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Abstract—Fog computing emerged as a crucial platform for
the deployment of IoT applications. The complexity of such ap-
plications require methods that handle the resource diversity and
network structure of Fog devices, while maximizing the service
placement and reducing the resource wastage. Prior studies in
this domain primarily focused on optimizing application-specific
requirements and fail to address the network topology combined
with the different types of resources encountered in Fog devices.
To overcome these problems, we propose a multilayer resource-
aware partitioning method to minimize the resource wastage and
maximize the service placement and deadline satisfaction rates in
a Fog infrastructure with high multi-user application placement
requests. Our method represents the heterogeneous Fog resources
as a multilayered network graph and partitions them based on
network topology and resource features. Afterwards, it identifies
the appropriate device partitions for placing an application
according to its requirements, which need to overlap in the same
network topology partition. Simulation results show that our
multilayer resource-aware partitioning method is able to place
twice as many services, satisfy deadlines for three times as many
application requests, and reduce the resource wastage by up to
15− 32 times compared to two availability-aware and resource-
aware state-of-the-art methods.

Index Terms—Fog computing, application placement, resource
partitioning, resource wastage, deadline satisfaction.
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I. INTRODUCTION

The Cloud-assisted Internet of Things (IoT) emerged as an
essential accelerator of the fourth industrial revolution [1].
However, the rapid growth of IoT applications with multiple
services makes it challenging for Clouds to satisfy their low-
latency real-time requirements [2] and deadline constraints.
To mitigate these challenges, Fog computing [3] emerged as a
crucial platform consisting of a large number of heterogeneous
and geographically distributed resources, hierarchically split
between the Cloud and the IoT resources. This enables the
Fog to address latency-centric constraints posed by the Cloud
through systematic placement [4] of services across resources
closer to the IoT devices. However, the non-uniform Fog
network composed of heterogeneous devices (e.g., routers,
switches, gateways) significantly varies in terms of processing
speed, network bandwidth and storage capacity [2], which

induces service availability and deadline fulfillment challenges
for time-critical IoT applications.

To solve IoT application placement issues in Fog, there is
a need to research strategies that increase its resource utiliza-
tion, while fulfilling diverse application requirements. Prior
researches leveraged evolutionary multi-objective optimization
algorithms [5], and linear programming [6], [7] models to
identify cost-efficient IoT application placement strategies.
Such approaches primarily focused on optimizing energy
consumption, network usage and response time of IoT ser-
vice requests, but limited to application specific requirements
without considering resource dependencies among interrelated
services. Other works [8]–[12] improved upon these studies
and explored resource partitioning at a network topology level
without considering other resources of Fog devices, such as
processing speed, memory or storage sizes. Moreover, these
methods failed to address the resource wastage, while opti-
mizing the utilization of capacity-constrained Fog resources.

We approach this problem using a multilayer resource-
aware partitioning method that handles the resource diversity
and the interconnection structure of Fog devices to minimize
the resource wastage and optimize the application service
placement. To address the resource diversity, we model the
heterogeneous Fog infrastructure as a multilayer graph com-
prising the network topology and heterogeneous devices with
different CPU speed, memory and storage capacities. To
optimize the application placement, we split the Fog devices
in overlapping partitions with respect to the network topology
and different resource types. This enables our method to target
the correct set of resources for an application and improve its
availability. Afterwards, the placement involves two steps.

a) Feature partition selection: matches the requested
application services with partitions based on their resource
requirements, which need to overlap in the same network
topological partition underneath.

b) Service placement: maps services onto the appropriate
Fog devices in the elected partitions, such that all application
services reside in the same network partition.

Extensive simulation experiments demonstrate that our mul-
tilayer resource-aware partitioning method is able to place
up to twice as many services, satisfy deadlines for up to
three times as many application requests, and reduce the Fog
resource wastage by up to 15 − 32 times compared to two
related state-of-the-art methods [1], [10].
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The paper is organized in seven sections. Section II sum-
marizes the related work. Section III presents the model
underneath our method, including the multilayered Fog repre-
sentation and its key layer partitioning method in section IV.
Section V describes multilayer Fog placement method, in-
cluding two feature partition selection and service topology
optimization algorithms. Section VI presents the experimental
results and Section VII concludes the paper.

II. RELATED WORK

This section revisits the recent related works on Fog appli-
cation placement across the following categories.

a) Application-aware placement: Huang et al. [7] pro-
posed an integer programming model to optimize the energy
cost by merging neighboring services onto a single device
in a multi-hop Fog network. Oueis et al. [4] formulated a
resource allocation model in Fog to jointly optimize power
consumption and latency by clustering resources and assigning
each cluster to a requested application service. Velasquez et
al. [6] designed an integer linear programming placement for
IoT services across a Cloud-Edge infrastructure that optimizes
service latency. Naha et al. [13] proposed a resource provi-
sioning algorithm for deadline-based application placement
in Fog to optimize processing time, processing cost and
network delay. These approaches primarily focused on opti-
mizing application-specific requirements without considering
the network topology and resource heterogeneity.

b) Topology-aware placement: Filiposka et al. [11] de-
signed a community-based Fog management that exploits dis-
tributed hierarchical clustering to reduce latency and optimize
service migration. Similarly, Asensio et al. [12] proposed a
distributed control and management approach that groups Fog
resources based on their network topology to minimize latency
and energy consumption. In contrast, Sun et al. [5] modeled the
resource placement in Fog as a multi-objective execution and
latency optimization that computes different service clusters
for an application. These approaches utilized clustered Fog
resources based on network topology without considering the
infrastructure heterogeneity.

c) Resource-aware placement: Shooshtarian et al. [9]
proposed a two-phase allocation method that hierarchically
represents Fog resources and performs local clustering in
each layer to optimize resource utilization and network de-
lay. Taneja et al. [1] proposed a resource-aware application
mapping approach to optimize resource utilization in Fog.
Similarly, Stefanic et al. [14] proposed a subgraph pattern
matching approach for application placement that maps the
multi-tier application graph onto the Fog infrastructure to
improve resource utilization. Nevertheless, these three ap-
proaches only consider different Fog resources characteristics
and ignore the network topology structure of Fog devices.
Contrarily, Lera et al. [10] proposed a greedy approach for
application placement that optimizes availability and latency
by partitioning Fog resources in hierarchical clusters based
on their connectivity. However, it fails to minimize resource

wastage by ignoring Fog resource characteristics during the
greedy-based assignment.

