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Motivation:  Protein  fold  space  is a conceptual  framework  where  all possible  protein  folds  exist  and  ideas
about  protein  structure,  function  and evolution  may  be analyzed.  Classification  of  protein  folds  in  this
space  is commonly  achieved  by using  similarity  indexes  and/or  machine  learning  approaches,  each  with
different  limitations.

Results: We  propose  a method  for  constructing  a compact  vector  space  model  of  protein  fold  space  by
representing  each  protein  structure  by  its  residues  local  contacts.  We  developed  an  efficient  method
to  statistically  test  for the  separability  of points  in  a space  and  showed  that  our protein  fold  space
representation  is  learnable  by any  machine-learning  algorithm.
Availability:  An API  is freely  available  at https://code.google.com/p/pyrcc/.
. Introduction

All possible protein folds are assumed to occupy an abstract
pace referred to as fold space. This fold space has become a con-
eptual framework to unify ideas about protein structures with
rotein function and protein evolution (Cheng and Brooks, 2013).
or instance, it is debated whether this space is discrete or contin-
ous (Kolodny et al., 2006; Skolnick et al., 2009; Sadreyev et al.,
009). Relevant to our study is the common use of protein similar-

ty measures (e.g., root mean square deviation or RMSD) aimed to
nfer their proximities in this space (Minary and Levitt, 2008). In
his case, the inference derived from such measurements assumes
hat the proximity of protein folds is the only relevant property to
xplain protein fold evolution and function.

Instead of focusing only on the proximity of protein folds, vector
pace models have been used to expand the protein fold space rep-
esentation. In this space, each protein structure is represented in a
xed dimension space (e . g ., euclidean space) by a point (position
ector); adjusting the positions of these vectors by approximating
heir relative distances to protein similarity measures may  derive

hese position vectors. For example, using sequential structure
lignment program scores between each pair of structures as a
rotein similarity measure (Orengo and Taylor, 1996), followed
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by multi dimensional scaling allowed the assignment of positions
vectors representing each protein structure (Michie et al., 1996).

Using DALI as similarity measure, Holm (Holm and Sander,
1998) showed two-dimensional projections to explore protein
neighbors in fold space. DALI has also been used as similarity mea-
sure to visualize class distribution and fold usages between two
bacterial species (Hou et al., 2003) and to explore protein func-
tion assignment based on position on this fold space representation
(Hou et al., 2005).

Fold space constructions based on protein structure similari-
ties have two  important limitations. First, the time needed to run
a structural comparison for each pair of structures is restrictive:
25000 central processing unit hours were needed for calculating
similarities between 1898 protein structures (Hou et al., 2005).
Second, the position of each point depends heavily on the set of
structures being analyzed, and in such case the inclusion of a single
new structure can displace all previously assigned positions; thus,
there are as many fold space representations as different protein
structures data sets, even adopting a unique similarity score.

An alternative fold space representation may be built by
assigning the position of the vector considering only the structural
features of the protein it represents. In this way, a new structure
can find its location in this fold space without altering the existing

ones. One implementation of a vector space model is FragBag
(Budowski-Tal et al., 2010), which represents protein structures in
400 dimensions; here, each component in the vector representing
a protein fold corresponds to the number of occurrences of a
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Fig. 1. Proximity in space does not always imply membership to a class. The
figure illustrates cases where proximity in a space does not imply membership to a
class. Cross points define a class where distances between every pair of its members
should be less than the distance to any point belonging to other class, an assumption
made when using similarity scores. An exception to this assumption is represented
by  the rhombus class members p and r, which distance is larger than for member
class p to a square class member q. This is true for any distribution within the classes.
To  show this, circle class has a dense and regular distribution, rhombus class is
regular and sparse, while square is very sparse and irregular. In any case, each class
is  clearly segregated. Please note that the different fold classes may  be learned using
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achine-learning classifiers, but here we illustrate that using similarity measures
s  the only criterion to distinguish class membership may  induce errors.

articular contiguous protein sequence fragment. Another
pproach uses knot invariants as values in each component for
ector points in 30 dimensions (Rogen and Fain, 2003). In these
ases, it is assumed that proximal protein structures should belong
o the same structural class, assumption that is not necessarily
orrect as we will argue below.

