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ABSTRACT
WiFi location systems are remarkably accurate, with decimeter-
level errors for recent CSI-based systems. However, such high accu-
racy is achieved under Line-of-Sight (LOS) conditions and with an
access point (AP) density that is much higher than that typically
found in current deployments that primarily target good coverage.
In contrast, when many of the APs within range are in Non-Line-
of-Sight (NLOS), the location accuracy degrades drastically.

In this paper we present UbiLocate, a WiFi location system that
copes well with common AP deployment densities and works ubiq-
uitously, i.e., without excessive degradation under NLOS. UbiLocate
demonstrates that meter-level median accuracy NLOS localization
is possible through (i) an innovative angle estimator based on a
Nelder-Mead search, (ii) a fine-grained time of flight ranging sys-
tem with nanosecond resolution, and (iii) the accuracy improve-
ments brought about by the increase in bandwidth and number
of antennas of IEEE 802.11ac. In combination, they provide supe-
rior resolvability of multipath components, significantly improving
location accuracy over prior work. We implement our location
system on off-the-shelf 802.11ac devices and make the implemen-
tation, CSI-extraction tool and custom Fine Timing Measurement
design publicly available to the research community. We carry out
an extensive performance analysis of our system and show that it
outperforms current state-of-the-art location systems by a factor
of 2-3, both under LOS and NLOS.
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1 INTRODUCTION
Wireless localization and sensing have become important applica-
tions of wireless communications, and the accuracy of such systems
has improved substantially over the past two decades of research.
While the first works that pioneered this field [6, 60] had an accu-
racy on the order of several meters at best, recent designs [5, 27] pro-
vide highly accurate location estimates with errors of a few decime-
ters. For this, location systems use a range of different approaches.
With multi-antenna systems, Angle of Arrival (AoA) and/or Angle
of Departure (AoD) information from incoming/outgoing signals
can be estimated bymeans of array processing techniques. With suf-
ficiently many Access Points (APs) or anchors with known location,
target devices can then be located through triangulation [27, 31, 55].
When Time of Flight (ToF) or Time Difference of Arrival (TDOA)
information is available for ranging, classical trilateration meth-
ods are applicable [41, 56, 57]. Combining these methods further
improves accuracy, and some works even propose single-AP local-
ization using both angle and ranging information [34, 40, 47].

For sub-meter accuracy, WiFi location systems typically extract
radio signal features from the Channel State Information (CSI)
to derive accurate angle and timing information of the Line-Of-
Sight (LOS) path. While this is straightforward on software-defined
radio systems, location systems that work on off-the-shelf devices
are easier to deploy and have a much larger practical impact. The
most prominent off-the-shelf devices that provide CSI information
are the Intel 5300 cards [21] for the IEEE 802.11n standard. They are
used by virtually all CSI-based off-the-shelf systems [8, 25, 27, 54].
Despite the good location accuracy, 802.11n is already a decade old
and newer standards such as 802.11ac and 802.11ax can potentially
provide even better performance.

At the same time, the good accuracy of prior systems is only
achieved when the device to be located has unobstructed LOS to
several APs (or at the very least one AP), and performance degrades
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considerably under Non-Line-Of-Sight (NLOS) conditions. Dealing
with NLOS is extremely challenging. While angle and timing infor-
mation from obstructed LOS paths that pass through obstacles may
still provide useful information, it is very difficult to distinguish ob-
structed LOS paths from true NLOS paths coming from reflections.
This is an important shortcoming since typical large scale WiFi
deployments have a number of APs per building floor but fewer
than one AP per room, and NLOS conditions are very common. Sev-
eral works tackle NLOS scenarios using ultra-wideband technology
[12, 37] or software-defined radios for through-wall imaging and
mapping [1, 51]. However, to the best of our knowledge, there is
no general-purpose WiFi location system that provides adequate
performance under true NLOS conditions.1

In this paper we present UbiLocate, a ubiquitous WiFi loca-
tion system that works both under LOS and NLOS conditions. We
achieve good NLOS localization through the improvements brought
about by 802.11ac in terms of bandwidth and number of antennas,
in combination with novel signal processing for multipath decom-
position, that jointly help to resolve multipath effects much more
accurately. Our paper makes the following main contributions:
• Optimized AoA extraction. Classic algorithms such as MUSIC
[46] and ESPRIT [43] have been widely used to analyze RF signals
for path parameter estimation, especially AoA. [2, 31, 47]. Recently,
compressed sensing techniques have been demonstrated to provide
better accuracy [15, 33, 59]. However, their application can be com-
putationally prohibitive in common scenarios. In order to reduce
the computational complexity, UbiLocate iteratively determines a
first estimate of the path parameters and then refines it through
a Nelder-Mead search [30]. This minimization results in a more
accurate multipath decomposition, and UbiLocate achieves an AoA
accuracy improvement of a factor of 2 for LOS and 1.5 for NLOS
settings compared to state-of-the-art algorithms [27].
• Controlled Ranging. Estimating the absolute ToF and thus the
distance between client and AP requires timestamped packet ex-
changes, as standardized in the 802.11 Fine Timing Measurement
(FTM) protocol [23, 24]. However, FTM is inaccurate in multipath-
rich environments [26]. UbiLocate uses a custom protocol similar
to FTM that has lower overhead and is more robust by decomposing
the multipath channel to accurately determine the ToF of the first
path. Again, UbiLocate improves the ToF estimation accuracy by a
factor of 2 for LOS and and 1.5 for NLOS compared to plain FTM.
• Filtering reliable APs. Depending on the specific scenario, the
estimates from different APs have different fidelity.When averaging
the location information provided by all APs, low quality estimates
may contaminate the overall location accuracy. UbiLocate therefore
includes a mechanism to evaluate the quality of different estimates,
giving more weight to the APs that provide good estimates.
• Implementation on off-the-shelf devices.We implement the
UbiLocate system on off-the-shelf Asus AC2900 RT86U routers that
support IEEE 802.11ac with 4x4 Multiple-Input Multiple-Output
(MIMO) and 80 MHz of bandwidth. The improved hardware capa-
bilities increase localization accuracy since the larger bandwidth
and number of antennas allow for better time and space resolution.
We can thus extract the path parameters more accurately than with

1While some systems [27, 45] claim to analyze “NLOS scenarios”, these scenarios do
in fact have LOS to one or more APs in almost all cases.

the older IEEE 802.11n standard. We modify the router firmware to
access CSI in order to estimate AoA, AoD, and ToF. (i) UbiLocate
is the first location system implemented on off-the-shelf devices
that works with 80 MHz WiFi channels and does not require a non-
disclosure agreement (the existing 80 MHz location systems [5, 40]
use Quantenna devices that require such a non-disclosure agree-
ment). (ii) It is also the first IEEE 802.11ac-based location system
that can simultaneously derive both angle and absolute distance to
a target device, whereas prior work uses two separate co-located
devices for this purpose [26, 40].