III. MODEL

This section presents a formal model essential to this work.

A. Resource infrastructure
A Fog infrastructure consists of three layers:
1) Cloud layer: represents a data center with high-

performance computing resources.
2) Fog network layer: F = (D,N) lies between the Cloud

and the end-users, and provides close proximity computational
and storage services on top of two resource sets, according to
the architecture proposed by the OpenFog consortium [3]:

a) Physical devices: D = {d1, d2, . . . , dn}, modeled as a
triplet of resources di = (Ri1, Ri2, Ri3), where Ri1 represents
the speed of a CPU core in millions of instructions (MI)
per second, Ri2 represents the memory size in GB, and Ri3
represents the storage size of a device di in TB.

b) Network connections: N = {nij | (di, dj) ∈ D ×D}
between a subset of devices, where a network connection
nij = (BWij , LATij) depends on the bandwidth BWij and
the latency LATij between the devices di and dj .

3) Client layer: consists of a set of users U = {u1, . . . , uq},
including sensor and actuator client devices that request Fog
resources for placing their applications. We do not consider
user mobility in this work.

B. Application model
We model an application A = (S,M, θ, u) requested by a

user u as a directed graph of services S = {s1, s2, . . . , sm}
interconnected through request messages M . Every service
si ∈ S has a triplet of resource demands si = (ri1, ri2, ri3),
where ri1 is the workload in MI, ri2 is the required memory
size, and ri3 is the storage size.

We model each request message mij ∈M based on its size
SZij , its source si ∈ S , and its destination service sj ∈ S:
mij = (SZij , si, sj). A user u ∈ U triggers the application
execution via an initial request message mui to service si.

The application also has a completion deadline that requires
the completion of all its services.

C. Multilayer Fog model
The Fog network layer represents the topological intercon-

nection of the physical devices and does not capture their
heterogeneous resources. To better handle resource diversity
for application placement, we model the Fog across four layers
L = {l0, l1, l2, l3} representing relationships among its devices
based on the network topology and three resource types.

(i) Network layer l0 corresponds to the Fog network layer
modelled in Section III-A.

(ii)–(iv) CPU layer l1, memory layer l2, and storage layer
l3 indicate similarities among the Fog devices according to
their CPU speed, memory size, and storage size.

We model the Fog as a fully interconnected multilayer graph
G = (D, E , L), where D is the set of Fog devices replicated
across all four layers L, and E = {Ell′ | ∀l, l′ ∈ [0, L)} is the
set of weighted bidirectional graph edges of two types.



a) Inter-layer edges: Ell′ = {(di, di) ∈ D ×D} con-
nect each device di in the layer l ∈ L with the corresponding
device di in all the other layers l′ ∈ L, l 6= l′. They indicate
the connection between different resource characteristics of the
same device and uncover the relation among resource types;

b) Intra-layer edges: Ell = {(di, dj) ∈ D ×D|i 6= j}
connect two Fog devices inside one layer l ∈ L using a weight
function w(l) : Ell → R, representing their similarity score:

w
(l)
ij =

1

1 + dl (di, dj)
,

where dl (di, dj) is the Euclidean distance between their
resource characteristics in layer l ≥ 1: dl (di, dj) = Ril−Rjl.
The Fog devices with a similarity score of 1 are exactly similar
with respect to a resource Rl.

D. Problem statement
We introduce a number of definitions introducing our prob-

lem statement of placing an application A = (S,M, θ, u) in a
Fog environment F = (D,N).

1) Application placement: is a function µ : S → D ∪ ∅,
where µ (si) = dj satisfies the constraints for placing each ser-
vice si = (ri1, ri2, ri3) on a Fog device dj = (Rj1, Rj2, Rj3):
ri1
Rj1
≤ θ, ri2 ≤ Rj2 and ri3 ≤ Rj3. An invalid placement

µ (si) = ∅ indicates that there exist no device in D that
satisfies the service constraints.

2) Execution time: of a service si is the ratio between its
workload ri1 and the speed Ri1 of the underlying hosting
device dj=µ (si): ETi,j = ri1

Rj1
.

3) Transmission time: of a message mij ∈M of size SZij
between two devices di and dj is: Tij = LATij+

SZij
BWij

, where
LATij is the latency and BWij is the bandwidth of a network
connection nij ∈ N .

4) Response time: of a service si ∈ S running on the device
dj = µ (si) is the sum between the maximum response time
RTpq of its predecessors sp, including its request message
transmission time Tqj , where µ (sp) = dq (or Tuj , if initial
message request), and its execution time ETij :

RTi,j =

{
Tuj + ETij , ∃mui ∈M ;
max
mpi∈M

{RTpq + Tqj}+ ETij ,∃mpi ∈M ∧ sp ∈ S.

5) Application response time: is the maximum response
time of all its services si ∈ S placed on devices dj = µ (si):

RTA = max
∀si∈S

{RTij} .

6) Deadline fulfilment: requires that the response time of
the application placement satisfies the deadline θ: RTA < θ.

