also relates to cultural and
economic questions of access to the technology, it is only fitting that the source code11
for the whole project is made available under an open source license.

Technical overview of [self.]

The robot has two forms of input: video (USB camera) and audio. Two microphones are
mounted in a simple X-Y stereo configuration for the purpose of sensing the horizontal
position of the sound source. The stereo image analysis is used to rotate the robot’s head
towards the position of the incoming sound, so it will turn towards the person speaking
to it. This works in tandem with image analysis, where the face tracking is used for fine
adjustment of the robot head orientation. The robot uses its sensory input to learn. The

11 github.com/axeltidemann/self_dot

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 46

I
C
S
C
 2
0
1
5

signals are sent to three different modules; these are face tracking (video), audio/video-
association (audio and video) and sound processing (audio). The outputs of these
modules are propagated to higher-level functions (``Learning'' and ``Responding'').

Audio input and output is done via Csound. Automatic calibration of the input signal
level and capture of a background noise image is done at startup and during runtime.
The input signal is analyzed for transients and this is used as a crude segmentation
marker. Transient detection is based on amplitude slope and as such is independent of
the absolute amplitude. Silent (or noisy) parts of the recording are stripped before
passing on the audio to other parts of the system. A biologically inspired model of the
cochlea[7] is used to analyze the raw WAVE files created by Csound. The model
performs sound analysis based on a bio-mimetic cascade of asymmetric resonators with
fast-acting compression. The output is called a neural activation pattern (NAP). This is
somewhat similar to a spectrogram based on FFT, but different in the respect that a
NAP has features that correspond to auditory physiology both in terms of the resolution
and distribution of the frequency bands, and in terms of the dynamic compression
algorithm used on the amplitude data. The NAP is used for learning audio concepts, as
well as for building a transformation from audio to video. The AI aspects are covered
more in depth in other articles by the authors ([8]and [9]) , and are only briefly
recounted here, however, some contextualization is given in section III. The focus of
this article is on the low level functions of audio input and segmentation as well as the
aesthetic shaping of the audio output.

Figure 2 Overview of signals and modules, also indicating implementation

languages for the different modules

2 Audio input processing

Calibration and noise reduction

The [self.] robot is intended to operate as an art installation in a public gallery, where
the level of background noise may vary according to audience attendance. Similarly, the
audio input level from a person speaking to [self.] may vary significantly due to the type
of conversation, closeness to the microphone etc. Mechanical vibration from the robot’s
motors can also result in disturbances of the audio input via the microphone, and the
sound that [self.] makes through the speakers can also be picked up by its microphone.

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 47

I
C
S
C
 2
0
1
5

To counteract these signal irregularities, a number of techniques were combined. We
use automatic calibration of the input noise floor, a spectral analysis of the background
noise, suppression of [self.]’s own output (both spectrally, and as a simple amplitude
ducking), and finally the input is muted whenever the robot’s head need to move so
much that significant vibrational bleed occurs.

The background noise print is taken by analyzing a couple of seconds of input audio,
assuming that no intended communication with the robot is taking place during the
analysis. The audio is analyzed via pvsanal, spectral frames transferred to an array, and
we make a running average of the spectral content, writing the result to a Csound ftable.
The spectral template in this ftable is then subtracted12 from the spectrum of the live
audio input during normal conversation. A scaling factor can be applied to set the
degree of background noise filtering. With the spectral filtering in place, a measure of
the level of remaining background noise is taken, using this as the general noise floor
throughout the signal chain. A noise gate ftable is generated on the basis of the noise
floor measurement, allowing sounds above the noise floor to pass unmodified, while
damping softer sounds. Sound softer than 8 dB below the noise floor is muted
altogether. The noise gate is implemented by using the RMS level of the input signal as
a lookup to the noise gate table and using the table value as an amplitude adjustment
value.

Figure 3 Analysis of noise level in input creates the noise gate

shape, application of gate to the right

To enable suppression of [self.]’s own output from the speakers to the microphone, we
need to measure the roundtrip latency of the audio system. This is done by generating a
series of enveloped noise bursts at 1-second intervals, registering the time of the noise
burst onset and comparing this to the time when the noise burst is received via audio
input. The method assumes that no significant external sound is being made during the
measurement and that the physical sound from the speaker can be picked up by the
microphone. The resulting roundtrip latency of the audio system is written to file, so
this measurement does not have to be done again until the audio configuration is
changed. The Python program (self.py) will determine if a valid roundtrip latency file is
found whenever audio calibration is initialized, and force latency measurement if the
file is missing.