Once a protein fold space construction is chosen, a metric
istance induced by the space can be used as a measure of simi-

arity and it is expected to be in agreement with direct structural
easures (such as RMSD, GDT, TMscore, etc), but overcoming the

roblems noted above about these scores not being a metric (Sippl,
008).

In such space, a given set of protein structures that are consid-
red to have the same fold may  be close in this space representation.
et, it may  occur that some proteins with different folds may  be
loser than proteins with the same fold (see Figure 1). Thus, con-
usion may  be induced at distinguishing class membership in this
old space when only similarity measures are considered.

To address this problem, the boundaries between proteins
ith different folds may  be obtained using empirical data and
achine learning algorithms, which naturally segregate protein

tructures sharing common features. In these models it is also pos-
ible to evaluate the separability of this space independently of any
achine-learning algorithm using a statistical test (Zighed et al.,

002). Therefore, it is possible to generate a protein fold space rep-
esentation independent on the protein similarity measure used
nd to test for the separability of this space independently of any
articular classification algorithm. This protein fold space may  then
e used to analyze protein structure-function relation and pro-
ein evolution without the limitations previously noted of current
rotein fold space construction approaches.

In this work, we propose a compact (low dimensional) fold space
epresentation based on Residue Cluster Classes (RCCs), a Sperner
amily that includes all sets of residues in simultaneous contact. We
lso present an efficient computational method useful to test for the
eparability of this fold space representation. As a proof of principle,
e analyzed the CATH classification and automatically detected

onflicts in CATH. Furthermore, we show that our method improves

tate of the art protein structure neighbor retrieval methods. To
acilitate the construction of protein folds represented by RCCs, we
resent an API available at https://code.google.com/p/pyrcc/.
logy and Chemistry 59 (2015) 1–7

2. Materials and Methods

2.1. Datasets

2.1.1. CATH datasets
CATHALL1 set includes all domains in CATH release v3.5 that

were parsable with our API and consists of 168964 domains.
CATHALL2 set includes all domains in CATH release v4.0 and con-
tains 235858 domains. CATCHOP was obtained from a random
sample of CATHALL1 considering only six domains per topology;
topologies with less than six members were excluded rendering a
total of 5220 domains (see supplemental Table S1 for a complete
list).

2.1.2. SCOP datasets
The SCOP30 dataset was provided by the authors of ContactLib

(Xuefeng Cui et al., 2014) and contains 3295 SCOP domains. SCOP30
contains 2639, 3232 and 3290 neighbours at SAS levels 20,35
and 50. Yet, only 2049, 2620 and 2722 domains have at least
one neighbor in SAS 20, 35 and 50, respectively. The SCOPtrain1
is a random sample of 136300 SCOP 1.75B. SCOPtrain2 contains
all 203025 domains from SCOP release v2.5. The SCOPtrainAUC
includes 109310 SCOPtrain domains absent in SAS50 group, and
only belonging to a class in SCOP30. If a class (at any level) contains
more than 2000 domains, 2000 domains were chosen randomly to
represent that class.

2.2. Construction of Residue Cluster Classes

2.2.1. Definitions
Residue Neighbourhood (N�(r)). Let P be a protein with residues

R = r1, r2, . . . , rn. The system �prim is defined as:

�prim = {{ri, rj} : there exists a bond between ri and rj}
Given a metric d : R × R → [0, ∞)  and a cut-off distance �, the

neighbourhood N�(r) of a residue r is given by:

N�(r) = {x ∈ R : ∃a ∈ A(x), b ∈ A(r); d(a, b) ≤ �}
Where A(r) is the set of non-hydrogen atoms of residue r. Thus,

N�(r) is the set of all residues near r, i.e.,  they are at no more than a
distance � from r.