IV. FOG MULTILAYER PARTITIONING

This section describes the multilayer Fog partitioning archi-
tecture, its design phases and the corresponding algorithm.

A. Architecture design
Figure 1 depicts the architecture design for the Fog multi-

layer resource partitioning in five phases: resource extraction,
multilayer generation, layer partitioning, graph compression
and feature partitioning.

Phase 3: 
Partition network, CPU, memory and

storage layers separately

Compress partitions from, CPU,
memory, and storage layers 

Phase 2: 

Fog
infrastructure

Resource extraction

Layer partitioning

Multilayer generation

Graph compression Feature partitioning

Phase 1: 

Phase 5: 

Extract Fog network topology
and devices resource capacity

Create Fog multilayer graph,
measure and create semantic link

between devices

Partition compressed graph 

Phase 4: 

Fig. 1: Fog multilayer partitioning architecture workflow.

1) Resource extraction: identifies the infrastructure charac-
teristics based upon different resource types (e.g. Ri1, Ri2, Ri3
representing speed of CPU cores in MIPS, memory size, and
storage size) and reveals complete information about the Fog
platform required for the correct application placement.

2) Multilayer graph generation: models the Fog infrastruc-
ture as a multilayer graph in three steps:

a) Placement of Fog devices: in four layers based on
their topological and semantic features.

b) Similarity score between Fog devices: based on dif-
ferent resource types.

c) Intra-layer Fog device linking: based on topological
features and similarity scores, as defined in Section III-C.

3) Layer partitioning: splits each Fog multilayer graph
layer l ∈ L in a set P(l) of disjoint partitions that cluster the
Fog devices based on their resource types (see Section III-C).

(i) Network layer l0 partitioning clusters the highly inter-
connected Fog devices based on their network connections N .

(ii)–(iv) CPU l1, memory l2, and storage l3 layer partition-
ing cluster Fog devices with similar CPU speed (Ri1), memory
size (Ri2), and storage size (Ri3).

4) Graph compression: groups the disjoint CPU, memory
and storage layer partitions in a high-level compressed graph
representation associated to a similar resource type.

5) Feature partitioning: splits the compressed graph in
disjoint partitions such that each feature partition is a cluster
of similar Fog devices across overlapping resource types.

B. Modularity background

We use the modularity [15] metric Q ∈ [−1, 1] to measure
the connectivity strength of Fog multilayer graph partitions:

Q =
1

2W
·
∑
l∈L

∑
l′∈L

∑
di∈l

∑
dj∈l{(

w
(l)
ij −

σli · σlj
2Wl

)
· δll′ + ∆ij · Ejll′

}
· λij ,where :

• σ
(l)
i =

∑
dj∈l

w
(l)
ij is the connectivity strength of the Fog

device di with the other devices in layer l;

• σ
(l)
j =

n∑
di∈L

w
(l)
ij is the connectivity strength of the Fog

device dj with the other devices in layer l;
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Fig. 2: Fog multilayer graph, modularity computation, and Fog multilayer partitioning example.

• Wl =
D∑
i=0

D∑
j=0

w
(l)
ij is the total sum of the link weights

between D Fog devices in each layer l ∈ L;
• W =

∑
l∈L

Wl is the total sum of the link weights between

Fog devices, ∀l ∈ L;
• E

(j)
ll′ indicates the number of interlayer edges of the Fog

device dj from layer l to layer l′;
• δll′ is equal to 1 if l = l′ and 0 otherwise;
• ∆ij is equal to 1 if i = j and 0 otherwise;
• λij is equal to 1 if device di and dj belong to the same

partition, otherwise 0.
a) Q ≤ 0: represents low quality partitions of disassor-

tative Fog devices with sparse connections among them.
b) Q > 0: represents high quality topological partitions

with better connectivity strength among densely-connected
Fog devices. Hence, the goal is to find a set of partitions in a
multilayer graph with highest modularity (QG → 1).

C. Layer partitioning

We apply the Louvain clustering technique [16] that utilizes
the modularity metric [17] to obtain high quality partitions
with densely connected Fog devices in each layer. We define
the modularity of the obtained partitions as the difference be-
tween the number of edges within partitions and the expected
number of edges over all pair of Fog devices. The Louvain
algorithm applies two phases in each iterative step t > 0 until
achieving partitions with the maximum modularity.

1) Phase 1: considers first each Fog device di in layer l as a
single partition and calculates its modularity Qi. Afterwards, it

considers all neighbouring devices dj of di (i.e. (di, dj) ∈ Ell
and (dj , di) ∈ Ell) and calculates the modularity of the new
possible partition Qij . If the gain in modularity is positive (i.e.
Qij −Qi > 0), we place di and dj in the same partition. We
repeat this step sequentially for all Fog devices in layer l until
no further modularity gain is possible.

2) Phase 2: takes the set of partitions in each layer l from
the first phase and considers each partition as a node to build a
new network in each layer. The links between the Fog devices
in the same partition represent self-loops, while the links
between Fog devices across partitions denote edges between
nodes. The new network and the maximum modularity act as
input to the next iterative step t+ 1 starting with phase 1.

