The InnoRenew CoE International Conference 2021

HEALTHY AND SUSTAINABLE RENOVATION WITH RENEWABLE MATERIALS

June 10-11 | Online

INNORENEW COE INTERNATIONAL CONFERENCE 2021

ONLINE | 10-11 JUNE 2021

BOOK OF ABSTRACTS

INNORENEW COE

Livade 6, 6310 Izola, Slovenia

IRIC2021 SCIENTIFIC COMMITTEE

Andreja Kutnar Anna Sandak David DeVallance Iztok Šušteršič Jakub Sandak Michael Burnard Miklós Krész

EDITORS/DESIGNERS

Amy Simmons Elizabeth Dickinson

INNORENEW.EU

InnoRenew CoE is funded by the European Commission under Horizon 2020, the EU Framework Programme for Research and Innovation (H2020 WIDESPREAD-2-Teaming #739574), and by investment funding from the Republic of Slovenia and the European Regional Development Fund.

KEYNOTE ADDRESS

LISANNE HAVINGA, MSc. PhD

Assistant Professor Building Performance and Principal Scientist System Integration, Technische Universiteit Findhoven

Lisanne Havinga is Assistant Professor at the Building Performance group at Eindhoven University of Technology (TU/e) in the Netherlands. She is also Principal Scientist System Integration of the Eindhoven Institute for Renewable Energy Systems, and part of the management team of the institute. She received her Ph.D. in 2019 from TU/e, titled 'Advancing Post-War Housing: Integrating Heritage Impact, Environmental Impact, Hygrothermal Risk and Costs in Renovation Design Decisions'. Her research focuses on developing

modeling and simulation strategies to support decision-making in the energy transition of the built environment. Core topics include the optimization of renovation decisions using parametric exploration of housing variations, user behavior and renovation solutions. A holistic assessment of environmental impact, incorporating life cycle assessment and circularity, is a priority in her work. Lastly, she focuses on setting up interdisciplinary collaborations to develop multi-scale, multicarrier, dynamic models that support system integration and decision-making across scale levels (technology-building-neighborhood-cityregion-country) and sectors (mobility, industry, built environment). The evaluation of innovative technologies and their potential in addressing the key challenges of the energy transition is a priority.

In recent years, she's contributed to the development of the Climate Agreement of the Netherlands by developing 'the Renovation Accelerator', a subsidy program that was recently launched, aiming to accelerate the large-scale renovation of the housing stock. In this context, she's been an advisor and led research projects for multiple governmental organizations in the Netherlands. In addition to working for governmental organizations, she has built consortia with a wide variety of industry partners. Although she only recently was awarded her PhD thesis, she has already developed a substantial track record of publications and is already building teams of PDEngs, PhD's and postdocs on the topics 1) circularity/LCA, 2) sustainable renovation, 3) urban energy transition. She has been guesteditor for Renewable and Sustainable Energy Reviews and has authored publications for journals such as Building and Environment, Renewable and Sustainable Energy Reviews, Energy and Buildings and Journal of Cultural Heritage. She is a frequent reviewer for these and more academic journals and has been a member of several scientific committees of international conferences. She was chief editor (together with Emanuele Naboni) of the book publication 'Regenerative Design in Digital Practice'.

AGENDA

10.6.2021

8:30 | **ZOOM OPEN**

9:00 | OPENING

Dr Michael Burnard, InnoRenew CoE Deputy Director

9:05-9:35 | KEYNOTE

Lisanne Havinga, Assistant Professor, Building Performance group, Eindhoven University of Technology

9:35-11:05 | ENGINEERING AND DESIGN

9:35 Boris Azinović, Experimental investigations of innovative seismic resistant CLT connections

9:50 Igor Gavrić, Hybrid timber-steel shear wall system for multi-story modular construction

10:05 Urban Kavka, Collecting Wood Waste Generated During Construction of InnoRenew CoE Building in Izola

10:20 Uroš Gantar, Near zero waste energy window – wooden window for reuse and cascading use

