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Abstract 16 

Objectives: In a time of exponential growth of new evidence supporting clinical decision making, 17 

combined with a labor-intensive process of selecting this evidence, there is a need for methods to 18 

speed up current processes in order to keep medical guidelines up-to-date. The purpose of this study 19 

was to evaluate the performance and feasibility of active learning to support the selection of relevant 20 

publications within the context of medical guideline development. 21 

Design: We used a mixed methods design. The manual process of literature selection by two 22 

independent clinicians was evaluated in 14 searches by calculating Cohen’s Kappa (ĸ) for interrater 23 

reliability. This was followed by a series of simulations investigating the performance of random 24 

reading versus using screening prioritization based on active learning..  25 

Main outcome measures: Work Saved over Sampling at 95% recall (WSS@95), percentage Relevant 26 

Records Found at reading only 10% of the total number of records (RRF@10) and average time to 27 

discovery (ATD). Finally, results were discussed in a reflective dialogue with guideline developers. 28 

Results: Mean ĸ for manual title-abstract selection by clinicians was 0.50 and varied between -0.01 to 29 

0.87 based on 5021 abstracts. WSS@95 ranged from 50.15% (SD=17.7) based on selection by 30 

clinicians, to 69.24% (SD=11.5) based on the selection by research methodologist up to 75.76% 31 

(SD=12.2) based on the final full-text inclusion. A similar pattern was seen for RRF@10 ranging from 32 

48.31% (SD= 23.3) to 62.8% (SD=21.20) and to 65.58% (SD=23.25). ATD ranged from 20 to 67 33 

abstracts. 34 

Conclusion: Tools, implementing active learning, such as ASReview, can speed up the process of 35 

literature screening within guideline development. 36 

 37 

Keywords: guideline development, medical guidelines, text data, natural language processing, active 38 

learning, machine learning, systematic reviewing  39 
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Introduction 40 

Producing and updating trustworthy medical guidelines is a deliberative process that requires 41 

substantial investment of time and resources.[1] In the Netherlands, medical guidelines in specialist 42 

care are being developed and revised in a co-production between clinicians and research 43 

methodologists. In the Netherlands, there are over 650 medical guidelines, answering to 44 

approximately 12.000 clinical questions. An essential element in guideline development is a 45 

systematic synthesis of the evidence. This systematic appraisal includes the formulation of clinical 46 

questions, selection of relevant sources, a systematic literature review, grading the body of evidence 47 

using GRADE,[2] and finally translating the evidence into recommendations for clinical practice. [3] 48 

The synthesis of evidence starts with the translation of a clinical question into a research question 49 

through the PICO acronym (Patient, Intervention, Comparison and Outcomes). Hereafter, a medical 50 

information specialist systematically searches literature in different databases. Then, literature 51 

screening is performed independently by two clinicians who label relevant publications based on in- 52 

and exclusion criteria in title-abstract. Once the relevant publications have been selected, a research 53 

methodologist, who is more experienced in selecting relevant publications from large datasets, 54 

supports further title-abstract selection, assessing the methodological quality of the selected papers. 55 

Since a single literature search can easily result in hundreds to thousands of publications, literature 56 

screening is time-consuming, with an estimated 0.9 minutes and 7 minutes per reference per 57 

reviewer on abstract screening and full text screening, respectively.[4] In an era of exponential 58 

growth of new evidence, combined with a labor-intensive process, there is a need for methods to 59 

speed up current processes in order to keep medical guidelines up-to-date. 60 

The rapidly evolving field of Artificial Intelligence (AI) has allowed the development of tools  that 61 

assist in finding relevant texts for search tasks.[5] A well-established approach to increase the 62 

efficiency of title and abstract screening is screening prioritization [6,7] via active learning.[8] Active 63 