3) Example: Figure 2a shows a weighted multilayer graph
G = (D, E , L) with two layers L = {l, l′}. Each layer has
four devices D = {d1, d2, d3, d4} and the following intra-
layer sets of edges: Ell = {(d1, d2) , (d1, d3) , (d2, d3)} and
El′l′ = {(d1, d2) , (d3, d4)}. The Louvain technique requires
two iterative steps to find the partitions with the maximum
modularity in each layer in this example.

a) Step t = 1: shown in Figure 2b creates first a set of
four partitions P(l) = {p1, p2, p3, p4} in layer l and another
P (l′) = {p′1, p′2, p′3, p′4} in layer l′. Each partition in P(l)
and P (l′) consists of a single Fog device (d1, d2, d3 and d4)
with the modularities Qmax = −0.33 and Q′max = −0.27.
Afterwards, it considers all neighboring devices to obtain two
new partition sets P(l) = {p1, p2} and P (l′) = {p′1, p′2}
with a positive modularity gain (i.e. Q1 = 0.11 > Qmax,
Q′1 = 0.22 > Q′max), indicating a better connectivity strength



of the devices in each layered partition. We therefore select the
partitions P(l) and P (l′), update the maximum modularities
(i.e. Qmax = Q1, Q′max = Q′1), and consider the partitions in
p1, p2, p

′
1, p
′
2 as nodes in a new network over the two layers.

b) Step t = 2: displayed in Figure 2b starts from the
partitions p1, p2, p′1, p

′
2 with the maximum modularities Qmax

and Q′max obtained in the step t = 1, and considers the
neighboring nodes to obtain the single partitions in each
layer: P(l) = {p1} and P (l′) = {p′1} with the modularities
Q2 = Q′2 = 0. As the maximum modularities from the step
t = 1 are positive for both layers, we consider them as the
highly connected topological output.

D. Graph compression

Graph compression shrinks the disjoint partitions from the
CPU, memory and storage layers and provides a high-level
intermediate representation of partitions associated to similar
resource types. The compressed graph merges all the similar
resources inside a partition in a single node with an average
capacity. This automates the computation of overlapping par-
titions without detailed analysis of individual Fog devices.

A compressed graph GP = (VP , EP ) corresponding to a
multilayer graph G = (D, E , L) consists of two sets:

a) Layer partition set: is the union of the partitions in the
CPU (l1), memory (l2), and storage (l3) layers: VP =

⋃
l∈L
P(l).

b) Inter-layer partition edges: represent connections be-
tween a partition p in layer l and a partition p′ in layer l′ 6= l,
such that there is at least one inter-layer edge (di, dj) ∈ Ell′
in the original graph G between a device di ∈ p ∈ P(l) and
a device dj ∈ p′ ∈ P (l′):

EP = { (p, p′) ∈ P(l)× P (l′) | ∀l 6= l′ ∈ L
∧∃ (di, dj) ∈ Ell′ ∧ di ∈ p ∧ dj ∈ p′} .

1) Example: Figure 2c illustrates a compressed graph
that represents the four partitions in the l and l′ layers in
Figure 2b as nodes: VP = {p1, p2, p′1, p′2}. Similar to the
nodes, we compress the edges between two partitions into:
Ep = {(p1, p′1) , (p1, p

′
2) , (p2, p

′
2)}.

E. Feature partitioning

We define a feature of a layer partition p ∈ VP as a triplet
Fp = (Rp1, Rp2, Rp3) with average CPU speed, memory and
storage sizes across all Fog devices in p.

Feature partitioning splits a compressed graph GP =
(VP , EP ) in a set P (GP ) of disjoint feature partitions (ex-
hibiting similar features) by applying t iterative steps of the
Louvain clustering technique as in the layer partitioning to
achieve a maximum modularity (see Section IV-C).

1) Example: Figure 2d shows the two iterative steps of
feature partitioning of the compressed graph GP in Figure 2c.

a) Step 1: initially creates a set of four feature parti-
tions P (GP ) = {FP1, FP2, FP3, FP4} with the modularity
Qmax = 0.16, where each feature partition FPk consists of
a single layer partition (i.e. p1, p2, p′3 and p′4). Afterwards,
it considers neighbouring partitions to obtain a new feature

partition set P (GP ) = {FP1, FP2} with a positive modu-
larity gain Q = 0.37 > Qmax, which becomes the maximum
modularity Qmax = Q at this step.

b) Step 2: starts from the feature partition set P (GP )
with the maximum modularity from the first step and considers
each feature partition FPk ∈ P (GP ) as a node of the
new network (similar to layer partitioning). Afterwards, it
iteratively checks the neighbouring feature partitions of each
fearture partition FPk ∈ P (GP ) and obtains a single partition
FP1 with a lower modularity Q = 0. Hence, we select
the feature partition set P (GP ) = {FP1, FP2} with the
maximum modularity from the first step as the final output.

F. Multilayer resource partitioning algorithm

The multilayer resource partitioning algorithm clusters Fog
devices based on their network connections, CPU, memory,
and storage resource characteristics. Algorithm 1 receives
a Fog multilayer graph with four layers L, a set of Fog
devices D and their underlying CPU, memory, and storage
resources, and the inter- and intra-layer edges E as input.
Initially, lines 1–2 initialize five empty sets corresponding
to the partitions in the network (l0), CPU (l1), memory (l2)
and storage (l3) layers, as well as the feature partitions.
Thereafter, line 3 performs the network layer partitioning
P (l0) that clusters densely connected Fog devices in the
same partition. Similarly, lines 4–6 partition the Fog devices
in the CPU, memory, and storage layers and store them
in P (l1), P (l2), and P (l3) (see Section IV-C). Line 7
creates a compressed graph GP (VP , EP ) using inter-layer
edges between the CPU, memory, and storage layers, where
VP = {P (l1) ,P (l2) ,P (l2)} (see Section IV-D). Afterwards,
lines 9–13 compute the feature triplet FP of each partition
p ∈ VP as the average CPU speed, memory, and storage
sizes of their Fog devices di ∈ p. Line 14 performs feature
partitioning of the compressed graph partitions with similar
features, as presented in Section IV-E. Finally, line 15 returns
the feature partition set P (GP ) and the set of partitions in the
network layer P (l0).