Residue Cluster (RC). A residue cluster on P is a subset A ⊆ 2R such
that A ⊆ N�(a) for all a ∈ A. If

∣∣A
∣∣ = k, then A is a k-Residue Cluster,

kRC
Residue Cluster Class (RCC). A class over a RC is defined by the

primary structure on �prim. A pair of residues ri, rj are contiguous
if {ri, rj} ∈ �prim and a set s̄L of L residues form a segment in �prim if
it contains (L − 1) contiguous residues. By convention, s̄1 = {r} for
any r ∈ R.

Let be � the family of all segments in �prim. C is a set cover of a
k-Residue Cluster kRC if

C = { ¯sL˛ :  ̨ ∈ A, ¯sL˛ ∈ �}
such that

kRC =
⋃

˛∈A
¯sL˛

and

ci ∩ cj = ∅, ∀ci, cj ∈ C

Therefore, C = ¯sL1 , ¯sL2 , ..., ¯sLA
is a covering if
∑

i=1

Li = k
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Fig. 2. Class names for residue clusters of same size. The curve represents a protein
backbone, and black circles represent residues in a cluster being considered. Four
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Fig. 3. Schematic construction of an RCC vector. The figure represents a protein
three-dimensional structure in a lattice, where each residue is represented by a
circle and the dotted lines represent residue contacts (tertiary contacts). A self-
avoiding walk (SAW) showed as a straight line visiting all points of a grid represents
the protein backbone. Considering four points in any square as a cluster (an RCC of
size 4), there can be five classes of clusters showed at the bottom. Numbers in each
istinct classes ([1,3], [1,1,2], [2,2] and [1,1,1,1]) arising from 4RC’s are shown. The
lass name is defined by the number of residues found in each segment that defines
he RCC (e . g ., 4RCC). For convention, numbers are written in non-decreasing order.

nd can be uniquely identified by the vector class �C = (L1, L2, ..., LA)
ith Li ≤ Lj for any i, j such that i ≤ j.

Lets define the k-Residue Cluster Class kRC �C as the set of all kRC

f class �C.  The residue cluster class system R  is a Sperner family
Lubell, 1996). It is defined as the set of all residue clusters for all k,
�

 such that none is subset of some other, that is:

 = {W ∈ R : ∃X∈kRC�c, X ⊆ W}
Let M( �ci) be the number of occurrences of a residue cluster class

�i in a system R.
The vector point �R of R  is defined by

�
 =

∑

i∈I

M( �ci)vi

ith vi ∈ B, where B = {v1, v2, ..., v|I|} is the standard orthonormal
asis for R

|I| and I is an index set over the set of cluster classes
onsidered.

Thus, an RCC construction is illustrated in Figure 2 where differ-
nt classes are assigned to a kRC �C according to sequence contiguity.

.3. Construction of vector points for domain structures

Clusters were computed using graph theoretical algorithms.
irst, a graph G is constructed with a V(G) vertex set that repre-
ents the residues set for a given protein, and E(G) edges set is the
et of all residue clusters of size two. This graph is equivalent to

 residue contact map  and is constructed with the same program
sed in (Cusack et al., 2007): any two residues are paired if they
hare at least one atom pair at 5Å or less in the three dimensional
epresentation of a folded protein. As any clique in G (i.e. a complete
ubgraph) is consistent with our cluster definition, all maximal
liques (cliques that are not a subgraph of any other clique) are con-
idered as clusters, and classes are assigned directly from sequence
ontiguity. Maximal cliques were obtained using the algorithm pre-
iously described (Tomita et al., 2006) as implemented in NetworkX
Hagberg et al., 2008).