Learning is found to be extremely effective for systematic reviewing [9–20] 64 
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With machine learning models, relevance scores for each publication can be computed. Then, 65 

assessors label title-abstracts (relevant versus irrelevant) for each most relevant record  and the 66 

model iteratively updates its predictions based on the given labels and prioritizes articles that are 67 

most likely to be relevant.  68 

Introducing active learning could save tremendous amount of work and time and may open a new 69 

window of opportunity in the context of evidence-based guideline development. However, active 70 

learning works under the strong assumption that given labels are correct.[21,22]  While in research 71 

with experienced reviewers, this may be straightforward, in the daily practice of guideline 72 

development, working with clinical questions and clinicians, this may be more complex. Most 73 

clinicians are not experienced with title-abstract screening and often screen in addition to their daily 74 

work. With large numbers of abstracts and limited time, clinicians can become distracted or fatigued, 75 

introducing variability in the quality of their annotations. This variability in human performance may 76 

hinder the applicability of active learning in guideline development. Given the potential of active 77 

learning, but also the more complex context of guideline development, the purpose of this practice-78 

based study was to evaluate the performance and feasibility of active learning for literature 79 

screening, and find out how much effort can be saved in the context of medical guideline 80 

development. 81 

In what follows, we present the workflow for manual literature screening in guideline development 82 

and introduce the setup of active learning. We first compared the performance (i.e., work saved) of 83 

literature screening between active learning and the manual selection by simulating 14 clinical 84 

questions through three stages of the review process 1) screening by clinicians, 2) screening by 85 

clinicians and research methodologist, and 3) final full-text inclusions after expert consensus. We 86 

then discuss the performance of active learning in a reflective dialogue and evaluate reasons that 87 

facilitate or hamper the performance of active learning in the discussion section. For ease of 88 

interpretation, we visualize the performance of active learning for all datasets times the three levels 89 
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in so-called, recall plots. Finally, since this is the first study to report on the performance of active 90 

learning in guideline development, we also propose new directions for future research.  91 

Methods 92 

Datasets 93 

We selected 14 clinical questions from recently published clinical guidelines  containing manually 94 

labeled datasets, providing a wide range of type and complexity of clinical questions, see Table 1. The 95 

datasets were derived from different guidelines, published between 2019 en 2021, covering different 96 

types of questions, e.g., diagnostic, prognostic and intervention type of questions. In order to be sure 97 

that the guidelines had been authorized and thus finished, we selected those that are openly 98 

published on the Dutch Medical Guideline Database [Richtlijnendatabase.nl]. Per clinical question, 99 

two clinicians independently labeled title-abstracts using prespecified in- and exclusion criteria. To 100 

evaluate manual literature screening, interrater agreement for categorical items was calculated 101 

according to Cohen’s Kappa index measure (ĸ=
P0−Pe

1−Pe
). Cohen’s Kappa gives relevant information on 102 

how manual title-abstract screening is being done (e.g., use of in- and exclusion criteria). 103 

Furthermore, in Table 1 we provide the  number of abstracts screened, number of title-abstract 104 

inclusions, number of final full-text inclusions and total time spent screening all title-abstracts. 105 

The datasets contained (at least) title and abstract of the paper plus the labels relevant/irrelevant for 106 

each of the annotators, clinician and research methodologist, and the column with the final inclusion. 107 

Duplicates and papers with missing abstracts were removed from the dataset. All datasets can be 108 

found on the Open Science Framework page of the project: https://osf.io/vt3n4/.   109 

Simulation 110 

 Active Learning 111 

https://osf.io/vt3n4/
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The simulation was conducted with the command line interface of ASReview version v0.16.[23] We 112 

used Naïve Bayes as the classifier with TF-IDF as feature extraction technique and the default 113 

balancing strategy.  Each protocol was simulated with the relevant records as indicated by (1) the 114 

clinicians, (2) the clinicians and research methodologist, and (3) the final inclusions, resulting in 115 

3x14=42 simulations.   116 

We analyzed the model performance of active learning by calculating the following three outcome 117 

measures: Firstly, the Work Saved over Sampling (WSS), which indicates the reduction in publications 118 

needed to be screened at a given level of recall [Cohen, 2006]. WSS is typically measured at a recall 119 

level of 95%, WSS@95 reflects the amount of work saved by using  active learning at the cost of 120 

failing to identify 5% of relevant publications. Note that humans typically fail to find about 10%.[24]  121 

Secondly, we computed the metric Relevant Records Found (RRF), which represents the proportion 122 

of relevant publications that are found after screening a prespecified percentage of all publications. 123 