We deploy UbiLocate in a large office environment and test it
with different AP densities and with both LOS to NLOS measure-
ment points. Our performance evaluation shows that UbiLocate
achieves meter-level median accuracy even for pure NLOS and
low AP density scenarios. It outperforms current state-of-the-art
systems by a factor of 2-3. Finally, we release our tool to extract
CSI and perform FTM-like ranging to the research community to
foster wireless systems research with 802.11ac. We believe that it
will prove similarly useful as the widely used CSI tool for 802.11n
[21], given the hardware improvements offered by 802.11ac. The
CSI extractor tool with the modified firmware and documentation
are available in a github repository [3].

2 UBILOCATE OVERVIEW
UbiLocate locates a wireless device using AoA, AoD, and ToF infor-
mation. This is relatively straightforward when several APs with
direct LOS are within range. However, typical indoor WiFi deploy-
ments do not provide ubiquitous LOS coverage since NLOS links
can provide sufficiently high data rates.

In such complex environments with NLOS, the multipath chan-
nel and the resulting superposition of different signals at the re-
ceiver significantly affects the quality of the location estimate. Even
under pure NLOS, good location accuracy is feasible as long as the
location system can discriminate between obstructed LOS paths
and the NLOS paths coming from reflections. The latter must be
discarded, since they lead to erroneous angle and ToF estimates. By
definition, obstructed LOS paths pass through an obstacle, and thus
their signal power may be severely attenuated compared to other
NLOS paths. Accurately detecting them requires a fine-grained
multipath decomposition of the channel.

As is common for wireless location systems, we assume that the
positions of the APs are fixed and known. To discriminate the mul-
tipath components, UbiLocate minimizes the norm of the difference
between the observed received signal and estimated superimposed
signals and their path parameters. The number of possible combi-
nations of path parameters makes brute force minimization compu-
tationally prohibitive, but if an approximate estimate is known, the
minimization can be sped up significantly. To this end, we first com-
pute rough estimates of the path parameters and then refine them
through a Nelder-Mead search [35]. This provides better accuracy
than the widely used MUSIC and similar approaches [27] which
resolve the paths in one round. UbiLocate iteratively estimates the
parameters of the strongest path and then subtracts them from the
received signal. This allows UbiLocate to estimate the parameters
of weak paths that would otherwise be masked by stronger ones
and is especially critical in NLOS environments. In contrast to prior
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Figure 1: NLOS example with obstructed LOS path.

iterative approaches [13, 20, 48], we further refine the estimation
to remove imperfections which leads to improved angle accuracy
in the challenging cases we target in this paper.

Fig. 1 shows a typical NLOS scenario in which reflected paths
may be stronger than the obstructed LOS one. In addition, as shown
on the right in this example figure, path 𝑝1 and path 𝑝2 are close
in time and angle, and the uncertainty around path 𝑝2 makes it
hard to discriminate the two. In such a scenario, accurate multipath
decomposition is key for good location system performance.

2.1 Path parameters
Consider a MIMO system where the transmitter and the receiver
have uniform linear arrays of 𝐿 and 𝑀 antennas with antenna
spacing of half a wavelength. The transmitter sends a set of OFDM
signals 𝒔 [𝑘] = [𝑠0 [𝑘], 𝑠1 [𝑘], ..., 𝑠𝐿−1 [𝑘]] over 𝐾 subcarriers and 𝐿
antennas. The signals propagate through a multipath channel with
𝑃 different paths and arrive at the receiver, characterized by:
• Complex attenuation 𝛾𝑝 . The signal suffers an attenuation of
𝛾𝑝 along path 𝑝 .
• Angle of arrival 𝜃𝑟𝑥,𝑝 . The signal arrives at each antenna with
a phase delay determined by the antenna spacing. The phase shift
[𝜙 (𝜃𝑟𝑥,𝑝 )]𝑚 at the𝑚th receive antenna as function of the AoA for
the 𝑝th path is given by:

[𝜙 (𝜃𝑟𝑥,𝑝 )]𝑚 = 𝑒−𝑗𝜋 (𝑚−1) sin(𝜃𝑟𝑥,𝑝 ) . (1)

The vector of phase shifts for the whole array is:

𝝓 (𝜃𝑟𝑥,𝑝 ) = [𝜙 (𝜃𝑟𝑥,𝑝 )]0, ..., [𝜙 (𝜃𝑟𝑥,𝑝 )]𝑀−1 . (2)

• Angle of departure 𝜃𝑡𝑥,𝑝 . Similarly, [𝜙 (𝜃𝑡𝑥,𝑝 )]𝑙 is the phase
shift for the 𝑙 th transmit antenna as a function of the AoD:

[𝜙 (𝜃𝑡𝑥,𝑝 )]𝑙 = 𝑒−𝑗𝜋 (𝑙−1) sin(𝜃𝑡𝑥,𝑝 ) (3)

and we denote the vector of phase shifts for the whole array by
𝝓 (𝜃𝑡𝑥,𝑝 ).
• Path delay 𝜏𝑝 . Each path 𝑝 experiences a different propagation
delay determined by its length. In the frequency domain, this delay
represents a phase shift𝜓 (𝜏𝑝 ) [𝑘] between adjacent subcarriers:

𝜓 (𝜏𝑝 ) [𝑘] = 𝑒−𝑗2𝜋𝑘Δ𝑓 𝜏𝑝 , (4)

where Δ𝑓 is the spacing between consecutive subcarriers.
With the parameters above, we can express the channel as fol-

lows:
H[𝑘] =

𝑃−1∑
𝑝=0

𝝓 (𝜃𝑟𝑥,𝑝 )𝛾𝑝𝝓H (𝜃𝑡𝑥,𝑝 )𝜓 (𝜏𝑝 ) [𝑘] , (5)

where (·)𝐻 is the Hermitian operator. The received signal is:

y[𝑘] = H[𝑘]s[𝑘] +w[𝑘] , (6)

wherew[𝑘] is L-dimensional white Gaussian noise in the frequency
domain, i.e.,w[𝑘] = [𝑤0 [𝑘],𝑤1 [𝑘], ...,𝑤𝐿−1]. For a known s[𝑘], we
can then estimate the channel as:

Ĥ[𝑘] = y[𝑘]s∗ [𝑘] = Ĥ[𝑘] = H[𝑘] + ŵ[𝑘] , (7)

where (·)∗ is the conjugate operator. Since the channel provides
spatial information about the location of the devices, it needs to be
estimated as accurately as possible.