V. MULTILAYER FOG APPLICATION PLACEMENT

This section describes the application placement workflow
in multilayer Fog partitions, its design, and the underlying
feature partition selection and service placement algorithms.

A. Multilayer Fog placement workflow

The multilayer Fog placement of application requests A =
(S,M, θ, u) coming from end-users has two phases.

a) Feature partition selection: maps each service s ∈ S
of the requested application to an appropriate feature partition
FPk composed of layer partitions p ∈ VP with the feature Fp
similar to the resource demand of the service s.

b) Service placement: allocates a Fog device d = µ (s)
to each service s ∈ S in the selected feature partitions, such
that its selected Fog devices exist in the same network layer
partition. This enables placing interrelated services of the same
application across highly connected Fog devices.



Algorithm 1: Multilayer resource partitioning.
Input : G = (D, E, L): Fog multilayer graph

L = {l0, l1, l2, l3}: Fog layers
D = {di|di = (Ri1, Ri2, Ri3)}: set of Fog devices
E =

{
Ell′ | ∀l, l

′ ∈ [0, L)
}

: inter- and intra-layer edges
Output: P (GP ): feature partition set

P (l0): network layer partition set
1 P (l0)← ∅; P (l1)← ∅; P (l2)← ∅; P (l3)← ∅
2 P (GP )← ∅
3 P (l0)← layerPartition(D,El0l0 , l0)
4 P (l1)← layerPartition(D,El1l1 , l1)
5 P (l2)← layerPartition(D,El2l2 , l2)
6 P (l3)← layerPartition(D,El3l3 , l3)
7 G (VP , EP )←

graphCompress(P (l1) ,P (l2) ,P (l3) , El1l2 , El1l3 , El2l3)
8 fList← ∅;
9 forall p ∈ VP do

10 Rp1 ← avg
∀di∈p

{Ri1}; Rp2 ← avg
∀di∈p

{Ri2}; Rp3 ← avg
∀di∈p

{Ri3}

11 Fp ← (Rp1, Rp2, Rp3)
12 fList← fList ∪ Fp
13 end
14 P (GP )← featurePartition(GP (VP , EP ) , fList)
15 return (P (GP ) , P (l0))

B. Service fitness

An application A = (S,M, θ, u) has a set of resource
requirements for each service si = (ri1, ri2, ri3) in terms of
CPU speed, memory size and storage capacity required for
a successful execution. Hence, it is imperative to place each
service si ∈ S across the Fog devices of a feature partition
d ∈ FPk composed of layer partitions p ∈ FPk with the
feature Fp that satisfies these requirements. Additionally, the
service placement requires the Fog devices in close proximity
of the user location u to simultaneously satisfy application
latency and deadline constraints θ.

We define the fitness of a service si ∈ S for a feature
partition FPk requested by an user u as follows:

Fit (FPk, si, u) = α · max
∀p∈FPk

{Sim (p, si)}+

+ β ·

 1

1 + min
∀dj∈FPk

{Tuj}

 ,where :

a) max
∀p∈FPk

{Sim (p, si)}: is the maximum similarity be-

tween the partition with the feature Fp = (Rp1, Rp2, Rp3) in
feature partition FPk and the resource demand of the service
si = (ri1, ri2, ri3), computed using the Euclidean distance
between the feature Fp and the resource demand si in all
three dimensions, normalized in the [0, 1] interval;

b) min
∀dj∈FPk

{Tuj}: is the minimum transmission time of

a message Muk of size SZuk between the source (user) u and
the destination Fog devices dj in the feature partition FPk;

c) α, β: are weighting factors for the similarity and
transmission times in the service fitness calculation.

C. Feature partition selection algorithm

The feature partition selection algorithm places the services
of requested applications to appropriate feature partitions
composed of Fog devices that satisfy the application deadline
θ and individual service resource demands.

Algorithm 2: Feature partition selection.
Input : AS = {A|A = (S,M, θ, u)}: set of applications;

D = {di|di = (Ri1, Ri2, Ri3)}: set of Fog devices;
P (GP ): feature partition set;
P (l0): network layer partition set;
T = {Tui| (u, di) ∈ U ×D}: message Mui transmission times;

Output: µList[AS]: array of µList[A] service placements, ∀A ∈ AS;
1 AS ←sortApp(AS, θ)
2 forall A = (S,M, θ, u) ∈ AS do
3 µList[A]← selectFP(S, u)
4 end
5 return µList
6 ;
7 Function selectFP(S, u):
8 forall s ∈ S do
9 fpRank ← ∅

10 forall FP ∈ P (GP ) do
11 fpRank ← insert(fpRank, Fit(FP, s, u))
12 dMatrix[FP ]← sortDev(FP, T)
13 end
14 µ (s)← placeService(P (l0) , fpRank, dMatrix, s)
15 end
16 return µ

Algorithm 2 takes as input a set of requested applications
AS (including their services, resource demands and deadlines),
a set of Fog devices D, the feature partition set P (GP ), the
network partition set P (l0) (both computed by Algorithm 1)
and the message transmission times T between user and Fog
devices. Firstly, line 1 sorts the applications to prioritize the
placement of those with the lowest deadline. Lines 2–4 select
the appropriate feature partitions for all applications A ∈ AS
by placing all their services S ∈ A on Fog devices that satisfy
their resource demands in the proximity of the requesting
users. The algorithm returns an array of placement functions
µList[AS] in line 3. ∀A ∈ AS.