Thus, for any given protein there are 3 3RCC ([1,1,1], [1,2], [3];
ee Figure 2 for the nomenclature used to refer to these RCCs), 5
RCC ([1,1,1,1], [1,1,2], [2,2], [1,3], [4]), 7 5RCC ([1,1,1,1,1], [1,1,1,2],
1,2,2], [1,1,3], [2,3], [1,4], [5]) and 11 6RCC ([1,1,1,1,1,1], [1,1,1,1,2],
1,1,2,2], [2,2,2], [1,1,1,3], [1,2,3], [3,3], [1,1,4], [2,4], [1,5], [6]); thus,

here are 26 RCCs for any given protein. To represent these in a vec-
or, we used the frequency of occurrence of each kRCC as the value
or each dimension of this vector. Figure 3 illustrates an example
f the construction of a vector using a self-avoiding walk over a
cluster class are the number of occurrences of that cluster formed by the SAW. This
same idea can be extended to real proteins to quantify clusters of size 3, 4, 5 and 6
to  generate the final vector representation of a protein.

lattice grid. An API was  made for cluster calculations from pro-
tein structures and can be accessed via https://code.google.com/
p/pyrcc/.

2.4. Calculation of the Cut Edge Weight statistic

The Cut Edge Weight statistic (Zighed et al., 2002) was used to
test the hypothesis that a given class distribution of vector points
(i . e ., protein domains in CATH) is random. The construction of the
statistic is limited by the construction of the relative neighbour-
hood graph (RNG) of the points. A naive algorithm takes O(n3) and
lower bounds have been reported only for particular cases in low
dimensions. Here we  include a demonstration that a RNG is always
a subgraph of the Half-Space Proximal (HSP) graph (see below).

To obtain the RNG, the HSP graph H of the set of 26-dimension
vectors was obtained (see below for HSP construction procedure).
Then, for each edge (a, b) in H we  remove the edge if the following
condition was  satisfied:

max{d(a, c), d(b, c) < d(a, b)}
where d(i, j) is the euclidean distance between points i and j.

This condition was  applied for any c in H. After this procedure,
the resulting graph was the RNG used for statistics computation as
described in Zighed et al. (2002).

A detailed description of HSP and a proof for containing RNG is
described below. The source code to compute this statistical test
can be obtained from the authors upon request.

2.5. Relative Neighborhood Graph as a subgraph of the
Half-Space Proximal graph

The Half Space Proximal (HSP) is a local test for building a geo-
metric spanner of bounded dilation over a set of points in the space,
it was  introduced in Chavez et al. (2006). Assume there is a set V of
points loaded with a metric. To fix ideas think in the plane and the
euclidean distance between points, in our case the set of points are
26 dimensional vectors representing protein structures, although
these could be any set of objects in an abstract metric space. All the

construction will be based on the distance metric. For each point u
in V we  compute its HSP neighbours as follows.

For a point u in V take its nearest element v and add an edge from
u to v; remove all the elements that are closer to v than to u. The

https://code.google.com/p/pyrcc/
https://code.google.com/p/pyrcc/
https://code.google.com/p/pyrcc/
https://code.google.com/p/pyrcc/
https://code.google.com/p/pyrcc/
https://code.google.com/p/pyrcc/
https://code.google.com/p/pyrcc/
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Fig. 4. Schematic representation about the differences of RNG and HSP. Light
gray  circles are traced with radius equals to the distance |pq| between any pair of
points in space (p and q in the figure); the dark gray regions (also known as lunes)
test  for the presence of any point in space within those light gray circles. If there
exist a point z that is in the intersection of the two  circles centered at p and q with
radius |pq|,  then the two points p, q are not connected in the RNG.

Fig. 5. Execution times to obtain RNG from random datasets. The points in the
plot represent the computing time to generate a RNG (squares), HSP (triangles) and
RNG from HSP (circles) over random point sets of different sizes in 2 dimensions (A)
and 50 dimensions (B) (see Methods). RNG from HSP is clearly more efficient than
brute force RNG, although this relative efficiency gains decreases as the number of
 R. Corral-Corral et al. / Computatio

egion of points closer to v than to u is called the forbidden region
rom the point u with respect to v. From the remaining points, those
oints not in the forbidden region, take the nearest point to u and
epeat until all points in V belong to some forbidden region. In the
nd, we will have a directed graph with vertex set V and the edges
ound with the above procedure. In this paper we are interested
n the HSP as a super graph of the Relative Neighbourhood Graph
RNG), faster to build, as described below.