2.2 Angle estimation
For device localization, UbiLocate requires the angles for the direct
or obstructed LOS path, provided such a path exists. This path is the
one that typically arrives earliest in time before any of the NLOS
paths coming from reflections, i.e., the onewith the smallest𝜏𝑝 . Note
that the ToF 𝜏𝑝 is not an absolute value but reflects relative delay
differences among paths. (For ranging, UbiLocate uses a customized
FTM implementation.) While directly using AoD information is
not useful due to potential rotation of the device to be located,
estimating it jointly with the other path parameters considerably
improves the path resolvability [54].

To extract parameters of all paths, our objective is to find an
expression for H[𝑘] that minimizes ∥Ĥ[𝑘] − H[𝑘] ∥. Ĥ[𝑘] is the
observed channel and H[𝑘] contains the contribution of each path
according to the estimated path parameters. However, minimiza-
tion by brute force is computationally prohibitive due to the large
number of combinations of path parameter. Hence, we split the
minimization into two steps. We first perform a greedy matching
projection to iteratively estimate the path parameters. We then
perform a minimization through Nelder-Mead search based on the
extracted path parameters from the first step to refine them.

2.2.1 Greedy estimation. Through greedy matching projection we
iteratively compute the contribution of the strongest path, estimate
its parameters, reconstruct it, and then subtract it from the overall
measured channel. The output of the subtraction is the channel
residual and using the residual we can then estimate the second
strongest path’s contribution, and so on, until the parameters of all
significant paths are estimated. This allows to accurately estimate
even the weak paths often found in NLOS scenarios, since we first
remove the contribution of the stronger ones. As is illustrated in
Fig. 1, depending on the properties of the reflectors, paths 𝑝2 and
𝑝3 may be significantly stronger than the obstructed LOS path 𝑝1.

We apply a matching projection to the observed channel and the
path parameters that maximize it are the ones from the strongest
path 𝑝 = 0. We then remove this path from the observed channel
and apply matching projection to the residual to obtain the second
strongest path 𝑝 = 1, and so on. In general, in iteration 𝑝 we extract
path 𝑝 as the strongest path of the residual as:

(𝜏𝑝 , 𝜃𝑟𝑥,𝑝 , 𝜃𝑡𝑥,𝑝 ) =

arg max
𝜏𝑝 ,𝜃𝑟𝑥,𝑝 ,𝜃𝑡𝑥,𝑝

∑
𝑘

𝝓𝐻 (𝜃𝑟𝑥,𝑝 )Ĥr
𝑝 [𝑘]𝝓 (𝜃𝑡𝑥,𝑝 )𝜓∗ (𝜏𝑝 ) [𝑘] , (8)

The path parameters produce phase shifts, where 𝝓 (𝜃𝑟𝑥,𝑝 ) and
𝝓𝐻 (𝜃𝑡𝑥,𝑝 ) are the phase shifts introduced by the AoA and AoD at
receiver and transmitter antennas, and 𝜓 (𝜏𝑝 ) [𝑘] that of the path
length for subcarrier 𝑘 . We multiply these phase shifts by their con-
jugates in the projection, so that only the correct path parameters
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maximize it. The residual in iteration 𝑝 is given by

Ĥr
𝑝 [𝑘] = Ĥ[𝑘] −

𝑝−1∑
𝑝′=0

𝝓 (𝜃𝑟𝑥,𝑝′)𝛾𝑝′𝝓H (𝜃𝑡𝑥,𝑝′)𝜓 (𝜏𝑝′) [𝑘] , (9)

where the residual for 𝑝 = 0 is the original channel Ĥr
0 [𝑘] = Ĥ[𝑘].

To solve the optimization problem in (8), we first determine 𝜏𝑝 .
To do so, we convert the channel from the frequency domain to the
time domain H[𝑡], by applying an over-sampled inverse discrete
Fourier transform to the channel. In the time domain, the path delay
𝜏𝑝 of the strongest path is directly the time 𝑡 value that maximizes
∥H[𝑡] ∥. This channel is given by a combination of sinc functions
with maxima in the different delays. Now, given 𝜏𝑝 we have

H[𝜏𝑝 ] =
∑𝑝−1
𝑝′=0 𝝓 (𝜃𝑟𝑥,𝑝′)𝛾𝑝′𝝓

𝐻 (𝜃𝑡𝑥,𝑝′) (𝜓H (𝜏𝑝 )𝜓 (𝜏𝑝′))
≃ 𝝓 (𝜃𝑟𝑥,𝑝 )𝛾𝑝𝝓𝐻 (𝜃𝑡𝑥,𝑝 )

, (10)

and Ĥ[𝜏𝑝 ] = H[𝜏𝑝 ]+w̄[𝜏𝑝 ] with noise at the instant 𝜏𝑝 computed as
w̄[𝜏𝑝 ] =

∑𝐾
𝑘=0 ŵ[𝑘]𝜓 (𝜏𝑝 )∗ [𝑘]. With this, we can estimate the angle

information. Instead of jointly estimating the 𝜃𝑟𝑥,𝑝 and 𝜃𝑡𝑥,𝑝 , we
first estimate 𝜃𝑡𝑥,𝑝 by a grid search assuming that 𝜃𝑟𝑥,𝑝 is unknown.
This results in the following formulation:

max
𝜃𝑟𝑥,𝑝 ,𝜃𝑡𝑥,𝑝

[1, 0, 0, . . .]Ĥ[𝜏𝑙 ]𝝓 (𝜃𝑡𝑥,𝑝 ). (11)

Having estimated 𝜃𝑡𝑥,𝑝 , we can iteratively refine either angle by a
grid-search assuming that the other is known which increases the
estimation accuracy. This individual estimation of two parameters
is much faster than a joint estimation of two parameters. We refine
the angle estimation by maximizing the following expression:

max
𝜃𝑟𝑥,𝑝 ,𝜃𝑡𝑥,𝑝

𝝓 (𝜃𝑟𝑥,𝑝 )𝐻 Ĥ[𝜏𝑙 ]𝝓 (𝜃𝑡𝑥,𝑝 ) . (12)

Once all parameters for one path are estimated, we recompute
𝛾𝑝 as a linear MMSE solution to minimize the error between the
measured channel and the reconstructed one.