Here we calculated RRF@10 which represents the percentage of relevant publications found after 124 

screening only 10% of all publications. Thirdly, we calculate average time to discovery (ATD), the 125 

fraction of non-reviewed relevant publications during the review (except the relevant publications in 126 

the initial dataset). The ATD is an indicator of the performance throughout the entire screening 127 

process instead of performance at some arbitrary cutoff value. The ATD is computed by taking the 128 

average of the Time to Discovery (TD) of all relevant publications. The TD for a given relevant 129 

publication i is computed as the fraction of publications needed to screen to detect i.[10] 130 

For the training data for each simulation, an equal number of runs was induced equal to the number 131 

of relevant records in the dataset with each relevant record being a prior inclusion for one run and 10 132 

randomly chosen irrelevant records. In each run, and for every dataset within a protocol, the same 133 

10 irrelevant records have been used. This is done because the starting paper used for the first 134 

iteration of the model can have an influence in the performance which is of importance for 135 

computing the ATD. In addition, we plotted recall curves to visualize model performance throughout 136 



AI-aided guideline development 
 

7 
 

the entire simulation. Recall curves give information in two directions; they display the number of 137 

publications that need to be screened and the number of relevant publications.  138 

All scripts to reproduce the simulations are available at: http://doi.org/10.5281/zenodo.5031390.[25]   139 

Results 140 

Manual Screening 141 

The selected datasets cover seven different medical fields and include intervention, diagnostic and 142 

prognostic type of questions. Twenty-four clinicians independently screened 5021 abstracts and 143 

selected a total of 339 potentially relevant publications which took 3766 minutes. Mean ĸ of 144 

interrater agreement was 0.50 and varied between -0.01 to 0.87.  145 

From the 339 relevant publications labeled by the clinicians, 166 (=49%) were excluded by the 146 

research methodologist due to methodological concerns, and 45 (=13,3%) were additionally excluded 147 

based on full-text selection, leaving 128 publications for final full-text inclusion.  148 

Simulation 149 

We ran a total of 42 simulations, but to explain the results we discuss the results for one dataset in 150 

detail: Distal_radius_fractures_approach. Out of the 195 records identified in the search, 11 (5,64%) 151 

were indicated as relevant by the clinicians, 6 (3.08%) by the research methodologist and ultimately 152 

only 5 (2.56%) were included in the final protocol. In Figure 1, first row, the number of relevant 153 

records found for each simulation run is displayed as a function of the number of records screened 154 

for each of the three levels (clinician, research methodologist, final decision). The vertical line 155 

indicates when 95% of the relevant records has been found. Zooming in on WSS@95 for full text 156 

inclusions, on average, after screening 43% of the records (n= 83), all records (5 out of 5) would have 157 

been found. If you would screen records in a random order, at this point you would have found 3 of 158 

the relevant records and finding 5 of the relevant records would take on average 186 records. In 159 

other words, the time that can be saved using active learning expressed as the percentage of records 160 

http://doi.org/10.5281/zenodo.5031390
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that do not have to be screened is 61% (sd= 5.43), while still identifying 95% of the relevant records. 161 

The RRF@10 is 20% (sd= 11.18), meaning that after screening 10% of records, 20% of the relevant 162 

records have been identified.  163 

Figure 1 presents recall curves for all simulations and as can observed the recall curves differ across 164 

datasets but always outperform randomly reading the records which is the standard approach. 165 

Simulation results are presented in Table 2 and showed that the Work Saved over Sampling 166 

(WSS@95) was lowest for clinicians and ranged from 32.31% to 97.99%, with a mean of 50.15% (SD= 167 

17,74); followed by the research methodologist, it ranged from 45.34% to 95.7%, with a mean of 168 

69.24% (SD=11.51); and simulating the full-text inclusions resulted in the highest WSS@95 that 169 

ranged from 61.41% to 96.68% (0.92), with a mean of 75.76% (SD=12.16).  170 

>> FIGURE 1 << 171 

A similar pattern emerged for RRF@10 which, for clinicians, ranged from 28.10% to 85.95%, with a 172 

mean of 48.31% (SD= 23.32); for the research methodologist, it ranged from 25.00% to 100%, with a 173 

mean of 62.78% (SD=21.20); and simulating full-text inclusions gave a RRF@10 that ranged from 174 