To select the feature partition (line 7) that satisfies the
resource demand of each service si ∈ S (line 8), lines 10–13
iterate through each feature partition FP ∈ P (GP )), calculate
its fitness to service s ∈ S (see Section V-B), and insert
it in a fpRank list in descending fitness order (line 11).
Line 12 sorts the Fog devices d ∈ FP in ascending order
based on the transmission time Tui and stores them in a
two dimensional array dMatrix to enable their placement in
user proximity. Line 14 invokes a service placement function
(see Algorithm 3) that maps each service s ∈ S of the
same application across the selected feature partitions with
Fog devices in the same network layer partition. The function
returns the Fog device µ (s), which updates the application
placement function µ returned by the algorithm in line 16.

D. Service placement algorithm

Algorithm 3 places a service s on a Fog device µ(s) in
the same network layer partition as all other services of the
same application. The input arguments to Algorithm 3 are 1) a
network layer partition set P (l0), 2) a feature partition set
P (GP ) ranked based on fitness, 3) a sorted list of Fog devices
based on their transmission time in each feature partition
FP ∈ P (GP ), and 4) the placement service si (line 1).
First, lines 2–3 extract the network layer partition of the first
service placement µ (s1) in p1 (if available). Lines 4–12 iterate
through all the feature partitions FP ∈ P (GP ) in descending



Algorithm 3: Service placement.
Input: P (l0): network layer partition set

P (GP ): fitness-ranked feature partition set
dMatrix[P (GP )]: sorted Fog devices, ∀FP ∈ P (GP )
si = {ri1, ri2, ri3}: service to place

1 Function placeService(P (l0) ,P(GP ), dMatrix, si):
2 if si 6= s1 then
3 p1 ←getNetPartition(µ (s1) ,P (l0))
4 forall FP ∈ P (GP ) do
5 dList← dMatrix[FP ]
6 forall dj = (Rj1, Rj2, Rj3) ∈ dList do
7 pi ←getNetPartition(d, P (l0))
8 if p1 = pi ∧

ri1
Rj1
≤ θ ∧ ri2 ≤ Rj2 ∧ ri3 ≤ Rj3 then

9 µ (si)← dj
10 return µ(si)
11 end
12 end
13 µ(si)← ∅
14 return µ(si)

order of their fitness. Afterwards, line 5 extracts the set of
Fog devices dList in each feature partition FP sorted by the
transmission times to the requesting user. To place the service
si onto a Fog device, lines 6–11 iterate through each device
dj ∈ dList and line 7 extracts its network layer partition
in pi. If this partition is the same as p1 and the device dj
meets the resource constraints of the service si, line 9 performs
the placement. If no service placement on the same network
partition is possible, line 13 assigns an invalid device. Finally,
lines 10 and 14 return the service placement result.

VI. EVALUATION

We present first our experimental setup, then analyze the
results of our multilayered partitioning method against two
related resource [1] and availability-aware [10] methods.

A. Experimental setup

We simulated a Fog infrastructure using the YAFS [18]
simulator on an Intelr Core(TM) i7-8650U server at
1.90 GHz running Ubuntu 18.04 (x86_64) operating system
with 16 GB of DDR4 RAM memory. We simulated the Fog
infrastructure (e.g. devices, network topology), applications,
and clients using similar configuration settings as two previous
studies [1], [10] for a fair comparison.

1) Fog infrastructure: We simulated a Fog infrastructure
as a bidirectional graph based on a Albert-Barbasi random
network [19] of 100 devices, where 25 devices with the
lowest betweenness centrality [20] represent gateways at the
edge of the network. We represented the Cloud data center
though an additional device with the highest betweenness
centrality computed using the Python networkx module.
We simulated resource characteristics (e.g. cores, CPU speed,
memory, storage) of each Fog device using a uniform random
distribution within the range specified in Table Ia. Finally, we
configured the bandwidth and latency across the Fog network
as specified in Table Ic, similar to previous studies [1], [10].

2) Applications: We simulated an application A as a di-
rected graph using the Python networkx.Gn_Graph mod-
ule, where the nodes correspond to the application services.
We generated a number of services for each application A in

TABLE I: Experimental setup.

(a) Fog device.

Parameters Range
CPU cores 10 to 25
CPU speed 20MI/s to 60MI/s

Memory size 10GB to 25GB
Storage size 10TB to 25TB

(b) Application.

Parameters Value
Services 2 to 10
Deadline 300ms to 50 000ms

Memory size 1GB to 6GB
Storage size 1TB to 6TB
Message size 1500 kB to 4500 kB

Workload 20MI to 60MI

(c) Network.

Parameters Value
Latency 5ms

Bandwidth 75 000Bms−1

(d) Client.

Parameters Value
Request rate 1.557ms

the range between two and ten, and their resource requirements
(i.e. CPU speed, number of cores, memory and storage size)
using a uniform random distribution, as described in Table Ib.
Additionally, we defined the dependencies between two ser-
vices in terms of request messages of sizes between 1500 kB
to 4500 kB, which generated a workload in the destination
service in the range 20 MI to 60 MI.

3) Client: We configured the client layer similar to previous
studies [1], [10] such that end-users connected to gateway de-
vices in Fog layer request random applications every 1.557 ms,
as specified in Table Id.

4) Evaluation metrics: We identified five performance ob-
jectives to optimize the multilayer application Fog placement
µ for a set of applications AS.

a) Placement success rate: is the ratio between the num-
ber of successfully placed services Sµ and the total number
of services S of all applications A = (S,M, θ, u) ∈ AS:∑

A∈AS |Sµ|∑
A∈AS |S|

, where Sµ = {s ∈ A|µ (s) 6= ∅} and |S| and |Sµ|
represent the cardinality of the two service sets.

b) Resource wastage: is the remaining percentage be-
tween total resource units consumed by the placed services to
the total CPU, memory and disk resource units of the devices:

1−

∑
A∈AS

∑
si∈Sµ

max
{

ri1
CPU ,

ri2
RAM , ri3

Disk

}
∑
dj∈D

max
{
Rj1
CPU ,

Rj2
RAM ,

Rj3
Disk

} .