2.2.2 Refinement search. The previous estimation of the path pa-
rameters may contain imperfections since the paths are highly cor-
related. This may leak information of the parameters from weaker
paths to stronger ones and vice versa. To refine the estimates, we
carry out a Nelder-Mead search to minimize ∥Ĥ[𝑘] − H[𝑘] ∥. This
optimization method iteratively generates sets of points that com-
pose a simplex polytope. The gradient expression for the refinement
problem is very complex, whereas below we show how to obtain
an objective function that is simple to evaluate. This makes Nelder-
Mead search a much better fit for the specific problem of multi-path
refinement than gradient descent. While Nelder-Mead search itself
is well studied, to the best of our knowledge it has never been
applied to the problem of path parameter estimation.

We use a vectorized version of the problem ĥv = Φ𝛾 , with
ĥv = [v(Ĥ[0])T, . . . , v(Ĥ[𝐾−1])T]T, [Φ]:,𝑝 = 𝜓 (𝜏𝑝 ) ⊗ (𝜙∗ (𝜃𝑡𝑥,𝑝 ) ⊗
𝜙 (𝜃𝑟𝑥,𝑝 )) and [𝛾]𝑝 = 𝛾𝑝 . This way, we have ĥv as the vector con-
taining all measurement information, Φ as all path contributions
and 𝛾 as their complex gains. Note that only Φ has a dependency
on the path parameters and each column depends only on one path,
while 𝛾 behaves as a weight vector for the different path contribu-
tions. Converting the formulation from min ∥Ĥ[𝑘] − H[𝑘] ∥ to the
vectorized version of the problem min ∥ĥv − Φ𝛾 ∥2 makes it easy to
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Figure 2: Standard FTM (left) sends dedicated messages per
pair of nodes andUbiLocate (right) broadcasts a single frame
per node for ranging with all other nodes.

evaluate the minimization. Now let Φ⊥ be the orthonormalization
by Gram-Schmidt of Φ and A the invertible square matrix such that
Φ = Φ⊥A to simplify the incoming equations. Then

min ∥ĥv − Φ𝛾 ∥2 = min ∥ĥv∥2 + ∥A𝛾 ∥2 − R(ĥH
v Φ

⊥A𝛾)
= min ∥ĥv∥2 − ∥(Φ⊥)Hĥv∥2 + ∥(Φ⊥)Hĥv − A𝛾 ∥2

= min ∥ĥv∥2 − ∥(Φ⊥)Hĥv∥2
(13)

This formula is very fast to evaluate, making it amenable to a Nelder-
Mead search over the path parameters 𝜃𝑟𝑥,𝑝 , 𝜃𝑡𝑥,𝑝 , 𝜏𝑝 in expression
(13). Then, 𝛾 is recomputed as the linear MMSE solution using the
refined parameters.

The direct path 𝑝dp corresponds to the index 𝑝 with the smallest
𝜏𝑝 . To avoid spurious results, we add a power regularization term

𝑝dp = min
𝑝
𝜏𝑝 − 0.0001

𝛾𝑝

max𝑝′ 𝛾𝑝′
. (14)

Finally, the estimated AoA at the AP is given by

𝜃 = 𝜃𝑟𝑥,𝑝𝑑𝑝 . (15)

2.3 Ranging
Accurate ToF information is crucial for ranging and thus for local-
ization. Unfortunately, locating a target node with multiple APs
leads to several problems that must be addressed to achieve good
performance. Each AP is running its own clock source, and since
the different clocks are not synchronized, it is not possible to correct
ranging estimates simply by post-processing the collected CSI data.
Obtaining accurate ToF estimates between each AP and the client
requires multiple packet exchanges with timestamps, as in the FTM
protocol. While this protocol was standardized several years ago
[23], the majority of current WiFi devices do not support it (in-
cluding the ones we instrument for this work). At the same time,
FTM measurements of devices that do support it show suboptimal
performance in multipath-rich environments. We thus introduce in
our framework the first implementation of an FTM-like protocol
that obtains accurate ranging information on off-the-shelf 802.11ac
devices that support CSI extraction.

In Fig. 2, we highlight the differences between the standard FTM
and our implementation by showing how ranging is performedwith
three nodes 𝑁𝑛, 𝑛 ∈ {1, 2, 3} with time on the x-axis. Standard FTM
uses unicast frame-ack exchanges, whereas UbiLocate broadcasts
frames asynchronously to all other nodes. This significantly reduces
the number of frames for ranging with multiple nodes.

For the FTM frames 1-6, we indicate the destination (at trans-
mitter) and the source (at receiver) and the corresponding times.
For instance, frame 3 (𝐹𝑅3) is transmitted at time 𝑇1 by node 𝑁1
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(the initiator) to node 𝑁3 (the responder) that receives it at time
𝑇2. Afterwards, 𝑁3 responds by transmitting frame 𝐹𝑅4 to node
𝑁1 at time 𝑇3, which is received at node 𝑁1 at time 𝑇4. In addition
to specifying the frames carrying the timestamps, FTM defines
a mechanism to collect timestamps measured by the responder
at the initiator. Then, FTM uses 𝑇1, 𝑇2, 𝑇3 and 𝑇4 to evaluate the
Round-Trip Time (RTT) and thus the distance 𝑑 :

RTT = (𝑇4 −𝑇1) − (𝑇3 −𝑇2)

𝑑 = (𝑅𝑇𝑇 /2) · 𝑐
, (16)

where 𝑐 is the speed of light. By using both transmit and receive
times it is possible to remove the reaction time uncertainty, i.e., the
delay between frames 𝐹𝑅3 and 𝐹𝑅4. The procedure can be repeated
multiple times to average results and obtain a more accurate esti-
mate [23]. For FTM, 𝑁 (𝑁 − 1) = 6 frames are required to compute
the 𝑁 = 3 distances, resulting in a quadratic overhead.