The audio output from [self.] is (internally) fed back to the input section, delayed
according to the roundtrip latency measurement, and analyzed with pvsanal. The output
spectrum is then subtracted from the input spectrum to suppress [self.]’s own sounds
from the input.

12 Subtracting the amplitudes of one spectrum from the other on a bin by bin basis

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 48

I
C
S
C
 2
0
1
5

Figure 4 Subtraction of [self.]’s own output from microphone input

The audio calibration routines run at system initialization, but can also be triggered
during runtime. The rationale for this being that the external conditions regarding
ambient noise etc. can be expected to change drastically during the span of a day in the
gallery. A large group of schoolchildren can make a relatively dense ambient noise and
the relative vocal input to the microphone may vary to a high degree. Conversely, it is
also common for spectators to become shy of speaking to a machine, and so they will
speak quite softly. A trigger for recalibration during runtime can be the lack of sound
recording for a long time, which could be due an input level or noise suppression error.
Excessively long recordings will also trigger recalibration as it may be a sign of too
high release thresholds.

Transient detection and audio status

Amplitude transient detection is used as a crude segmentation marker in [self.], it will
initiate the recording of audio segments, and transients within recorded segments are
used as “word” markers. The transient triggers are also used to update the stereo image
analysis (described later), initiating movement of the robotic head towards the sound
source. Transient detection is made using rate of change analysis of the filtered
amplitude. The signal is conditioned with an envelope follower filter (follow2 opcode)
and mapped to a perceptual scale (dB) before transient detection. The sensitivity of the
transient detection can be adjusted with an attack threshold parameter. To limit the
amount of false trigging, some filtering methods have been implemented. When a
transient is detected, the current signal level is recorded, and a decay threshold sets the
relative negative change needed before a new transient is allowed to be registered. The
envelope filtering has an adjustable envelope release time to smooth out fluctuations
after a peak in the signal, and this works in tandem with the decay threshold. Finally, a
timer is used as a secondary means to limit the rate of transients, ensuring that a certain
double trig limit amount of time must pass after a transient has been recorded before
another transient is allowed. The transient detector is wrapped as a user defined opcode,
and has also been used in other projects for transient detection on a variety of signals.

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 49

I
C
S
C
 2
0
1
5

Figure 5 Transient detector. The arrows from the parameter names indicate skipped

transients due to adjustment of that parameter.

Following the transient detection, an audio status indicator is generated. This indicates
sections of realtime audio input where something interesting is happening, something
we will want to record and analyze. The audio status is set to 1 when a transient is
detected, keeping its value until the signal has dropped below a release threshold
(typically -9 dB), similar to the decay threshold of the transient detector. In addition,
we wait for an extra period of time (status release time) before setting the status to zero.
Audio recording follows the audio status indicator. In this manner, several transients are
allowed within one audio status segment (one audio file), and we can keep a contiguous
recording of one complete utterance (sentence) received by [self.]. This mechanism is
intendedly low level and provides a course selection of sounds that we may want to
keep. Higher level processes later in the signal chain refines this selection, the objective
at this point is to grab everything that may be of interest.

Stereo image analysis

To allow the robot to turn towards the person speaking to it, an analysis of the stereo
image of the input sound is made. If the input sound is coming from the left, the robot
will turn in that direction, and vice versa if the sound is coming from the right. The pan
position value is a float in range 0.0 to 1.0. Since the utility of this analysis is to trigger
relative movement of the robot head, we will use a center pan position of 0.5 to indicate
that no adjustment to the robot head position is necessary. An imbalance in the stereo
image occurring in tandem with an amplitude transient will trigger relative movement.
The amplitude transient is thus used to limit the rate of spatial-induced movement.
Otherwise, the head would spin rather erratically and nervously. Two methods of stereo
image analysis have been tested, one based on relative amplitude analysis of the left and
right channel with this formula:

5.0*1

+

+

−

RL

RL

ampamp

ampamp

The other spatial analysis method is based on correlation between audio signals at
different fractions of the expected time delay between the two input channels, similar to
the interaural time difference (ITD) in human hearing. Based on a microphone spacing

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 50

I
C
S
C
 2
0
1
5

of 20 cm, and using 340 m/s as an approximation of the speed of sound, we have a
maximum ITD of 0.6 milliseconds. For practical purposes, we assumed that a resolution
of 10 steps in the resolution of the stereo position was sufficient. 10 copies of the left

signal were made, each being delayed by a fraction of the maximum IDT. The
correlation between each delayed copy and a reference signal (input right, delayed by
ITD*0.5) were calculated by writing each signal to a temporary table, multiplying each
delayed signal with the reference signal and use the one with the highest sum as the
estimate of the stereo position of the sound.