We define a resource unit as a triplet:
(CPUcore,RAM,Disk) = (1, 1 GB, 1 TB). The resource
units consumed by a service or device is the maximum of
these three unit components.

c) Deadline satisfaction: represents the ratio between
the total number of applications that fulfill their deadline
Aθ = {A ∈ AS|RTA < θ} and the total number of appli-
cations |AS| requested for placement: |Aθ||AS| .

d) Hop distance: indicates the proximity of the placed
services to the requesting users. A hop distance of 0 indicates
a service placement at the Fog gateway device. We compute a
hop distance histogram across all application services, aiming
to increase the number of placements at a low hop distance.

5) Evaluation scenarios: Similar to the study in [10], we
divide our evaluation into two parts, summarized in Table II.



TABLE II: Evaluation scenarios.

Evaluation Scenario App. Service Users App. Service
Requests Requests

Service SMALL 10 63 29 29 204
placement MEDIUM 20 129 65 65 440

LARGE 30 179 98 98 537
Deadline D-SMALL 10 63 29 84429 573458
fulfilment D-MEDIUM 20 129 65 161597 933944

D-LARGE 30 179 98 216038 1163571

a) Service placement: evaluates the placement success
rate, resource wastage and hop distance for three placement
scenarios (i.e. SMALL, MEDIUM, and LARGE) with differ-
ent randomly generated application sets, number of services,
users, application requests and corresponding service requests.
Every user randomly requests one application for placement.

b) Deadline satisfaction: evaluates three scenarios (i.e.
D-SMALL, D-MEDIUM, D-LARGE) in a reliable and faulty
Fog infrastructure across a simulation period of 2000 s. We
randomly introduced failures across the Fog devices every 20 s
in the faulty simulation, similar to [10]. All users select a ran-
dom application every 1.557 s until the complete simulation.

6) Related work: We compare our multilayer resource-
aware partitioning approach with two state-of-the-art methods:

a) Availability-aware placement: with improved applica-
tion deadline satisfaction in presence of device failures [10].

b) Resource-aware placement: with optimized resource
usage and reduced latency and application response time by
applying fractional selectivity model [1].

B. Service placement

Figure 3 shows the placement success rate for the three
evaluation scenarios.
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Fig. 3: Service placement.

a) SMALL: The multi-
layer and availability-aware
methods performed simi-
larly by placing 200 and 202
services with a similar suc-
cess rate of 0.98 and 0.99,
respectively. The resource-
aware approach placed only
161 services with a lower
success rate of 0.78.

b) MEDIUM and
LARGE: The availability-
aware approach placed 221
and 241 services with a success ratio of 0.50 and 0.44,
while the resource-aware approach placed only 188 and
172 services with a low placement ratio of 0.42 and 0.32,
respectively. In contrast, the multilayer method outperformed
them by placing 419 and 407 services with 0.95, respectively
0.75 placement success rates.

c) Summary: The multilayer method is able to place
more services with the increasing number of requests by
mapping their individual resource demands to unique Fog
device resource characteristics (i.e. CPU, RAM, storage). In
contrast, the availability-aware approach prioritizes a set of
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(b) Resource unit consumption.

Fig. 4: Resource wastage.

dependent services by placing them onto the same Fog device
if it satisfies their joint resource demands only. While resource-
aware approach place dependent services across different Fog
devices if they satisfy their joint bandwidth requirements.

C. Resource wastage

Figure 4a compares the resource wastage ratio for the
multilayer, availability-aware and resource-aware placement
approaches across the simulated Fog infrastructure (100 Fog
devices) with 1483 resource units. Figure 4b explains the re-
sults through the resource units consumed by each placement.

a) SMALL: The multilayer method placed 200 services
with a resource wastage of 0.30, while the availability-aware
approach performed slightly better by placing 202 services
with a resource wastage of 0.21. The resource-aware approach
performed the worst by placing only 161 services with a high
resource wastage of 0.38. The multilayer and availability-
aware methods with similar placement success rate consumed
1036, respectively 1157 resource units. In comparison, the
resource-aware approach consumed only 913 resource units
for a low placement success rate.

b) MEDIUM: The availability-aware and resource-aware
approaches placed 221 services with a resource wastage of
0.17 and 0.33, respectively. The multilayer method outper-
formed them and placed 419 services with a low resource
wastage of 0.07. The multilayer method consumed 1367
resource units with a higher placement success rate compared
to the availability-aware and resource-aware approaches con-
suming only 1218, respectively 989 resource units.

c) LARGE: Similarly, the multilayer method performed
the best by placing 407 services across 100 devices with a very
low resource wastage of 0.011. In contrast, the availability
and resource-aware approaches placed 241 and 172 services
with a high resource wastage of 0.15, respectively 0.37.
The multilayer method consumed 1466 resource units with
increasing requests due to its higher placement success rate. In
contrast, the availability-aware and resource-aware approaches
consumed only 1257, respectively 928 resource units.

d) Summary: The multilayer maximizes the placement
success rate for increasing requests and thus, consume more
resource units of the Fog infrastructure, and reduces the
resource wastage upto 15 times compared to availability-aware
and upto 32 times to resource-aware method.
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Fig. 5: Hop distance.