For the same set V two points u, v will share an edge in the RNG
f there is not a point z ∈ V such that z is in the intersection of the
ircles centered in u,v, respectively, with radius |uv|. Then, RNG and
he HSP are related and we will show that RNG ⊆ HSP.

emma  1. If there is not an edge from the point u to v, then there
xist a point z such that it connects to u and z is in the intersection of
he two circles centered at u and v with radius |uv|.

roof. If there is not an edge from the point u to v, then, v is in
 forbidden region of u and some point z. The point z connects to

 and is closer to u than from v, so, z is in the circle centered at u
ith radius |uv|. As v is in the forbidden region of u with respect to

, then v is closer to z than to u, so, z is in the circle centered at v
ith radius |uv|.

One way to characterize the RNG is by observing that two points
 and q will share an edge whenever there is not a third point r that
s closer to both p and q than they are to each other.

emma  2. If an edge is in the RNG then, it is in the HSP.

roof. Lets suppose that two points p and q are not connected by
he HSP, then, there exist a point z that is in the intersection of the
wo circles centered at p and q with radius |pq|, then the two point
, q are not connected in the RNG.

A brute force approach to build the RNG built over a set of n
oints require checking O(n2) pairs to see if they share and edge;
urthermore, each pair requires O(n) points to be tested for inclu-
ion in the intersection. This yields a total complexity of O(n3)
perations. On the other hand, all the HSP neighbours of a point

 can be computed in an amortized O(n) operations. The total com-
lexity of building the HSP is then O(n2). The total number of HSP
eighbours of any point u is bounded, and depends only on the
imension of the space, and it is independent of the size of the
oint set. This implies that the number of edges in the HSP is only

inear on n.
Using the above observations to test if an edge is in the RNG

raph, we only need to test the linear number of edges of the HSP.
ach test cost O(n) operations, and consist in checking if the inter-
ection is empty. Even with brute force, the total time for building
he RNG would be O(n2) instead of O(n3) using other construction
lgorithms.

Figure 4 illustrates the inclusion of the RNG in the HSP. Dotted
dges in the figure are those to be removed from the HSP. To exem-
lify the improvement on computing time by our approach, Figure

 shows execution times to calculate RNG, HSP and RNG from HSP
or two randomly generated datasets.

.6. Learner details

A learner including an ensemble of 250 extremely randomized
rees (ERT) was trained for cross-validation tests, predicting the
lass, Architecture and Topology in CATH classification, and Class,

opology and Superfamily in SCOP. Bootstrap samples were not
sed for building the trees, and a minimum of 3 nodes where
equired to remain after each split. In each tree, Gini index was
sed for deciding attributes for splitting.

dimensions increases, since all edges in HSP are checked for inclusion of RNG, and
the  number of edges in HSP tends to be larger on higher dimensions. These data sets
were obtained using the random number generator model (without a seed number)
implemented in the random standard package in Python 2.7.
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Fig. 6. Relationship between domain size and number of clusters in each
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Table 1
CATH Cross-Validation scores

Cross-Validation full train
Classification level accuracy standard-error accuracy

C 0.9693 0.0014 0.9987
CA  0.8830 0.0019 0.9967
CAT  0.8494 0.0022 0.9984

Performance on 10-fold cross-validation over CATH domains. Mean of accuracies
for each of the 10 iterations and corresponding standard errors are shown. Full train
accuracy was  obtained by training and testing on the same full CATHALL1 dataset.

Table 2
Confusion matrix of Classes over CATH (v3.5) domains.

True/Predicted mainly-˛ mainly-ˇ ˛  ̌ few secondary
structure

mainly-  ̨ 36936 0 23 0
mainly-ˇ 0 39944 38 1
˛ˇ 42 74 89310 0
fss 19 7 17 2553

In each row (i) and column (j), the number of domains belonging to class i, predicted

plemental Tables S3 for a complete list).
Classification performance was  evaluated in the same way over

SCOP domains (See Table 3 for results obtained with SCOPtrain1 set
omain. The number of residues found in every protein domain of the CATCHOP
ataset is plotted against the total number of RCCs found in the corresponding
omain. Note the scarcity of data in domains larger that 600 residues in CATH.

