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Supplementary Material 
Model for partial migration 

To investigate the relationship between seasonal variation in habitat suitability and the proportion of 
migrations, we used the model presented by Van Moorter et al. (2020). This model builds upon the 
population model from Fryxell and Holt (2013), we refer to Van Moorter et al. in which the dynamics 
of population size follow a Ricker model (Ricker 1954, which is a discrete-time model); with scaled 
densities (i.e. N = N’/K’, where N’ is the unscaled population size in spring just prior to the 
reproduction season, and K’ is the population size at which on average each individual replaces itself 
during summer). Following Fryxell and Holt (2013), we assumed recruitment (r) during summer to be 
density-dependent and mortality during winter (µ) to be density-independent as supported by many 
empirical studies of ungulates (Saether 1997, Gaillard et al. 2000). 

Using the Ricker formula to represent episodes of summer reproduction, the multiplicative 
growth rate equals exp(r[1-N’ /K’])=exp(r[1-N]), where er is the maximum per capita recruitment 
during summer. Assuming density-independent winter survival probability e-µ, the number of animals 
after one year at the end of winter is calculated as follows: 

N (t+1) = N (t) exp(r[1 - N (t)] -µ)      Eq. S1 

Following Fryxell and Holt (2013), we linked two seasonal ranges through the movement of 
migratory animals, which move with migration probability, m, and cost, c, after the winter season 
from range L to H and back after summer. We define range L as the range with the lowest winter 
mortality (i.e. 𝜇 ≤ 𝜇 ). Therefore, we assumed only migration during spring from L to H; we did not 
consider individuals moving in the opposite direction, the so called `perverse' migrants (sensu Fryxell 
and Holt, 2013). Importantly, we focus our analysis on migration from the shared lowland range in 
winter towards a highland range used only in summer, i.e. the highland range can either not sustain 
residents year-round or highland residents are outcompeted by migrants who benefit from lower 
mortality on the lowland range (see for more details Van Moorter et al. 2020). 

Following the population model in Equation S1, the number of animals at the end of winter in 
the lowland range, N, after 1 year is the sum of residents in L and migrants: 

𝑁(𝑡 + 1) = (1 − 𝑚)𝑁(𝑡) exp(𝑟  [ 1 − (1 − 𝑚)𝑁(𝑡)] −  𝜇 ) + 

𝑚𝑁(𝑡) exp(𝑟  [ 1 − 𝑚𝑁(𝑡)]  − 𝜇 − 𝑐)  Eq. S2 

where m is the migration probability, and c is the demographic cost of migration. For simplicity, we 
assumed that the migration cost was incurred after summer. Density-dependent recruitment (r) 
takes place during summer, which is for migrants in range H (i.e. 𝑟 ) and for lowland residents in 
range L (i.e. 𝑟 ), whereas the density-independent winter mortality (µ) occurs when migrants and 
lowland range residents share their common lowland range L.  

As more animals migrate (i.e. increasing migration probability, m) from range L, the density 
of animals in L decreases and the summer fitness of residents in L increases, whereas the density of 
animals in H increases and the summer fitness of migrants in L decreases. We assumed an ideal-free 



migration strategy (Mariani et al., 2016; Van Moorter et al. 2020), where the ideal-free migration 
probability (𝑚) equalizes the summer fitness for lowland residents and migrants, calculated from 
Equation S2: 

exp(𝑟  [ 1 − (1 − 𝑚)𝑁(𝑡)]) =  exp(𝑟  [ 1 −
𝐾′

𝐾
𝑚𝑁(𝑡)]  − 𝑐) 

Since this equation is linear in m, the ideal-free migration probability (𝑚) is calculated as follows:  

𝑚 =
  [  ]

 [ ]
      Eq. S3 = Eq. 1 in main text 

This ideal-free migration probability is determined by three main components: migration cost (scaled 
by the recruitment on the highland range), relative habitat suitability of highland versus lowland 
range both in terms of the relative intrinsic growth ( ) and the relative carrying capacity ( ), and 

population density or saturation with respect to the lowland range (𝑁). Consequently, increasing the 
cost of migration leads to a reduction in the migration probability. However, as the cost of migration 
seems negligible for moose (Rolandsen et al. 2017), we will assume zero migration cost in this paper. 
Whereas, increasing the benefits of migration from access to suitable habitat (increasing  or ) 

increases migration probability (Figure 1). If the intrinsic growth rate differs between migrants and 
residents, then the migration rate will be density-dependent (Figure 1). If the intrinsic growth rate of 
migrants is higher than those of residents (e.g. due to higher quality forage following the forage 
maturation hypothesis; Fryxell and Sinclair 1988, Hebblewhite et al. 2008), all individuals of the 
population would be migrating at low densities. As the highland range becomes more crowded due 
to increasing population density, some individuals will shift to a resident strategy. The opposite will 
occur if the migrants experience a lower intrinsic growth on the highland ranges (red line in Figure 1), 
then individuals will only start migrating once the population density on the lowland range is 
sufficiently high.   