The correlation based method was significantly more prone to noise and spurious peaks,
and also more expensive to calculate than the amplitude difference method. We assume
that the method could be refined by filtering the audio signal to remove frequency
content outside of the range where ITD cues are reliable (< 1500 Hz). For the current
version of [self.] the amplitude difference method was used, as it gave sufficient
precision of stereo position analysis for our purposes.

Recording and segmentation

Whenever someone speaks to [self.], it records the received sound to file for further
processing. Audio recording is initiated by the audio status indicator and continues as
long as the status indicator is positive. The sound files are automatically named using
the date and time of the start of the recording. To accompany each sound file, a marker
file with the same name is generated, containing information about the time of each
detected transient during the recording. The marker file also contains additional segment
info, like interquartile mean values for amplitude, pitch and centroid for each segment,
maximum amplitude and total duration. These values are later used to determine the
most significant (stressed) word in a sentence, and determining whether the utterance
was a question (pitch profile). This marker file is written by Python, and the data is
transferred using common functions of the CsoundAPI. A separate continuous pitch
data file is also recorded, to be used for pitch synchronous granular synthesis playback
of the sound segments (see later description of the output sound characteristics of
[self.]).

Figure 6 Each recording consist of a set of 3 files

In spite of the signal conditioning previously described, there is a realistic chance of
intermittently recording background noise. Also, since the audio status indicator
requires a quite generous drop of signal intensity followed by a release time, we will
(always) have some silence (or noise) at the end of recordings. Similarly, we may have
periods of silence or noise in the middle of a recording, for example as pauses between
words in a sentence. To minimize the amount of audio that needs to be analyzed and

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 51

I
C
S
C
 2
0
1
5

handled by the system, we want to strip off these unwanted sections of the recordings,
and we want to discard altogether recordings that (after the fact) shows signs of being
accidentally recorded noise. Now, there is an inherent problem here, since we want
[self.] to be able to respond as quickly as possible to a received sound, we want to do
segmentation and recording in realtime, but some indicators of the validity of a
recording can only be determined after the complete sound segment has been recorded.
For example, if an intermittent noise (like the closing of a door or clacking of a heel)
initiates recording, and the recording continues for N seconds (status release), we
would want to discard this recording, but there is no way of predicting if a valid
utterance has been made during this period until the recording stops. Similarly, the
duration of the silence (or low level noise) at the end of a recording cannot be
determined to be at the end of a recording until the recording has stopped. At the same
time, we want to allow [self.] to analyze and process the sound as quickly as possible to
minimize the total response time, so we would prefer to filter out silences and noise as
soon as possible, preferably even before writing the audio to file. To facilitate this,
incoming audio is temporarily written to a buffer (table), skipping sections that has a
signal level dropping below a record threshold (set generously low, due to the previous
noise gating). A running time indicator for the recorded segments and the skipped
segments is kept, so that we could restore the skipped silences if needed. When audio

status finally drops to zero, we have a compact recording with silences stripped in the
buffer, and a k-rate loop is used to quickly write this buffer to file.

Figure 7 Temporary recording to buffer, clean up
(optimization) of audio, pitch data, and marker file

The maximum signal level of all recorded segments in the file is saved, this serves two
purposes: if the maximum signal is relatively low (currently set to 20dB above the noise
floor), the whole recording is deleted before being written to file (as we can assume it
was an accidental recording of intermittent noise). Secondly, the max level is written to
the marker file to be used for normalization purposes during later playback of this
sound. The pitch track signal is subjected to a similar buffering as the audio signal and
is kept or discarded according to the same rules. The objective is to keep the pitch
analysis synchronized with the audio recording during these optimizations. Segment
markers are written to lists in Python, and a marker table is kept in Csound indicating
segments to be kept or discarded. When recording stops, the segment marker list in

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 52

I
C
S
C
 2
0
1
5

Python is filtered according to the Csound marker table, discarding and updating entries
as needed. The valid segment markers are then written to the marker file along with the
total duration and the max amplitude for the file. The whole recording optimization
operation completes within 1 k-rate period after audio status has been set to zero, and
the completed file is passed on to further analysis, as described in the next section.