Instead, UbiLocate requires only 𝑁 = 3 broadcast frames as
shown in the right part of the figure. A frame includes the 𝑁 − 1
timestamps when the last frame from each of the other nodes was
received, as well as the transmit timestamp for the frame itself.
These frames are transmitted asynchronously by each node, and
are opportunistically reused by other nodes, resulting in a linear
overhead. This also removes the need for a dedicated collection
mechanism. The three frames 𝐹𝑅7-𝐹𝑅9 are used to compute the
three distances. We first use 𝐹𝑅7 in place of 𝐹𝑅3, and we call𝑇1 the
time when 𝐹𝑅7 is transmitted by node 𝑁1, and 𝑇2 the time when
it is received at node 𝑁3. We then use 𝐹𝑅9 in place of 𝐹𝑅4, sent
and received at 𝑇3 and 𝑇4, respectively. As 𝐹𝑅9 embeds 𝑇2 and 𝑇3
(among other timestamps), upon receiving it, node 𝑁1 can use the
same equation above to determine the distance. We can reuse 𝐹𝑅7
together with 𝐹𝑅8 to evaluate the distance between nodes 𝑁1 and
𝑁2. Similarly, we can reuse 𝐹𝑅9 with 𝐹𝑅8 to estimate the distance
between 𝑁2 and 𝑁3.

2.4 Localization
With the information discussed previously, AP 𝑎 can estimate the
location ŷ𝑎 of the target device in Cartesian coordinates using

ŷ𝑎 = x𝑎 + 𝑑𝑎
[
cos𝜃𝑎
sin𝜃𝑎

]
, (17)

where x𝑎 is the (known) position of AP 𝑎, 𝑑𝑎 is the estimated dis-
tance of the target device from the AP, and 𝜃𝑎 is the AoA estimated
at the AP.

Since Eq. (17) holds for any AP, we have a system of 𝐴 such
equations, where𝐴 is the number of APs. However, not all APs pro-
vide equally useful location information and a simple strategy that
averages all estimated positions ŷ𝑎 with equal weights is subopti-
mal. To identify and filter out unreliable estimates, UbiLocate uses
a metric that measures the dominance of multipath components
with respect to the direct path in the received signal. The specific
metric used by our system is the mean excess delay [39], given by
the weighted average of the delays of every single multipath com-
ponent with respect to the direct path, with relative path power
as the weight. More precisely, assuming that we can discriminate

𝑃 > 1 different paths, the mean excess delay 𝜏𝑚,𝑎 for AP 𝑎 is:

𝜏𝑚,𝑎 =

∑𝑃−1
𝑝=0

𝛾𝑝2 (𝜏𝑝 − 𝜏0)∑𝑃−1
𝑝=0

𝛾𝑝2 , (18)

where 𝛾𝑝 and 𝜏𝑝 are the complex attenuation and ToF of path 𝑝 ,
respectively, and 𝜏0 is the ToF of the first received path.

If the contribution of the multipath components is small com-
pared to the direct path, 𝜏𝑚,𝑎 will tend to 0, whereas larger values
of 𝜏𝑚,𝑎 indicate stronger multipath. Hence, a large mean excess
delay is an indication that the position estimate ŷ𝑎 of AP 𝑎 might
be less reliable. UbiLocate uses a threshold 𝜏𝑡ℎ and discards the
estimates whose mean excess delay exceeds 𝜏𝑡ℎ . Since this metric
largely depends on the geometry of the scenario, obstacles and
many other factors, fixing an absolute threshold for this metric
to remove unreliable APs could lead to also removing useful APs.
To address this, for each measurement point UbiLocate applies a
dynamic threshold relative to the AP with the lowest mean excess
delay, 𝜏𝑙𝑤 . Specifically, 𝜏𝑡ℎ is equal to two times 𝜏𝑙𝑤 .

We denote by 𝐴′ the set of APs for which the mean excess
delay 𝜏𝑚,𝑎 is below 𝜏𝑡ℎ . Then, given |𝐴′ | estimates along with their
corresponding mean excess delay 𝜏𝑚,𝑎 , UbiLocate computes the
final position of the target node with a weighted centroid approach:

ŷ =

∑ |𝐴′ |−1
𝑎=0 ŷ𝑎 · (𝜏𝑚,𝑎)−1∑ |𝐴′ |−1
𝑎=0 (𝜏𝑚,𝑎)−1

. (19)

This way, estimates with a small mean excess delay receive a higher
weight. UbiLocate thus discards very unreliable estimates and gives
higher importance to estimates from the most reliable APs. Further-
more, UbiLocate addresses the following issues:

Extreme angles. Extreme angles are defined as angles below
-75◦ and above +75◦. For these cases, UbiLocate’s AoA estimator
may takes the opposite solution (i.e., UbiLocate estimates -75◦ when
the correct AoA is +75◦), due to the fact that the relative phase dif-
ferences become close when the angles approach ±90◦ and the
system is affected by noise. To overcome this issue, UbiLocate con-
siders both possible AoA values and computes the two resulting
positions. UbiLocate then chooses the one that has the minimum
distance to the position estimates from other APs.

Disagreement betweenposition estimates. WhenUbiLocate
combines estimates from very few APs, a single outlier may lead to
large location errors. UbiLocate handles the specific case when only
two APs are available for the localization. If the distance between
location estimates is high, this indicates that the estimate of one
of the AP is an outlier and thus combining the two estimates may
degrade the location accuracy. UbiLocate then takes the APwith the
lowest ToF estimate for the localization when the distance between
the two position estimates exceeds 4 m.

3 IMPLEMENTATION
We build UbiLocate on the Nexmon project that provides a first step
towards CSI extraction from several chipsets developed by Broad-
com [17]. We largely improve over this prior work to consistently
extract accurate and reliable CSI, implement features that make CSI
extraction more flexible, and add support for timestamping both
received and transmitted frames with very high accuracy.
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Figure 3: Asus 802.11ac router with custom antenna array.
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Figure 4: Phase differences for the antennas pairs.

For our implementation we select the Asus AC2900 RT-AC86U
router since it supports 80MHz 802.11ac with up to four spatial
streams in a 4x4 MIMO configuration. The firmware that we devel-
oped replaces the standard one by Broadcom and can capture the
CSI matrix for frames with configurableMAC addresses. In addition,
it recognizes the type of frame, including the spectral width and the
spatial configuration, and collects the CSI matrix accordingly. Since
the router exposes only three antenna SMA plugs externally, we
remove the front panel to access the fourth internal UFL connector
and attach a custom antenna array handler to the four antennas of
the router as shown in Fig. 3.

We now discuss howwe (1) validate the collected CSI and process
it to estimate AoA and AoD, (2) provide the timestamping features,
and (3) finally implement the enhanced FTM procedure.