Same setup but with 300 trees was used for AUROC analysis.
hese classifiers were implemented using sklearn (Pedregosa et al.,
011).

To learn the structural classification from CATH, we  used the
ATHALL1 and CATHAll2 sets; for SCOP, we used the SCOPtrain1
nd SCOPTtrain2 sets.

. Results

.1. Defining vector dimensionality

The CATHALL1 set (see methods) was used to identify RCCs.
igure 6 shows a linear relationship between protein size and num-
er of RCCs; RCCs larger than 10 residues were not observed. To
efine the largest RCC to be used for protein structure represen-
ation, we identified the frequency of occurrence of the largest
CCs in the CATHALL1 set (see supplemental Figure S1). The frac-
ion of domains having RCCs of size six and seven account for the
1.61% and 7.92% respectively; furthermore, they are represented

n 94.51% and 48.13% of topologies. Thus, RCCs larger than 6 residue
ere rare and found in only very few topologies. For the rest of our

tudy we used RCCs of size 3 to 6 that include a total of 26 different
CCs, which were used to build our vector space model.

.2. Separability of fold space

Next, we tested for the separability of our vector space; while
earnability is addressed in Vapnik-Chervonenkis learning theory,
his is learner dependent and do not evaluate the practical sep-
rability of a particular dataset (Holden and Niranjan, 1995). To
uantify the separability (and thus, learnability) of our fold space
epresentation, we used the Cut Edge Weight statistic (Zighed et al.,
002). In this procedure, the null hypothesis is that data is ran-
omly distributed and cannot be classified. The implementation of
his test is however computationally expensive, and thus we  used
he CATCHOP set (see Methods). Using this test in CATCHOP set, we
bserved that the null hypothesis is false (p = 0) and consequently
omains belonging to different topologies are separable.
.3. Learning of fold space for structural classification

To use the separability of our fold space representation, we
rained an extremely random forest (ERF) classifier to automatically
as  j are shown. A perfect prediction has only numbers in the main diagonal. Note
that no discrepancies exist between mainly-  ̨ and mainly-ˇ.

assign classifications by class, architecture and topology according
to the CATH definition. We  performed 10-fold stratified cross-
validation test to assess the ability of our ERF classifier to learn
general rules from the CATHALL1 set (see Methods section); in this
case, 10% (1/10) of the CATHALL1 domains were randomly chosen
as part of the training samples (the rest was  part of the test set)
and this random procedure was performed 10 times; please note
that in this way we  do not generate specific training sets avoiding
bias in the test. We  also trained our ERF classifier over the entire
data set. Performance predictions for these two  approaches are
reported in Table 1. We  repeated this procedure for a new release
of CATH included in CATHALL2 set and the results are reported in
supplemental Table S2.

The discrepancies between the ERF classifier using the full data
in CATHALL1 as the training set and the CATH classification are
summarized in the Confusion matrix presented in Table 2. Some
examples of these discrepancies are presented in Figure 7 (see sup-
Fig. 7. Examples of domain classification discrepancies between ERT and CATH.
A)  1a3uA00: predicted ˛ˇ, in CATH mainly-ˇ; B) 1w26A03: predicted mainly-ˇ,  in
CATH ˛ˇ, C) 1h6wA02: predicted few secondary structure, in CATH mainly-ˇ, D)
1nkpD00: predicted mainly-˛, in CATH few secondary structure.
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Table  3
SCOP Cross Validation scores

Classification level accuracy

Class 0.9243
Topology 0.8632
Superfamily 0.8781
Family 0.9097
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Table 4
Mean AUROC

Mean AUROC Fraction above
SAS  level RCC ContactLib 75%

20 0.950 0.956 0.958
35  0.940 0.918 0.939
50  0.935 0.906 0.929

Summary of mean AUROC values for the task of neighbour retrieval. Direct com-
erformance on 10-fold cross-validation over SCOPtrain1 domains. Final accuracies
re the mean of accuracies for each of the 10 iterations.

nd Supplemental Table S4 for results obtained with SCOPtrain2
et).