Audio analysis, Neural Activation Patterns, CARFAC

A number of spectral analysis methods was implemented based on the timbre toolbox
[10], including spread, skewness, kurtosis, flatness, crest and flux in addition to the
centroid already available in Csound. Several pitch tracking methods (ptrack, plltrack,

pitchamdf) was tested and an additional methods has been implemented based on epoch

analysis [11]. The raw spectral data was also transferred to Python together with the
analysis data, with the intention of using the full set of analysis tracks as material for
identification and learning. Although this data provided initial stepping stones and
promising results for learning and recognition, it did not result in robust and reliable
learning methods for the AI.

The current approach to analysis for recognition and classification is the CARFAC
method [7] (Cascade of Asymmetric Resonators with Fast-Acting Compression),
housed in an external C++ library and invoked as a separate subprogram running once
on each sound file. This biologically inspired model of the cochlea has been utilized
earlier for recognizing sounds using machine learning. The output is called a neural
activation pattern (NAP). Like a spectrum based on FFT, a NAP has channels for
different frequency bands with a corresponding intensity value over time. The
distribution of frequency bands are based on the model of the cochlea, as is the fast
acting compression method used in the intensity analysis. The compression method acts
on each band both separately and coupled, on several different time scales and as such it
does a good job of modeling some of the perceptual masking effects.

Figure 8 Example NAP, [self.] hearing the phrase “hello world”

The NAPs play a central part of the cognitive abilities of [self.], as is described in the
following section. The NAP itself also serves as a filtering mechanism, as the system
will discard sounds that have a very low overall neural activity. This has turned out to
work well in conjunction with the techniques described in the earlier section.

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 53

I
C
S
C
 2
0
1
5

3 The AI, learning and responding

Learning

Learning is the core element of [self.]. The robot clusters similar sounds together, based
on the length and the similarity of the NAPs. The clustering is based on the Hamming
distance [12] between the sounds of roughly the same length. This module also learns to
recognize faces, and associate sounds with the face that uttered them. The facial
recognition is done by a Support Vector Machine [13]. The various techniques
implemented are chosen based on empirical experimentation. The live video input is
also used to train an Echo State Network (ESN,[14]), which is a neural network with a
huge hidden layer and fast training algorithm. The ESN was trained to predict a
sequence of images based on the NAP of the corresponding sound. The network is then
used generatively during [self.]’s response.

The recorded audio segments are analyzed with regards to the contexts in which the
sound was perceived. This creates a set of quality dimensions for each sound and [self.]
uses these as modes of association when it creates an output statement. One such
context is the face recognition (“who said what”); another is the context of the sentence
in which the sound was perceived. The position of the sound in a sentence (e.g. in the
beginning or end) is also recorded, and there are also contexts for longer time spans
(e.g. sounds perceived within a couple of minutes or within an hour). Sound duration
and a similarity measure (Hamming distance) to other sound classes are used as yet
another such context or quality dimension. In this manner, a multi-dimensional web of
associations is built, where a dynamic weight can be applied to each. The balancing and
weighting of the different associations is done in a manner inspired by fuzzy logic,
where an item can have partial membership in each of the different relevant contexts.
The most significant (loudest) sound in an input sentence is flagged, and this is used as
the seed for the associations of [self.] when generating a response.

The initial weights for the association contexts are manually adjusted, but [self.] will
evolve new sets of weights (during the dream state at night) using a genetic algorithm.
The purpose of automatic evolution of weights is to tune the bias of association relative
to the balance of features in the collected database of sounds. In addition, the dream
state iterates over the sounds in each category formed in the audiovisual memory of
[self.], and removes sounds that are too dissimilar to the other sounds in the same
category. This can be regarded as a mental hygiene process of sorts.

Responding

When a new sound (i.e. the NAP) reaches the responding module, the most similar
sound in the audio-visual memory is retrieved, based on the Hamming distance to the
other sounds of roughly same length. Using the most significant sound in the latest input
sentence, [self.] looks for associations to this sound, to create a response sentence. The
associations are created by looking up the different contexts as described above. In this
manner a chain of associations is created, and this is used as a repository of sounds to
construct a response. A sound’s original position in an input sentence is also used as a
filter or rule for selection and placement of sounds in a responding statement. The
output from [self.] will be in the form of audio and video, where the audio is a
processed version of the recorded sound, and the video is a sequence of live generated

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 54

I
C
S
C
 2
0
1
5

images from the ESN driven by the corresponding sound (i.e. NAP). The video is this
affected by how closely the original NAP corresponds to the new NAP. Sounds that are
relatively similar will produce sharp images where you can easily recognize the original
training situation, while imperfections in the relation between input and memorized
sounds will create more blurry images, noise, and in some cases oversaturated
silhouettes.