3.1 Extracting accurate CSI
A range of preliminary measurements with our hardware platform
reveal that calibration is needed to remove hardware imperfections
that would otherwise affect the CSI and render it too unreliable for
localization tasks. Specifically, we address the following problems:

Phase offset between antennas.While all the RF chains share
the same sampling clock and reference signal (to tune to a given
frequency), an unpredictable phase offset between each pair of
antennas appears every time the system is tuned to a new WiFi
channel. As a result, the measured phase delay may not correspond
to the one measured by the AoA or AoD algorithms. This unpre-
dictable phase offset then remains flat over time.

Echos. We observe that the router generates echos from a re-
ceived signal, i.e., the signal is repeated in the time domain. The
time distribution of such echos is fixed and they never change.

We devise a procedure to remove these two imperfections which
consists of a calibration experiment that has to be repeated every
time we configure the equipment. During the setup, we capture
a full CSI matrix with the four antennas connected to the same
single-chain transmitter. This can be easily achieved by connecting
the output ports of a 4-way splitter to four short cables that are also
used to connect the four external antennas during the localization

Userspace Linux Kernel Wi-Fi Module

ARM Cortex A7 CPU RAM/ROM

H
os

t
Fu

ll
M

A
C

Shared Memory

Tx
FI
FO

D
11

C
or

e D11 CPU

ucode Memory Rx
FI
FO

R
A

D
IO

BASEBAND

DMA

RF PHY

CS
I  

&
 T

S

CSI & TS

TX RX

CS
I

Figure 5: Enhanced CSI extraction platform
with the modifications to collect ToF.

experiment later. The splitter ensures that all the signals arrive in
phase, and hence the AoA of the transmitted frame is at 0 degrees.
Thus, all phase offsets measured between the receive chains depend
only on the (random) configuration of the local oscillator. The
rationale behind this experiment is that the full CSI matrix captured
during the calibration phase represents a reference signal that can
be used for correcting the CSI vectors captured afterwards. To this
end, we perform the (element-wise) Hadamard division ⊘ between
new CSI vectors and the reference one:

𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐶𝑆𝐼 = 𝐶𝑆𝐼 ⊘ 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 𝐶𝑆𝐼
Fig. 4 shows the phase offset between different pairs of antennas
before (Fig. 4a) and after applying the calibration (Fig. 4b). The
residual phase offset appears to be minor Gaussian noise, confirm-
ing that this procedure reliably removes the phase imperfections
due to the hardware configuration.

3.2 Extracting timestamps
Implementing a ToF measurement procedure similar to standard
FTM requires accurate time-stamping capabilities in both the trans-
mit and receive directions, and the majority of the Wi-Fi chipsets,
including the one in the chosen platform, simply lack them. We
hence used the Nexmon firmware patching framework [36] to add
these capabilities to the platform, following a similar approach
to the one in [42]. The main modifications involve the software
that runs in the D11 CPU, a microcontroller that manages all time-
critical operations such as channel access, beaconing, generation
of reply frames, etc. This software consists of a single main loop
that i) can neither be interrupted by internal IRQs nor by the upper
layer ARMWi-Fi core; and ii) branches into secondary functions
when the hardware reports conditions that require additional work.
In particular, we modify two functions that belong to the reception
and transmit paths, respectively.

The first function is invoked when a preamble is detected and
performs multiple checks on the first bytes of the incoming frame
to decide how to process it. The CSI extraction patch already adds
a single instruction loop that spins until the frame is completely
received and then it pushes both the CSI data and the frame to
the host. We further customize this loop by adding instructions
to sample the value of the high-frequency clock of the system
whenever the frame ends. We represent this modification in Fig. 5
with the spinning wheel on the right data pipe (reception path). As
shown, after the CSI data is retrieved from the PHY at the bottom,
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the RX timestamp travels up to the application that runs in user
space and collects all the data.

The second function is invoked when the hardware verifies that
all the conditions required for transmitting a frame are satisfied
(i.e., the channel was idle long enough for the backoff counter to
reach zero, no more energy is detected in the channel, no other
operations are pending, etc). When this happens, the hardware is
already transmitting the frame preamble. The function can then
customize the transmission and monitor it until it terminates. We
add two modifications here. The first writes the timestamps over-
heard during the previous transmissions as well as the device’s own
timestamp into the frame. The second consists of a new loop that
waits until the end of the transmission and is represented in the
figure with the spinning wheel on the left data pipe (transmit path).
With this code we capture the transmit timestamp.

We obtain both timestamps by sampling the high-frequency
clock that runs at the speed of the D11 CPU. For the chosen platform
this corresponds to 192.6 MHz, and thus the receive timestamp has
an uncertainty of 1.56mwhen in perfect LOSwithout anymultipath.
In the presence of multipath, the timestamps are affected by the
arrival of all the paths which leads to a bias. However, UbiLocate can
extract an accurate time of arrival of the first path using the CSI data
of the timestamp packet. Specifically, every path that arrives at the
receiver introduces a phase rotation in the CSI of the subcarriers. By
decomposing the channel in time domain, UbiLocate can eliminate
the multipath bias and thus estimate a much more accurate time of
arrival for the direct path.

3.3 Implementation of the FTM procedure
To evaluate the ToF between two nodes, we use the same set of
equations as in Eq. (16) for standard FTM. We consider two frames
traveling in opposite directions—relatively close in time—and we
combine the four corresponding timestamps of two transmissions
and two receptions. However, different from FTM, the frames do not
belong to a specific frame-ack exchange. Instead, they are transmit-
ted by the nodes asynchronously. In our experiments we transmit
such frames frequently, so that frames from each AP are close in
time to that of the client, but other strategies are possible: i.e., the
client might initiate the procedure by transmitting a train of frames
and all APs can schedule the same number of transmissions as
soon as they receive the first frame from the client. We leave such
modifications for future work.

To generate the ToF-related frames we use the injection capa-
bilities available in the Nexmon CSI framework. We implement a
user-space application that uses a PID controller to generate frames
at a configurable rate, e.g., one frame every 4 ms. We also modify
the D11 code to keep the same pacing at the access layer. This
solution is key to avoid any DMA-related delay and ensure that at
any moment in time there are enough “close” frames transmitted by
all nodes, so that ToF estimation and thus ranging can be done. We
further implement a back-pressure mechanism to avoid saturating
the DMA memory when the queue holding injected frames starts
to build up.

Another deviation from standard FTM is the fact that our imple-
mentation has no initiator and responder. For this reason, we cannot
store timestamps at the responder and collect them later from the

initiator. Hence, we modify the D11 code to store transmission
timestamps directly inside the frame. To this end, we additionally
modify one of the two functions described in the previous section.
With this modification, we obtain all the necessary information
for running the ranging procedure by capturing traffic traces at all
nodes. In these traces we have the frames, corresponding recep-
tion timestamps and CSI data, and the transmission timestamps
generated by the sender.