D. Hop distance

Figure 5 compares the three approaches based on the hop
distance from the user to the placed services.

a) SMALL: Figure 5a shows that the multilayer and
resource-aware approaches placed 43, respectively 31 services
at the zero hop distance, while the availability-aware approach
did not place any services at the zero hop distance. Addi-
tionally, the multilayer method placed only one service at the
maximum hop distance of 257, while the availability-aware
approach placed five services at a maximum hop distance of
257. In contrast, the resource-aware approach performed worst
and placed two services at a maximum hop distance of 313.

b) MEDIUM: Figure 5b shows that the multilayer
method placed 155 services at the zero hop distance. In
comparison, both resource and availability-aware approaches
placed only 35, respectively 1 services at zero hop distance.
Moreover, the multilayer method only places one service at
the maximum hop distance of 264, the availability-aware and
resource-aware placed 8, and 9 services at a maximum hop
distance of 244, respectively.

c) LARGE: Figure 5c shows that the multilayer method
performed again the best and placed 68 services at zero
hop distance and used a maximum hop distance of 250. In
contrast, the availability-aware and resource-aware approaches
placed 54 and 2 services at the zero hop distance, and used a
maximum hop distance of 258 and 303, respectively.

d) Summary: We conclude that the multilayer method
places a larger number of services across the Fog devices in
close proximity to users compared to the related methods. The
advantage comes from considering the transmission time be-
tween users and the Fog devices and by placing the requested
services across highly connected devices.

E. Deadline satisfaction

1) Reliable Fog infrastructure: Figure 6a shows the cu-
mulative deadline satisfaction ratio in the three 2000 s long
simulation scenarios, specified in Table II. Each user requests
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(a) Reliable Fog infrastructure.
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(b) Faulty Fog infrastructure.

Fig. 6: Deadline satisfaction.

a random applications every 1.557 s (see Table Id) until the
complete simulation period.

a) D-SMALL: The multilayer and availability-aware
methods fulfilled the deadlines of all applications, while the
resource-aware approach had a lower cumulative deadline
satisfaction rate of 0.69.

b) D-MEDIUM: The availability-aware and resource-
aware approaches fulfilled deadlines with a cumulative sat-
isfaction rate of 0.60 and 0.57, respectively. The multilayer
method outperformed both approaches with a high cumulative
deadline satisfaction rate of 0.85.

c) D-LARGE: The multilayer method satisfied deadlines
with a high rate of 0.72. The availability-aware approach
exhibited a lower rate of 0.64, while the resource-aware
approach performed worst with a rate of 0.25 only.

d) Summary: We conclude with two observations.
(i) The multilayer and availability-aware methods fulfill

deadlines with high cumulative satisfaction rate compared to
the resource-aware approach that does not consider application
deadline as a placement constraint. In contrast, both multilayer
and availability-aware methods prioritize applications based on
their deadline for optimized placement.

(ii) The multilayer method has a better deadline satisfaction
rate with increasing application requests compared to the
availability-aware approach due to its ability to place depen-
dent services of the same application across highly connected
Fog devices in the same network partitions. This optimizes
the latency between dependent services and fulfills deadline
for more applications with a better satisfaction rate.

2) Faulty Fog infrastructure: Figure 6b evaluates the cumu-
lative deadline satisfaction rate in the three scenarios for faulty
Fog infrastructures. Similar to the evaluation of reliable Fog
infrastructures, we show the cumulative satisfaction rate in the
three 2000 s long simulation scenarios, where users requested
random applications every 1.557 s. We introduced faults by
randomly failing a Fog device every 20 s, such that all devices
are not reachable at the end of simulation period of 2000 s.

a) D-SMALL: The availability-aware and resource-aware
approaches fulfilled deadlines with a cumulative satisfaction
rate of 0.29, respectively 0.21, in the presence of randomly
failing Fog devices. The multilayer method performed slightly
better with a cumulative satisfaction rate of 0.35.



b) D-MEDIUM: All three approaches fulfilled the dead-
lines with a lower cumulative satisfaction rate than D-SMALL.
However, the multilayer method performed better with a
deadline cumulative satisfaction rate of 0.26. In contrast, both
availability-aware and resource-aware approaches exhibited a
low deadline satisfaction rate of 0.18 and 0.17, respectively.

c) D-LARGE: The resource-aware approach performed
worst and fulfilled deadlines with a very low cumulative
satisfaction rate of 0.09, while the multilayer and application-
aware methods fulfilled deadlines with a better cumulative
satisfaction ratio of 0.23 and 0.20, respectively.

d) Summary: We draw two observations in Figure 6b.
(i) The resource-aware placement does not consider appli-

cation deadline or device failures and exhibits poor cumulative
deadline satisfaction rate compared to the multilayer and
availability-aware methods across faulty Fog infrastructures.

(ii) The multilayer placement achieves a slightly higher
cumulative deadline satisfaction rate compared to the
availability-aware approach, which places dependent services
on the same Fog devices and the others across weakly con-
nected devices prone to failures. In contrast, the multilayer
method places all application services across highly connected
Fog devices in the same network layer partition and therefore,
exhibits better deadline satisfaction rate even upon faults.

VII. CONCLUSIONS

We introduced a new resource-aware method for Fog appli-
cation placement, which represents heterogeneous Fog devices
as a multilayer network graph and partitions them with respect
to the network topology and resource characteristics. The new
multilayer method places a multi-service application structured
as a directed graph in two steps. The first step matches the
requested applications with feature partitions based on their
requirements, which overlap in the same topological partition.
The second step places the services to Fog devices in the
elected partitions closest to the end-users. We evaluated the
multilayer resource-aware placement against two availability-
aware and resource-aware state-of-the-art approaches. The
results indicate that our method is able to place twice as many
services, satisfy deadlines for three times as many application
requests, and reduce the resource wastage by 15 − 32 times
compared to the related methods.

We plan to extend our multilayer resource-aware placement
method to dynamically consider changing application and Fog
infrastructure characteristics.
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