Figure 9 Examples of video output

4 Audio output processing

The audio output of [self.] is based on the recordings of the sounds it has learned,
assembled into sentences by the association techniques described previously. Together
with the neural network-generated video, this kind of collage can give an insight into
the learning process of the AI by connecting each sound to the person it has learned the
sound from. We wanted to give [self.] a characteristic voice quality while retaining
recognizable features of the original input sound. To enable this, a number of
alternatives for the voice of [self.] were developed, each providing a gentle twist to the
sound file being played back. In addition to the main voice of [self.], we wanted to
have an auditory display of the AI’s secondary associations. We can think of this as “the
things [self.] thinks of while considering its next response”. The secondary associations
are sounds that are related to the words in the response, but not quite top matches. These
secondary associations are played back by an auxiliary speaker, a motorized ultrasonic
beam speaker, projecting the sound spatially within the room, to create a “cloud” of
sound, as if we somehow are inside the mind of [self.]

The available voice types for [self.] are made with spectral13 techniques and with
particle synthesis [15], [16]. The spectral voices utilize small amounts of frequency
scaling and frequency shifts, in opposing values so the shifting to some degree will
counteract the effect of the scaling. The purpose of this is to gently tilt the composition
of the spectrum while retaining a quite natural sound. As an example, one of the voice
types scales the frequencies up one semitone, while shifting all frequencies above 200
Hz down by 50 Hz. Some voice types may have individual shifting of several
frequency regions, for example +600 Hz in the region from 1500 Hz and up, and +100
Hz in the region from 700 Hz to 1500 Hz. Some voice types also utilize a small
randomization of the frequency values of the spectrum, creating a more robotic
character. The sound file is analyzed and loaded into a pvsbuffer, so time modifications
are available independently of pitch. Time modifications are currently only used for the
secondary associations, providing them with a more sustained, slower and thoughtful,

13 www.csounds.com/manual/html/SpectralRealTime.html

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 55

I
C
S
C
 2
0
1
5

ethereal sound. We could conceivably also use fluctuating time modification as a means
of subtle expressive phrasing for the main voice. Typically, the spectral voices also
utilize small amounts of spectral blurring (in the range 0.15 - 0.2 secs) and smoothing
(amplitude smoothing in range 0.2 - 0.4 secs and frequency smoothing generally very
low, around 0.06 secs).

Particle14 synthesis is used for two different kinds of voices, one which we may call
“slowdown but at original speed” and the other based on pitch synchronous granular
synthesis [17]. The basic principle of the first of these is to use 4 different source

waveforms (containing the same sound, but using individual samplepos pointers, which
in turn determine the position in the sound from where to start reading a grain of sound).
The samplepos pointer progresses through the sound at half the original speed, and
when it is lagging significantly behind the “real” time of the sound, we crossfade to
another source waveform (via channel masking) and reset the samplepos pointer. With 4
source waveforms slowing down in interlapping patterns, we can create an illusion of
the sound moving slower while playback still progress through the original recording at
the original speed. The original speed can also be modified, independently of the
overlapping slowdown procedure, creating additional time stretching effects. For this
effect, we used quite high grain rates (120 Hz) and long grains (relative grain duration
of 4.0). To minimize the artifacts of the time stretching, we utilize a gentle random
deviation (approximately 1% of the duration of the source wave file) to the samplepos
pointers, and we introduce a small irregularity in the grain placement (slightly towards
asynchronous granular synthesis). The grain asynchrony is achieved both by using grain

distribution (0.3) and by intermittently adjusting the grain clock via soft
synchronization pulses to the partikkel sync input. This kind of time manipulation
techniques can also be used to create reverb-type effect, as referenced in [18]

The second particle-based voice type is generated with pitch synchronous granular
synthesis. Here we use pitch tracking of the source sound to control the grain rate. This
allows modification of the voice formants without altering the perceived pitch of the
sound. To some degree, the perceived pitch can also be altered independently, but we
use this method to create a gentle octaviation effect (dividing the grain rate by 2). To
adjust the presence of the octaviation effect, we can alter the grain durations (here using
relative grain duration of 1.5) and the grain shape (using a fast attack on each grain and
applying an exponential decay). The effect is softened somewhat by using a small
amount of grain distribution (0.1).