We finally describe the overall procedure for evaluating ToF
between a pair of nodes 𝑁1 and 𝑁2. We start by processing the
traces captured at each node, containing the frames received from
the other one. We then align the clock of node 𝑁1 to that of 𝑁2. We
extract from all frames collected by 𝑁1 the reception timestamp (at
𝑁1) and the transmission timestamp (generated by 𝑁2). We then
apply linear regression to remove the clock skew between the two
nodes, adjusting both reception and transmission timestamps. For
each frame transmitted by 𝑁1 we associate the closest frame in
time received from 𝑁2 and we apply Eq. (16) to the four-tuple of
timestamps, yielding a ToF estimate. Since each AP transmits these
broadcast ToF packets asynchronously, collisions are avoided by
means of the standard DCF channel access mechanism of IEEE
802.11. However, we observe a variability in the ToF estimates
due to systematic delays introduced by WiFi packet processing
similar to plain FTM [23]. These delay differences follow a Gaussian
distribution which is centered approximately at the correct ToF
value. We can thus remove this uncertainty by averaging over a
certain number of estimates to compute a smoother ToF.We observe
that 20 around estimates for good accuracy. As UbiLocate sends
broadcast ToF packets every 4 ms, on average 80 ms are required to
compute a smoothed ToF estimate. We also tested UbiLocate’s ToF
with different levels of background traffic and do not observe any
degradation in raw ToF estimation accuracy. With fully backlogged
background traffic, which corresponds background traffic rate of
500Mbps, UbiLocate gets around 40 ToF estimates per secondwhich
results in smoothing ToF estimates over 500 ms.

4 EXPERIMENTAL EVALUATION
We now evaluate the location accuracy of UbiLocate in a realistic
setup and compare it to several state-of-the-art location systems.

4.1 Testbed setups
To provide a comprehensive performance comparison of UbiLocate
and state-of-the-art location schemes, we test three different deploy-
ments. The first is a simple scenario with high AP density, where
all APs have a LOS path to the station. This corresponds to the
benign conditions under which location systems are usually tested.
Second, we evaluate a medium density scenario where the station
usually sees several APs with a mix of LOS and NLOS conditions,
which tests the systems under adverse conditions. Finally, we move
to a much larger and more sparse environment where usually only
two or three APs are available at a time. This corresponds to the
most common real-world deployments that are optimized for WiFi
coverage, rather than localization performance.

High density testbed The high density environment comprises
four APs, each one placed in the corner of a room of size 85 m2, as
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Figure 6: High density testbed.

Figure 7: Medium density testbed. Figure 8: Low density testbed.

shown in Fig. 6. The deployment has an AP density of 1/21.25 m2.
We further ensure that each AP has a clear direct path to the station.

Medium density testbed The map of this testbed is depicted
in Fig. 7. The area is approximately 300 m2, contains 5 APs, and
has an AP density of 1/60m2. It has seven distinct areas: six rooms,
not all of which contain an AP, and one central corridor.

We consider 110 measurement points located in rooms 1, 2, 3, 4,
and in the corridor, shown as blue dots in Fig. 7. The five APs used
to localize the target are shown as red dots and they are placed in
rooms 1, 2, 5 and 6, and in the central corridor.With this deployment
we ensure that: 1) the majority of target locations are in LOS with
exactly one of the APs; 2) some of the target locations—the ones
in rooms 3 and 4—are not in LOS with any of the APs; and 3) two
APs—namely the ones in rooms 5 and 6—do not have a clear LOS to
any of the target locations. Finally, for this deployment we also test
different pure NLOS scenarios, where for each measurement point
we specifically remove the only AP that does provide LOS, if any.

Low density testbed. This testbed pushes the location systems
to their limit with amuchmore sparse deployment. This is in fact the
most realistic scenario, with an AP density close to that of the actual
production WiFi deployment in this office building. It comprises
two wings of a building and one central area that connects them as
shown in Fig. 8, with a total area of 578 m2 and an AP density of
1/115 m2. Each wing contains an open plan area with desks, as well
as closed offices on either side. The dividing walls, furniture and the
people moving around (measurements were taken during daytime)
create a rich multipath environment and many areas without LOS.
The scenario comprises 70 measurement points, and each point is
usually covered by only two (in the best case by three) APs, whereas
in the other scenarios most measurement points are covered by all
APs. As a result, in this setting it is crucial to properly merge the
location information from the few APs within range.

In all the considered scenarios, the APs are working in moni-
tor mode, extracting one CSI matrix for every received frame. For
ranging, each AP exchanges 802.11 frames with the target device
following the procedure described in Section 2.3. A central con-
troller connected to the APs via Ethernet gathers all the data to

compute the AoA and the distance for every AP as described in the
previous sections. Finally, the algorithm presented in Section 2.4 is
executed on the controller to estimate the position of the device.

4.2 Comparison with other systems
We benchmark the performance of UbiLocate against the following
three state-of-the-art indoor location systems.

Spotfi [27] is a WiFi location system which combines angle
measurements from several APs to determine the device position.
Spotfi computes AoA and path delay using a 2-dimensional MUSIC
algorithm with spatial smoothing for accurate AoA estimates.

FUSIC [26] is based on ToF measurements to determine the
device position. It relies on FTM ranging and uses the 1-dimensional
MUSIC algorithm to reduce multipath effects.

SPRING [40] combines both AoA and ranging information to
provide single AP localization. It uses the MUSIC algorithm for AoA
and FTM for the distance. While SPRING was originally designed
to work with only one single AP, in our experiments we average
the estimates of all of the APs to provide a better position estimate.

We compare these systems against two different versions of
UbiLocate, one that estimates the position using AoA, AoD and ToF,
and a more basic version which only takes into account AoA and
ToF. To distinguish different versions of UbiLocate and indicate the
main features used by each system, we apply the following labeling
scheme: letters A, D, and T identify a system using AoA, AoD and
ToF information, respectively. For example, UbiLocate [AT] is used
to refer to the basic implementation of UbiLocate that only uses
AoA and ToF, whereas UbiLocate [ADT] refers to the full version
that uses all information.

