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A plane can be designated as the exterior product of any two non-parallel vectors
that are contained within it. For example the plane that contains the X and Y axis in
a 3 dimensional Euclidean Space would be represented as:

~x ∧ ~y 6= 0

In order to parametrize a rotation in N-dimensional Euclidean space, around a point,
we must first define a set of fixed planes in our space around which rotations will occur;
the quantity of planes needed to represent all possible rotations within our space is
equivalent to the number of parameters of the Special Orthogonal Group of order N,
SO(N). Each plane must be orthogonal (perpendicular) to the others, and the minimum
number of such planes is determined from the dimensionality of our Euclidean Space.
For simplicity each plane of rotation will be one of the planes defined by any pair of
standard basis vectors for our Euclidean Space, all of which will pass through the origin,
although any set of orthogonal vectors which span the entire Euclidean Space could have
been used. In 3 dimensional Euclidean Space where we have the 3 dimensions, x, y, and
z. The rotation of this space is the 3-parameter Lie Group, SO(3), requiring 3 planes
of rotation: ~x ∧ ~y, ~x ∧ ~z, and ~y ∧ ~z. Similarly, in 4 dimensional Euclidean Space we
have the 4 dimensions, x, y, z, and w. The rotation of this space is the 6-parameter Lie
group, SO(4), requiring 6 planes of rotation: ~x∧ ~y, ~x∧ ~z, ~x∧ ~w, ~y ∧ ~z, ~y ∧ ~w, and ~z ∧ ~w.
The number of planes of rotation required for a specific number of dimensions can be
calculated as the triangle number of N-1, where N is the number of dimensions of our
Euclidean Space.

TN−1 = N(N − 1)
2 = 1 + 2 + 3 + 4 + ...(N − 1)

Another way to think about it is that the set of the planes of rotation are all the
2-element subsets from the set of all the standard basis of our Euclidean Space.

P = {p | p ∈ ℘(E), |p| = 2}

Where P is a set of planes of rotation for our Euclidean Space. E is the set of all the
standard basis within our Euclidean Space, ℘(E) is the power set of E, and |p| is the
cardinality of subset p. P is essentially the set of all 2-element subsets of E.

Since the quantity of standard basis within a Euclidean Space is always equal to
the number of dimensions, the cardinality of P will always be equal to the binomial
coefficient N over 2 and the triangle number of N-1.

|P | =
(
N

2

)
= TN−1

However we will want to represent P as a sequence of elements, instead of as a set of
elements. This is because the order in which we apply each rotation around each plane
will matter, therefore we must provide an ordering to each plane of rotation. Suppose
now that E is a sequence of all the standard basis of our Euclidean Space, then we
construct the sequence P as follows:

E = (e1, e2, e3, ...eN )

P =
((
pTN−1−TN−n+m

)N
m=n+1

)(N−1)

n=1
, en ∧ em
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If we wish to define a rotation about a plane that contains two of the standard basis
of our Euclidean Space, ~x ∧ ~y, we can construct a rotation matrix, R, as follows:

~x ∧ ~y ∈ P

R(~x ∧ ~y, θ) = <((sin(θ)− j ∗ cos(θ) + j) ∗ ((X̌ + j ∗ Y̌ )T · (Y̌ + j ∗ X̌))) + I

Where X̌ is the row vector matrix of ~x, Y̌ is the row vector matrix of ~y, I is the
NxN identity matrix, j is the imaginary number, and < is the function for obtaining the
real part. Also ∗ is the operator for scalar multiplication and · is used to represent the
matrix multiplication.

For example if:

X̌ = [1, 0, 0, 0...]

Y̌ = [0, 1, 0, 0...]

Then:

X̌ + j ∗ Y̌ = [1, j, 0, 0...]

Y̌ + j ∗ X̌ = [j, 1, 0, 0...]

(X̌ + j ∗ Y̌ )T · (Y̌ + j ∗ X̌) =


j 1 0 0 · · ·
−1 j 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...



R =


cos(θ) sin(θ) 0 0 · · ·
−sin(θ) cos(θ) 0 0 · · ·

0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...


Function R also has the following domain and range:

R : (RN ∧ RNxR)→ RNxN

Such that both input vectors must have the same dimension, N, and the output
matrix will be a square matrix with dimension NxN.

To perform a rotation using a rotation matrix calculate the dot product between an
untransformed row vector matrix and the rotation matrix.

B̌ = Ǎ ·R

Where Ǎ is the untransformed row vector matrix, R is the rotation matrix, and B̌
is the rotated row vector matrix.

All Three matrices Ǎ, B̌, and R must agree on the dimensionality, N, such that:

RN · RNxN → RN

However, as stated earlier, in order to parametrize all possible rotations on vectors
within our Euclidean Space we must combine multiple planes of rotation at once; one
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for every pair of standard basis within our space. Therefore for every plane of rotation
pr in P, there will be an associated angle, θr in our corresponding sequence of rotation
angles Θ. Such that to do a rotation about all the planes of rotation we do:

P = (p1, p2, p3, ...pTN−1)

Θ = (θ1, θ2, θ3, ...θTN−1)

v̌r = v̌ ·R(p1, θ1) ·R(p2, θ2) ·R(p3, θ3) · . . . R(pTN−1 , θTN−1)

v̌r = v̌ ·
TN−1∏
r=1

R(pr, θr)

Where the product operator (uppercase pi,
∏
) represents matrix multiplication in-

stead of scalar multiplication, v̌r is our rotated row vector matrix, v̌ is our untransformed
row vector matrix, and the R function is the function for constructing our rotation ma-
trix from earlier.

From this we can define our rotational transformation in N-dimensions as the fol-
lowing function:

Rot(~v, ~θ)

Such that:

Rot : (RNxRTN−1)→ RN

That is, it takes a vector of dimension N, representing our untransformed vector;
as well as a vector of dimension triangle number N-1 representing the angle of rotation
around each plane of rotation. Our function then returns a rotated vector of the same
dimensionality as our untransformed vector.
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