Voice type is selectable on an event basis, and it is possible to use same range of voice
types for the secondary as for the main voice. This aided in experimentation with the
total aesthetic appearance during final mounting in gallery. In the exhibited version, we
used a spectral voice type for the main voice and the slowdown partikkel voice type for
the secondary voice. The secondary voice used a relative playback speed of 0.7 while
the main voice used no time modification. The secondary voice was additionally treated
with delay and reverb.

14 www.csounds.com/manual/html/partikkel.html

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 56

I
C
S
C
 2
0
1
5

Figure 10 Read pointers in 4 source waveforms to create a

slowdown effect at original speed

As an auditory backdrop to the voice sounds, we created an ambient texture using
particle synthesis. This texture uses randomly reordered cut-ups from [self.]’s recently
recorded sounds, played back in an asynchronous granular manner. Two parallel
particle generators were used, with slightly different parameters. A low grain rate (12
Hz) was used with random deviation to the grain rate, relatively short grains (0.2) with
clear attacks. Grain transpose was modulated in the range of +/- one semitone. The
second particle generator used somewhat higher grain rates and generally longer and
softer grains, with separate gain- and channel masking. Every few seconds one of the 4
source waveforms for the particle generators was replaced, choosing from the 10 latest
input recordings. The intended effect is to create a fragmented background chatter based
on recently perceived sounds. This assumed to create a sonic illustration of the ongoing
mental processing of recent events. The stereo output of this ambient texture was sent to
the main and secondary speakers. Even though the speaker setup does not really provide
a clear stereo image in the traditional sense, it creates the impression of a spatially
moving sound field.

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 57

I
C
S
C
 2
0
1
5

Figure 11 Main robot head, with secondary speaker in front

Conclusion

We have described the art installation and artificial intelligence [self.], and its
biologically inspired models of listening, learning and responding. We have also looked
more closely into the audio processing methods implemented as part of the inner
workings of [self.]. The sound recognition and classification coupled with face
recognition allows a multidimensional association web to be spun, creating weighted
connections between sounds [self.] has heard and learned, and it utilize these
associations to assemble its output statements. As no dictionary, grammar or other body
of knowledge is given [self.] from its inception, it has to learn communication only via
its sensory channels. The output statements of the AI thus also bear a strong imprint of
whomever it has learned the different sounds and concepts from. [self.] as an artwork
intends to reflect on the relation between technology and human beings. As one of
several philosophical backdrops we’ve used Derrida’s recollection of the Greek myth of
Echo and Narcissus, providing an insight into what constitutes a self, and possibly in
this context making an analogy between Echo and modern technology. As Echo, [self.]
can only produce what it has heard, but also as Echo’s clever manipulations and
selections of phrases to be repeated, [self.] may be able to express something else with
its collage-like recollections of impressions, something that may be the seed of the
constitution of a true self.

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 58

I
C
S
C
 2
0
1
5

With regards to the audio processing techniques involved in this artwork, we have given
detailed insights into the recording and segmentation methods, as well as the analysis of
the spatial position of incoming sound. In the classification and sonic analysis, we have
used the CARFAC technique to create neural activation patterns for each sound
segment. These are also used to find similarity measures between sound classes and to
train audio-to-video associative neural networks.

The design of the voices of [self.] has been given attention in terms of the signal
processing and synthesis techniques used. Two kinds of voice function have been
implemented: One main voice, creating a close-to-natural reproduction of recorded
sound but with a slight twist to add [self.]’s own character to the output. The secondary
voice is slower in pace and spatialized in the room, reflecting the thought processes
underlying or paralleling the main voice’s output. An ambient texture is created with
granular techniques on a selection of recent sounds [self.] has experienced. This texture
adds a timbral and spatial counterpoint to the more straightforward conversation-type
sounds, and it acts as another layer of sonic interaction through the slow-paced updating
of grain source waves from the recent sonic activity.