.4. Fold space visualization

To visually inspect fold space structure, we  used an unsu-
ervised dimensionality reduction approach; this dimensionality
eduction was performed by Laplacian-Eigenmaps (Belkin and
iyogi, 2003) over the CATCHOP set (see Methods). This method has
een shown to give a better approximation of the vecinity of each
oint by approximating the Laplace Beltrami operator of the origi-
al space on the reduced space (Belkin and Niyogi, 2008). Projection

nto two dimensions is shown in Figure 8. In this representation,
ainly-  ̨ and mainly-  ̌ domains are observed on opposite direc-

ions, while ˛  ̌ domains are found in between these groups.

.5. Structural neighbour retrieval

ContactLib has been reported to achieve the best performance
n finding protein structural neighbors when compared against the
est alignment-free method FragBag (Xuefeng Cui et al., 2014);
ragBag on the other hand was reported to improve on 6 state of
he art structural aligners, including SGM, PRIDE, BLAST, STRUCTAL,
E and SSM. FragBag was tested in a subset of SCOP 1.75B domains,
eferred to as SCOP30; three SAS thresholds (2.0, 3.5 and 5 Å) iden-
ify three types of neighborhoods; SAS20 is the most sensitive and
AS50 the most relaxed. Agreement between SAS criterion and

COP superfamily assignment is low (see supplementntary Table
5), thus only the domains within each SAS neighborhood belong-
ng to the same superfamily as defined in SCOP are considered true
eighbours.

ig. 8. Fold space visualization by dimensionality reduction. Domains in
ATCHOP represented by Spectral-Embedding dimensionality reduction of the orig-

nal  26-dimensional space. Different colours of the dots correspond to CATH class
ssignments: green dots for mainly-˛, orange dots for mainly-ˇ, purple dots for ˛ˇ
nd  gray dots for few secondary structure class.
parison between mean AUROC obtained by our method (RCC) and ContactLib. Last
column also shows the percentage of query structures for which AUROC was higher
than 75%.

We  calculated the Area Under the Receiver Operator Charac-
teristic curve (AUROC) to test for the capacity of our fold space
representation to identify true neighbors according to SAS and
SCOP criteria; this approach was chosen to summarize the results
obtained for all the SCOP domains analyzed. An AUROC score of
1.0 is a perfect score, and 0.5 the score expected from a random
method. We  calculated the AUROC for each structure in SCOP30
(3295 domains; see Methods) using both unsupervised and super-
vised approaches. In the unsupervised approach, SCOP30 structures
were ordered from a given query structure using the euclidean
distance; this ordered list was  compared with the true neighbors
provided by SAS and SCOP criterion to quantify the corresponding
AUROC. Mean AUROCs for this experiment were 0.87, 0.85, 0.84 for
SAS 20, 35 and 50 respectively. For comparison, note that the best
score obtained in this experiment by FragBag is 0.747 for SAS20.

Table 4.
In the supervised analysis, AUROCs where obtained by training a

random forest classifier with a subset of SCOP excluding structures
in SCOP30 (see Methods). Then, for a query structure, its class is
predicted and the ordering of the rest of domains is determined by
the log-probabilities of belonging to this predicted class.

Our mean AUROCs for SAS 20, 35 and 50 are 0.950, 0.940 and
0.935, while ContactLib achieves 0.956, 0.918 and 0.906. ContactLib
reported 75% of AUROC scores > 0.936, while our minimum AUROC
score for 75% of queries is 0.958. For SAS35 and SAS50, 75% of
AUROC scores are above 0.939 and 0.929 respectively. Our median
AUROCs for any SAS level is > 0.99.

4. Discussion

Here we introduce a protein structure representation using a
Sperner family defined by clusters of protein’s residues that are
in close proximity in the three dimensional space. In Figure 6 it is
shown the linear relationship between protein size and total num-
ber of such clusters that may  be associated to the near constant
density of proteins. The small deviation in the number of clusters
for small proteins is also consistent with the observation that small
proteins tend to have higher average densities (Fischer et al., 2004).