20.00% to 100% (0.92), with a mean of 65.58% (SD=23.25). ATD Ranged from screening 20 to 62 175 

abstracts. 176 

Discussion 177 

The purpose of this practice-based study was to evaluate the performance and feasibility of active 178 

learning to support the selection of relevant publications within the context of guideline 179 

development. To do so, we evaluated the performance of active learning on labeled datasets from 14 180 

clinical questions and discussed the results with professional guideline developers. The main 181 

conclusion is that tools, implementing active learning, such as ASReview, can speed up the process of 182 

literature screening within guideline development. The main results of our simulation show a 13% to 183 

98% reduction in the number of papers needed to screen compared to manual screening. When 184 
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ASReview was used based on the manual screening by clinicians, the average WSS@95 was 50%. 185 

After additional assessment by the research methodologist the average WSS@95 increased to 69%, 186 

with a further increase to 75% after final full text inclusion. So, the performance of active learning 187 

increases with more accurate title-abstract labelling, which underline the importance of strict in- and 188 

exclusion criteria.  189 

In a reflective dialogue of two 3.5 hours sessions seven guideline developers critically appraised the 190 

accuracy of the labeled datasets and performance of active learning. The discussion revealed that 191 

almost half (=49%) of the selected publications by the clinicians did not meet the predefined 192 

inclusion criteria, e.g., PICO-criteria or study design and were therefore re-labeled as irrelevant. This 193 

emphasizes the need for methodological support in title-abstract screening, but also that in- and 194 

exclusion in guideline development is not always as straight forward as in systematic reviews for 195 

research purposes.  196 

In the reflective dialogue we also discussed the performance of ASReview in specific datasets. The 197 

recall plots for the dataset Distal_radius_fractures_approach, showed that 5 papers were identified 198 

as relevant by the clinicians, but  were deemed irrelevant by the research methodologists. Especially 199 

one paper hampers the performance of active learning and was always found last in the simulation. 200 

This paper describes a literature overview, and although it matches the PICO-criteria, the study was 201 

excluded because of methodological reasons, i.e. it describes empiric research. For other datasets 202 

(i.e., Shoulder_replacement_surgery, Total_knee_replacement and Shoulder_dystocia_positioning), 203 

active learning seems to have difficulty finding systematic reviews and observational studies 204 

compared to randomized control trials. As discussed, this may be inherent to the way the abstract is 205 

structured; where RCTs often describe a strict comparison, this may be less evident for systematic 206 

reviews and observational studies.  207 

Our results are in line with the assumption that active learning works under the strong assumption 208 

that given labels are correct.[21,22,26] During our reflective dialogue session, the notion of ‘noisy 209 
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labels’ was introduced for the initial screening process. This notion was confirmed in the low to 210 

moderate interrater reliability of the manual title-abstract screening, with an average kappa of 0.5 in 211 

line with other recent findings.[27]  While independent selection of papers is an important step to 212 

reduce bias, it is a time-consuming process depending on the level of experience by the reviewer and 213 

clarity of the inclusion/exclusion criteria. Our next question was to find the ‘noise’ in the manual 214 

screening process. When looking at the differences between the selections made by the clinicians 215 

and the professional guideline developers, some interesting themes emerged. Guideline developers 216 

realized that clinicians often include publications not only based on the PICO-criteria, but also out of 217 

personal interest or fear of leaving out important data. Indeed, many articles when re-examined did 218 

not fall within the PICO-criteria nor the pre-defined criteria regarding methodological concerns (e.g., 219 

RCT vs case control studies or cohort studies). On average there was a 49% drop of inclusion when 220 

the research methodologist re-evaluated the original inclusion made by the clinicians.  221 

A question of interest for future study is when to trust that all relevant literature on the topic has 222 

been retrieved, not only based on our results, but also others.[28] In this study we plotted recall 223 

curves to visualize the performance of active learning and we organized discussion meetings trying to 224 

reason why some publications were more difficult to find. Looking at the examples this often 225 

happened when the search had followed a slightly different process. In the current workflow, due to 226 

limited resources, pragmatic choices are being made to not include all individual studies when a 227 

recent systematic review is available. For active learning models it takes time to ‘learn’ this adapted 228 