10:35 Mika Keskisalo, Form factor for efficient low carbon construction

10:50 Laetitia Marrot, Developing electrically conductive materials through thermal conversions of hemp stalk wastes

11:05-11:30 | COFFE BREAK

11:30-12:30 | CULTURAL HERITAGE

11:30 Janez Kosel, Growth of xerophilic fungi on model paint samples on glass and wooden supports under low humidity conditions

11:45 Ana Slavec, Social mechanisms to engage visitors in cultural heritage monuments preservation

12:00 Tim Mavrič, Towards a common framework for wood architectural heritage conservation in Slovenia – a preparatory overview

12:15 Veronika Kotradyova, Evaluation of Residential Buildings Adaptation their Interiors in a Rural Environment with a Deeper Interdisciplinary Analysis of 3 Localities in Slovakia

12:30-14:00 LUNCH

14:00-15:15 | HEALTH AND WELL-BEING

14:00 Henrik Heräjärvi, Dependence of virgin and recycled Scots pine heart- and sapwood VOC emissions on indoor relative humidity conditions

14:15 Mateja Erce, User needs and perspectives on technologies or healthy ageing

14:30 Mark Dewsbury, Unhealthy advances in Australian building regulations

14:45 Sabina Jordan, Temperature-based approach for assessing buildings in terms of providing thermal comfort for occupants

15:00 Nastja Podrekar Loredan, Development of the School furniture suitability questionnaire (SFS-Q)

15:15-15:30 | COFFE BREAK

15:30-16:15 | MIXED TOPICS - FULL PRESENTATIONS

15:30 Lea Primožič, Three-pillar paradigm of sustainability and its communication in the wood industry – IKEA Group case study

15:45 Jan Vcelak, Prevention of mold formation based on continuous condition monitoring of timber constructions

16:00 Dennis Jones, The application of bicine or tricine for limiting termite attack of thermally modified wood

16:15 | CLOSING

AGENDA

11, 6, 2021

8:30 | ZOOM OPEN

9:00 | OPENING

Dr Michael Burnard, InnoRenew CoE Deputy Director

9:05-10:20 | MIXED TOPICS - SHORT PRESENTATIONS

- 9:05 Filip Majstorović, Strengthening of flax textile-reinforced cement-based composite materials by the addition of pozzolans
- 9:10 Viktor Bukovszki, Smart contract affordances for energy communities
- 9:15 Petra Horvat, Relevant knowledge management approaches in the civil engineering research organizations and short overview of current situation in selected Slovenian public research organizations
- 9:20 Anja Jutraz, Renovation of outdoor school environment to ensure healthy environment for pupils
- 9:25 Lei Han, Creep Behaviour of Densified Wood
- 9:30 Tamás Storcz, ANN Supporting EDS Building Optimisation
- 9:35 Kaja Kastelic, Assessing spinal posture while back supported sitting: a review of techniques used
- 9:40 Sidra Aslam, Mutable and Privacy-aware Decentralized Ledger for Data Management in Wood Supply Chain Environments
- 9:45 Esakkiammal Sudha Esakkimuthu, Optimization of polyphenols extraction from spruce bark
- 9:50 Ozlem Ozgenc, Increasing The Weathering Durability of The Wood Surface with Tree Bark Extractive Solution
- 9:55 Kelly Peeters, Extraction of phenolic compounds to determine its concentration in olive mill waste water

- 10:00 Vesna Starman, Education for a Sustainable Future
- 10:05 Erwin M. Schau, Metrics for LCA and carbon footprint of bio-based materials and processes: New indicators and normalisation factors for EN15804
- **10:10 Luca Versino**, Perspectives of wood-based products for acoustic purposes in building
- 10:15 Václav Sebera, Electric guitar neck from densified poplar? Experimental and numerical analysis
- 10:20-10:50 | COFFE BREAK