We found that proteins usually harbour residue clusters with no
more than six residues, independently of secondary structure com-
position. Thus, residue clusters of size 3 and up to 6 were identified
according to the contiguity of residues in sequence (see Figure 2).
This Residue Cluster Class System is used to construct a vector space
model representation of protein fold space in 26 dimensions (see
Figure 3). This representation of protein structure may be used to
test for the separability of protein folds independently of protein
similarity measures (e . g ., root mean square deviation) or the use
of any particular classifier.

It has been shown that the cut edge weight statistic is a proper
test for data separability and consequently learnability of any given

data set (Zighed et al., 2002). However, this requires computing
an RNG that is time consuming (O(n3) operations, where n is
the number of protein structures to be analyzed; see Methods).
Here we  show that a HSP can be computed faster than a RNG and
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parison using latent dirichlet allocation. Bioinformatics 27 (13), i61–i68, doi:
R. Corral-Corral et al. / Computatio

emonstrate that a HSP always contains a RNG (see Figure 4), thus
SP can be used as an alternative to generate the RNG in amortized
(n2) (see Figure 5).

We  tested for the separability of this fold space with domains
nd classes reported in CATH at the topology level and found that
t is feasible to automatically learn this fold space structure. For
n intuitively view of this fold space, Figure 8 presents a two-
imensional embedding of domains coloured according to its Class.
ven though all features in 26 dimensions cannot be preserved in
uch embedding, it can be appreciated that ˛  ̌ domains laid in
etween mainly-  ̨ and mainly-  ̌ domains. Next we  run different
ests to determine if this separation reproduces the one proposed
y CATH.

The accuracies of an Extremely Random Forest classifier in
able 1 shows a good performance in a cross validation test. Our
core of 0.969 predicting CATH Class can be directly compared with
hat of 0.857 reported in Shivashankar et al. (2011).

A near perfect score is obtained when evaluated using the same
raining and test set. The discrepancies on this test are presented in
able 2. Although no confusion exists between our ERF and CATH
n classifying mainly-  ̨ and mainly-ˇ, there are several differences
etween ˛  ̌ and mainly-  ̨ or mainly-ˇ. Some examples of these
iscrepancies are presented in Figure 7 where predicted classes by
RF visually appear to be more convenient than the CATH assign-
ent. In the context of fold space, these structures may  be in the

egion populated with domains belonging to the predicted class,
ut may  represent an issue with the original assignment given by
ATH, as has been already mentioned early by CATH developers
Michie et al., 1996).

For the task of structural neighbour retrieval, we showed that
ur vector space model representation of protein fold space out-
erforms that of FragBag using the euclidean distance. However,
his distance criterion applied on our vector space model matched
he hit-rate score of ContactLib. This trend in our approach may be
xplained by considering that protein structures under the same
tructural classification might have boundary limits that a distance
ay  not easily detect, as noted in Figure 1. When a supervised

pproach is used to learn this boundaries, our results outperform
ontactLib in terms of mean AUROC and overall AUROC scores dis-
ribution, but it is almost identical in the case of mean AUROC for
AS20. The result that using two different approaches find a plateau
t 0.96 of mean AUROC, suggest an upper boundary possible under
his SCOP Superfamily assignment. In any case, the cross-validated
cores presented here may  serve as a baseline for future predic-
ors over this fold space representation to learn CATH or SCOP
ssignments.

. Conclusion

In summary, we present a vector representation of protein folds
hat reproduce basic aspects of protein packing. We  describe an
fficient algorithm to test for the separability of this vector space
nd show that our vector representation of protein fold space is
eparable and consequently learnable by any classifier. This prop-
rty was used for direct prediction of structural classifications and
or the task of retrieving protein structural neighbours. To facilitate
ther research groups to use the algorithms described here to rep-
esent protein structures as vectors, we have implemented an API

n Python available at https://code.google.com/p/pyrcc/.
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