(non-logical) strategy. For instance plateaus occur in some of the recall plots, and  after a series of 229 

irrelevant records have been identified suddenly a new relevant record was found. Interestingly, 230 

when time is being saved by working with active learning tools, these pragmatic choices might not be 231 

necessary anymore and may therefore actually lead to a much larger and a more complete set of 232 

inclusions than the manual workflow.  233 

Strengths and weaknesses. 234 
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While an obvious weakness concerns the size of this study, the obvious strength includes the 235 

evaluation within the daily practice of guideline development using real world data from previous 236 

developed guidelines. While there are studies reporting on tools implementing active learning in 237 

systematic reviews, there is only little evidence on implementation of such tools in daily 238 

practice.[29–31] Our ‘real world’ data provided us with new challenges, not seen before because it is 239 

most frequently tested in research settings,[11,24] leaving out more pragmatic and human-interest 240 

choices that influence literature screening.  241 

This type of practice-based study has shown potential ways to use and improve current practice. In 242 

our sample, ASReview was able to detect most relevant studies with a significant reduction of the 243 

number of abstracts needed to be screened. The system performed better when the inclusion and 244 

exclusion criteria were adhered to in a stricter way. This finding brought us to look at our own 245 

workflow needing more attention to guide the clinicians in the systematic selection of papers. This is 246 

not only beneficial when using ASReview, where the principle of ‘better in, better out’ seems to 247 

apply, but also when using the manual selection of papers. After abstract screening, almost half of 248 

the inclusions were incorrect which is higher than error rates reported in systematic reviews; with a 249 

mean error rate of nearly 11% over 25 systematic reviews.[24] Methods to improve literature 250 

screening have been described in recent papers,[27,32,33] and include recommendations to include 251 

reflection and group discussion resulting in a more iterative process, practical tips like taking regular 252 

breaks and coding in small batches at a time to prevent fatigue, but also setting up very clear 253 

inclusion criteria and adjusting the codebook during the process if needed. While the inclusion by 254 

two independent reviewers is often assumed the best way to reduce bias, these authors also advise 255 

to regularly assess interrater reliability as part of reflective and learning practice.   256 

We also defined some remaining questions for future research. As described above, in guideline 257 

development, research questions do not always yield prior inclusion papers, while the performance 258 

of active learning partially depends on relevant starting papers to learn from. A possible solution, 259 
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that needs to be explored, might be to start with a dummy abstract containing all relevant elements 260 

from the PICO. At the same time, we need more samples of research questions in clinical guidelines 261 

to further evaluate the use of AI tools in different types of questions and contexts. In this study, we 262 

used only one tool in a limited set of retrospective data, future studies should include different AI 263 

tools within the actual process of guideline development, to further evaluate the human-machine 264 

interaction and how this affects the process of guideline development. 265 

Conclusions 266 

This study shows a reduction of 50-75% in abstracts that needed to be screened to find and select all 267 

relevant literature for inclusion in medical guidelines when using ASReview. A next step would be to 268 

evaluate how to apply active learning in the workflow of guideline development, and what it means 269 

for both the timeframe to develop new recommendations and the transparency and quality of these 270 

evidence based recommendations.   271 

Availability of data and materials 272 

All scripts that were used during this study, including preprocessing, analysing and simulation scripts 273 

for results, figures and tables published in this paper can be found on Zenodo: 274 

http://doi.org/10.5281/zenodo.5031390.[25]. The 14 systematic review datasets are openly available 275 

at the Open Science Framework [REF]  276 

http://doi.org/10.5281/zenodo.5031390.%5b25
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 277 

Table 1. Descriptive characteristics of the purposefully selected datasets (n=14) 278 

# Guideline topic Medical 
specialty  

Type of 
question  

 N Screening 
time 
(min) 