Supplementary Figures 
Figure S1 

Moose migration in Fennoscandia  

For each moose in our study the centroid of the summer (in green) and winter (in blue) 
locations are connected with a red line.  

 

  



Figure S2 

Boxplot with the individual-based k-fold cross validation 

The Spearman rank correlation for each individual moose between the observed and 
predicted occupancy from a model fitted without the focal individual for the summer and 
winter resource selection probability function.   

 

 

 

 

 

  



Figure S3 

Residuals from the relationship between harvest and habitat suitability in Fennoscandia 

The residuals from the linear regression between the average annual harvest and the total 
summer suitability for each mapping unit in Fennoscandia (log(ℎ𝑎𝑟𝑣𝑒𝑠𝑡) = 𝛽 +

𝛽 log(𝑅𝑆𝑃𝐹 ) + 𝜀). The largest deviation from the prediction occurs in the Norwegian 
west coast, which has extremely low numbers of moose compared with the amount of 
available habitat. This area is generally not considered part of the moose range in 
Fennoscandia, however, the mechanisms for this are not well understood. It could be a 
combination of historical overharvest combined with difficulties in recolonization due to 
topography and local competition with red deer. If we removed those municipalities from 
the analysis, we obtained an even stronger relationship between the amount of suitable 
habitat and moose harvest (see Figure S5). Note that none of the other results, related to 
moose migration, are affected by the in- or exclusion of the Norwegian west coast, as for 
obvious reasons we studied migration only in areas where moose are present. 

 

 



Figure S4 

Relationship between harvest and habitat suitability in Fennoscandia 

The logarithm of the average annual harvest plotted against the total summer suitability for 
each reporting unit in Fennoscandia. As noted above, an important deviation from the 
prediction occurs in Western Norway (see Figure S4). After removal of this area the linear 
regression (log(ℎ𝑎𝑟𝑣𝑒𝑠𝑡) = 𝛽 + 𝛽 log(𝑅𝑆𝑃𝐹 ) + 𝜀) explains 66% of the variance in 
harvest (compared to a variance explained of 50% reported in the main text, and 𝛽 = 0.86).   

 

 

 

  



Figure S5 

Moose population distribution during summer in Fennoscandia 

The population distribution of moose (in harvested individuals per km2) derived from the 
harvest data and the predicted summer RSPF. 

 

  



Figure S6 

Boxplot with the distribution of elevation at the lowland and highland range across 
Fennoscandia. We labelled the geographic areas that were more selected during winter than 
during summer as lowland ranges and those that were more selected during summer than 
during winter as highland ranges. We used these geographic labels instead of summer and 
winter ranges to avoid confusion with summer and winter in reference to seasons. Although, 
altitude is unlikely to be a direct driver of migration itself, it is common to observe altitudinal 
migration in response to ecological variables with an altitudinal gradient. For instance, in our 
study snow was an important variable related to migration. Not surprising and in support of 
our a priori labels, we did observe lower elevations in the areas more selected during winter, 
and higher elevations in the areas more selected during summer.  
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Figure S7 

Descriptive details for the different clusters: number of individuals (N), number of males, 
number of females, number of migrants & residents (VI criterion), mean age of the moose at 
marking (note that age was not available for all clusters). 

 

Name Ntotal Nmale  Nfemale Nmigrant Nresident avg(age) 
A 30 9 21 29 1 4.9 
B 54 8 46 31 23 4.8 
C 54 8 46 49 5 5.2 
D 19 6 13 16 3 5.5 
E 16 4 12 7 9 5.8 
F 21 2 19 1 20 8.4 
G 42 20 22 31 11 NA 
H 29 7 22 15 14 NA 
I 13 4 9 5 8 NA 
J 13 8 5 7 6 NA 
K 24 3 21 0 24 7.1 
L 22 5 17 1 21 6.7 
M 43 6 37 15 28 3.0 
N 31 10 21 17 14 2.7 
O 13 2 11 8 5 3.1 
P 41 13 28 11 30 NA 
Q 22 4 18 2 20 NA 
R 26 0 26 13 13 7.1 
S 32 0 32 15 17 8.7 

   



Figure S8 

Relationship between different migration criteria 

The proportion of migrants in each cluster determined by the Volume of Intersection VI 
criterion on the x-axis and the distance above 10km criterion on the y-axis. Given the high 
agreement between both criteria results were qualitatively identical, we therefore only 
reported those for the VI criterion. 

 