The art installation [self.] has a mode of interaction and a way of learning that is in
some ways similar to how a small child interacts with the world. In this manner it
reflects its own status as a relatively newborn entity, with an abundance of room for
improvement. The authors intend to follow up the work started here, and build more
elaborate and potentially more powerful intelligence for the next [self.].
The audio analysis techniques can be expanded and completed by adding perceptual
feature analysis based on spectral statistics, and most possibly also features extracted
from the stabilized auditory images used by Lyon [7]. A finer segmentation of
perceived sounds can also aid [self.] in grasping a common stem or root for sounds
pointing to the same semantic entity, but used in different contexts. The currently
implemented intelligence does allow for learning and interaction but not so much for
internal reflection. Also it does not have an inbuilt desire to develop further, outside the
limits currently set for it. Systems for positive and negative feedback on different kinds
of behavior are examples of basic building blocks needed for the entity to generate a
self-drive towards changing its own behavior or its own conditions for interacting with
the world.

Acknowledgements

The authors would like to thank the Arts Council Norway, Trondheim Muncipality and
NTNU for financial support. Special thanks to Stefan Gemzell of Ljusdesign15 for
giving us for free the first moving head to experiment on, and to Robin Støckert of
Soundscape Studios16 for providing us with the rest of the hardware for the robot. We
would also like to thank curator Anne Gro Erikstad for inviting us to create the artwork
[self.] for its first exhibition at Trøndelag Senter For Samtidskunst17 in November 2014.

15 www.ljusdesign.se/en/
16 www.soundscape-studios.no/english/products/products.htm
17 www.samtidskunst.no/english/

Øyvind Brandtsegg and Axel Tidemann. On Audio Processes in the Artificial Intelligence [self.]

 59

I
C
S
C
 2
0
1
5

References

[1] DeArmitt, P., Resonances of Echo: A Derridean Allegory. Mosaic (Winnipeg),

2009. 42(2): p. 89.
[2] Heidegger, M., The question concerning technology. Technology and values:

Essential readings, 1954: p. 99-113.
[3] Benjamin, W., The work of art in the age of mechanical reproduction. 2008:

Penguin UK.
[4] Rutsky, R.L., High techne: Art and technology from the machine aesthetic to the

posthuman. Vol. 2. 1999: U of Minnesota Press.
[5] Stiegler, B., Transindividuation, I. Rogoff, Editor. 2010, e-flux, 311 East

Broadway, New York: e-flux journal #14.
[6] Stiegler, B., Technics and Time: The fault of Epimetheus. 1998: Stanford

University Press.
[7] Lyon, R.F., Using a Cascade of Asymmetric Resonators with Fast-Acting

Compression as a Cochlear Model for Machine-Hearing Applications, in Autumn
Meeting of the Acoustical Society of Japan. 2011. p. 509-512.

[8] Tidemann, A. and Ø. Brandtsegg. [self.]: an Interactive Art Installation that
Embodies Artifcial Intelligence and Creativity. in ACM Cognition + Creativity.
2015.

[9] Tidemann, A. and Ø. Brandtsegg. [self.]: Realization / Art Installation / Artificial
Intelligence. in International Conference on Entertainment Computing 2015.

[10] Peeters, G., et al., The timbre toolbox: Extracting acoustic descriptors from
musical signals. Journal of The Acoustical Society Of America, 2011. 130: p.
2902-2916.

[11] Yegnanarayana, B. and S. Gangashetty, Epoch-based analysis of speech signals.
Sadhana, 2011. 36(5): p. 651-697.

[12] Hamming, R.W., Error detecting and error correcting codes. Bell System
Technical Journal, The, 1950. 29(2): p. 147-160.

[13] Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995.
20(3): p. 273-297.

[14] Jaeger, H. and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication. Science, 2004. 304(5667): p. 78-80.

[15] Brandtsegg, Ø., S. Saue, and T. JOHANSEN, Particle synthesis–a unified model
for granular synthesis. Accepted paper at Linux Audio Conference, 2011.

[16] Roads, C., Microsound. 2001: Mit Press.
[17] Poli, G.D. and A. Piccialli, Pitch-synchronous granular synthesis, in

Representations of musical signals, P. Giovanni De, P. Aldo, and R. Curtis,
Editors. 1991, MIT Press. p. 187-219.

[18] Ervik, K. and Ø. Brandtsegg, Creating reverb effects using granular synthesis, in
Ways Ahead: Proceedings of the First International Csound Conference, J. Heintz,
A. Hofmann, and I. McCurdy, Editors. 2013, Cambridge Scholars Publishing. p.
181-187.