10:50-12:05 | INFORMATION AND COMPUTING TECHNOLOGY

- 10:50 Richard Acquah, BIM Based Simulation Of Fire And Smoke Spread In Timber Buildings
- **11:05 Zsolt Ercsey**, Sensitivity Analysis Supporting Building Optimisation
- **11:20 Kristóf Roland Horváth**, Simulation Database Development Supporting Building Optimisation
- 11:35 Adam Katona, Evaluation and optimization of different wind tower geometries for passiveair conduction systems with CFD simulations
- 11:50 Sebastjan Meža, Circular Economy And BIM In Civil Engineering

12:05 | **CLOSING**

AGENDA

ENGINEERING AND DESIGN | 9:35-10:35

9	:35 Boris Azinović, Experimental investigation of innovative seismic resistant CLT connections	
9	:50 Igor Gavrić, Hybrid timber-steel shear w system for multi-story modular constructio	n
1	o:05 Urban Kavka, Collecting Wood Waste Generated During Construction of InnoRen CoE Building in Izola	
1	o:20 Uroš Gantar, Near zero waste energy window – wooden window for reuse and cascading use	13
1	0:35 Mika Keskisalo, Form factor for efficient low carbon construction	
1	0:50 Laetitia Marrot, Developing electrically conductive materials through thermal conversions of hemp stalk wastes	

Engineering and Design

Developing electrically conductive materials through thermal conversions of hemp stalk wastes

Laetitia Marrot ^{1,2}, Kevin Candelier ³, Jérémy Valette ³, Charline Lanvin ³, Barbara Horvat ⁴, Lea Legan ⁵, David B. DeVallance ^{1,2}

- 1 InnoRenew CoE, Livade 6, 6310 Izola, Slovenia, laetitia.marrot@innorenew.eu, devallance@innorenew.eu
- 2. University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia
- 3 UR BioWooEB, CIRAD, TA B-114/16, 73 Rue Jean-François Breton, F-34398 Montpellier Cedex 5, France, kevin.candelier@cirad.fr, jeremy.valette@cirad.fr, charline.lanvin@cirad.fr
- 4 Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia, barbara.horvat@zag.si
- 5. Institute for the Protection of Cultural Heritage of Slovenia, Poljanska 40, 1000 Ljubljana, Slovenia, lea.legan@zvkds.si

This study focuses on innovative ways for the valorisation of hemp by-products (i.e., hemp stalks) from the cannabidiol industry through thermal conversion. Successive chemical extractions and Scanning Electron Microscopy along with Energy-dispersive X-ray Spectroscopy Chemical were used to characterize the elemental composition of hemp stalks. The chemical characterization of the hemp biomass and its biochar was completed with proximate and elemental analyses. Kinetic of decomposition during thermal conversion was investigated through thermogravimetric analysis of the hemp biomass. Raman spectroscopy and CO2 gas adsorption were performed to assess the carbon structure and porosity of the biochar. In this study, the energy production measured through calorific values, and the electrical conductivity were the properties of interest. Two ways to value the hemp biomass were clearly identified, depending mainly on the chosen carbonization temperature. Carbonization temperatures between 400°C-600°C allowed to produce hemp biochar classified as lignocellulosic materials with a good potential for solid biofuel applications. Specifically, the resulting carbonized biochar combined low moisture content (higher fuel quality), low volatile matter (so likely to show lower particle matter emissions), limited ash content (low risk of fouling issues during the combustion), high carbon content (suggesting strong energy density) associated with fairly high higher heating values and optimized energy yield. Carbonization temperatures between 800°C-1000°C led to carbon materials with interesting electrical conductivity, opening opportunities for biochar use in electrical purposes. The electrical conductivity was related to the higher order in carbon structure observed in biochar produced at high temperature, and to the surface area associated with biochar microporosities, with higher surface area resulting in higher conductivity.

Keywords: hemp, pyrolysis, carbonization, thermal conversion, biochar, electrical conductivity

ACKNOWLEDGEMENT

Authors gratefully acknowledge the European Commission for funding the InnoRenew project (grant agreement #739574 under the Horizon 2020 WIDESPREAD-2-Teaming program) and the Republic of Slovenia (investment funding from the Republic of Slovenia and the European Regional Development Fund), the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions (grant number 898179), and COST Action CA17107.