К 

1 Radial fractures approach General surgery Intervention 195 225 0.31 

2 Radial fractures closed reduction General surgery Prognostic 277 294 0.55 

3 Halux Valgus prognostic Orthopedic 
surgery 

Prognostic 640 327 
0.64 

4 Head and neck cancer bone Otolaryngology Diagnostic 311 253 0.87 

5 Head and neck cancer imaging Otolaryngology Diagnostic 56 72 0.61 

6 Obstetric emergency training Obstetrics  Intervention 188 275 0.61 

7 Post-intensive care treatment Rehabilitation Intervention 435 388 0.05 

8 Pregnancy medication Obstetrics  Intervention 428 243 0.66 

9 Shoulder replacement diagnostic Radiology Intervention 215 123 0.59 

10 Shoulder replacement surgery Orthopedic 
surgery 

Intervention 335 270 
0.57 

11 Shoulder dystocia positioning Gynecology Diagnostic 342 366 0.49 

12 Shoulder dystocia recurrence Gynecology Intervention 397 172 -0,01 

13 Total knee replacement Orthopedic 
surgery 

Intervention 480 262 
0.55 

14 Vascular access General surgery Intervention 722 496 0.51 
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 Table 2. Results from simulation analyses for datasets labeled by clinicians, research methodologist and full-text selection. 

 

 

 

 

 

 

 

 

 

 

SelectCl, Ex, FT = number of records included by clinician, research methodologist and full-text selection;  

WSS95Cl, Ex, FT = Work Saved over Sampling measured at a recall level of 95% for dataset labeled by clinician, research methodologist and full-text selection;  

RRF10Cl, Ex, FT = Relevant References Found after screening 10% of all publications (RRF10) for dataset labeled by clinician, research methodologist and full-

text selection.

# N SelectCl SelectEx SelectFT WSS95Cl WSS95Ex WSS95FT RRF10Cl RRF10Ex RRF10FT 

1 195 11 6 5 32.31 (6.37) 57.70 (4.80) 61.41 (2.14) 29.09 (8.31) 30.00 (16.73) 20.00 (11.18) 

2 277 8 4 4 43.33 (5.47) 59.40 (6.82) 62.31 (9.15) 28.57 (13.23) 25.00 (16.67) 33.33 (27.22) 

3 640 20 14 12 55.76 (2.54) 73.55 (1.54) 77.40 (2.45) 43.16 (5.56) 52.75 (7.90) 62.88 (10.59) 

4 311 34 20 11 73.15 (1.43) 72.98 (2.48) 78.12 (4.10) 66.22 (4.10) 71.32 (11.39) 73.64 (9.24) 

5 56 18 9 8 48.89 (0.00) 70.12 (3.35) 70.28 (3.13) 28.10 (2.52) 45.83 (12.50) 41.07 (5.05) 

6 188 18 12 7 40.33 (2.47) 45.34 (8.99) 86.76 (1.78) 47.06 (6.69) 40.15 (11.92) 78.57 (15.85) 

7 435 109 22 6 32.70 (1.25) 66.10 (1.08) 64.19 (11.75) 25.63 (3.31) 62.55 (5.93) 46.67 (20.66) 

8 428 45 45 45 66.42 (1.26) 66.34 (1.08) 66.92 (1.23) 60.45 (5.34) 61.26 (5.52) 60.86 (5.31) 

9 342 3 1 1 97.99 (0.70) NA NA 100.00 (0) NA NA 

10 397 6 4 4 74.78 (2.53) 93.78 (0.87) 93.13 (0.15) 63.33 (8.16) 100.00 (0) 100.00 (0) 

11 218 6 5 4 79.55 (1.82) 82.80 (0.43) 79.95 (2.51) 46.67 (20.66) 40.00 (13.69) 33.33 (0) 

12 335 5 5 4 61.30 (14.84) 61.05 (14.20) 96.68 (0.92) 65.00 (22.36) 60.00 (33.54) 100.00 (0) 

13 480 35 16 9 65.09 (4.03) 73.12 (4.00) 95.76 (0.34) 78.74 (10.14) 89.17 (16.67) 100.00 (0) 

14 772 21 10 8 34.84 (16.34) 95.72 (0.32) 96.27 (0.48) 85.95 (19.72) 100.00 (0) 100.00 (0) 

total 5074 339 173 128 50.15 (17.14) 69.24 (11.51) 75.76 (12.16) 48.31 (23.32)  62.78 (21.20) 65.58 (23.25) 
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FIGURE 1 

NOTE: Y-axis presents the number of relevant papers minus one paper, selected for training data. 

* Analyses of the dataset Shoulder_replacement_diagnostic, showed no simulations because no 

relevant papers were included.
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