Before we delve into the overall performance of our location sys-
tem, we first study the performance of the individual components
of UbiLocate, i.e., the angle and ranging estimates, in isolation. In
particular, the UbiLocate AoA estimator is compared against the
1D MUSIC AoA estimator and against the one used in Spotfi. We
also compare UbiLocate’s ranging subsystem to vanilla FTM and
to the improved FTM-based ranging proposed in FUSIC.
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While the majority of the systems described above were designed
for and evaluated with the older IEEE 802.11n WiFi standard, we
compare them against UbiLocate both for IEEE 802.11n and IEEE
802.11ac. SPRING also originally uses 80 MHz frames but is based
on a proprietary Quantenna platform. In addition to the improved
hardware capabilities of recent devices, the new 802.11ac standard
supports 4x4 MIMO and up to 80 MHz of bandwidth. These features
help significantly to resolve multipath effects. For reference, 802.11n
systems are limited to 3x3 MIMO and up to 40 MHz of bandwidth.

4.3 High density scenario
The aim of this experiment is to localization performance of UbiLocate
and the rest of the system in a benign multipath environment and
to compare it against the state-of-the-art approaches in an envi-
ronment similar to the one they have been designed for. This also
allows to validate that the performance of the state-of-the-art al-
gorithms matches the results reported in the respective papers. To
this end, we first consider a simple LOS environment, as indicated
in Fig. 6. It comprises four APs, with one AP placed in each of
the corners of room 1. We use 40 location measurement points in
an area of 85 m2. In addition, to show how the improved capabil-
ities offered by the 802.11ac standard impacts location accuracy,
we evaluate all methods both for IEEE 802.11ac as well as IEEE
802.11n configurations. As shown in Fig. 9a, when using 802.11ac
frames, UbiLocate achieves sub-meter localization accuracy for all
the target points and a median error of 30 cm for [ADT] and 40 cm
for [AT]. On the other hand, Spotfi and SPRING have a median
error of 60 cm and 70 cm and a maximum error of 2.3 m and 3.6 m.
FUSIC has the worst performance with a median error of 1.7 m. As
expected, we observe that moving from 802.11ac to 802.11n leads
to a performance degradation for all of the systems. For example,
UbiLocate’s median error increases from 30 cm to 60 cm for [ADT]
and from 40 cm to 85 cm for [AT], respectively. Since the relative
performance of the approaches does not differ substantially be-
tween 802.11n and 802.11ac, for the remaining experiments we only
compare the performance of all systems with an 802.11ac config-
uration. It is worth highlighting that UbiLocate [ADT] is the only
system that achieves sub-meter location accuracy for all measure-
ment points in the high density testbed, making it an excellent fit
for localization-based services that are sensitive to errors.

4.4 Medium density scenario
After evaluating UbiLocate in a simple LOS and dense environment,
we now study how the individual features AoA and ToF behave in
more complex settings with LOS and NLOS. Afterwards, we will
show how these features translate into localization performance.

4.4.1 Analysis of individual features. We test the performance of
the different angle and ranging algorithms in the large deployment
scenario shown in Fig. 7.

AoA. As shown in Fig. 10a, under LOS conditions UbiLocate
achieves an excellent median error of 1 degree and 3 degrees for the
[ADT] and [AT] versions respectively and a maximum error of 20
and 50 degrees, while Spotfi and MUSIC both have a significantly
higher median error of 3.7 and 4.4 degrees and a maximum error of
65 and 55 degrees, respectively. For the measurement points that
have NLOS, UbiLocate achieves a median error of 6 degrees while

that of the other two approaches is above 10 degrees. A striking
difference can be seen for the maximum error achieved 90% of the
times: while UbiLocate has an error of at most 20 and 25 degrees
for [ADT] and [AT] which is still partly usable, both Spotfi and
MUSIC errors reach 40 degrees, which is indicative of significant
outliers. We attribute our improvements to the Nelder-Mead search
algorithm described in Section 2.2, which iteratively refines our
estimates of the AoA by removing the effects of undesiredmultipath
components. Note that the graph includes the raw estimates for
all APs within range, whereas for the actual localization the AP
estimates are weighted and filtered (i.e, not all estimates are used).

Ranging.Results for the ranging subsystem are shown in Fig. 10b.
We verify that UbiLocate can perform ranging more accurately
than FTM and FUSIC. Specifically, we measure a median error of
43 cm for UbiLocate (90% of the times below 1.3 m in LOS condi-
tions), while FUSIC and FTM both achieve similar performance,
with 0.8 m and 2 m for 50% and 90% of the cases, respectively. Also
for NLOS conditions, UbiLocate ranging accuracy outperforms the
other methods, with a median error of 1.1 m, while FUSIC and
FTM have errors of 1.6 and 1.9 m. The key features of our system
that enable this good performance are the accurate timestamping
capabilities we added to the firmware of the devices (see Section 3).

4.4.2 General localization. We now evaluate the overall localiza-
tion accuracy of the different approaches in the medium density
scenario. Specifically, we demonstrate the robustness of UbiLocate
against NLOS and how UbiLocate deals with potentially contradic-
tory location information from different APs in two spatial contexts:
the LOS + NLOS deployment and a special case of only NLOS.

LOS + NLOS. This deployment scenario is shown in Fig. 7 and
comprises five APs and 110 measurement points. In the best case,
there is only one AP in LOS while the other APs are in NLOS.
Thus, it is critical to exploit primarily the information extracted
from this AP as it provides the most accurate location information,
while minimizing the contribution of unreliable information from
some of the NLOS APs. The results are shown in Fig. 9b. Clearly,
UbiLocate achieves a significant median accuracy improvement of
around a factor of 2 compared to state-of-the-art algorithms for
both UbiLocate versions. Specifically, UbiLocate’s median error is
0.75 m while for SPRING, FUSIC and Spotfi it is 2 m, 2.1 m and
3 m, respectively. Furthermore, the maximum error of UbiLocate
is 3.5 m and 6 m for the [ADT] and [AT] versions, whereas the
maximum errors of SPRING, FUSIC, and Spotfi are much higher at
7.5 m, 9 m and 15.5 m, rendering them unsuitable for many indoor
location based services. While the median errors of [ADT] and
[AT] are similar, the additional AoD information used in [ADT]
significantly reduces the maximum error compared to [AT]. This
superior performance is not only related to the more accurate AoA
and ToF subsystems of UbiLocate, but also the particular localiza-
tion strategy that identifies the most reliable APs and weighs their
contributions based on their estimated quality. For completeness,
we also tested UbiLocate [A], i.e., a pure AoA system which runs
only on the APs without any station-side modifications. It achieves
a median error of 1.2 m.

NLOS-only Finally, we evaluate the systems in a setting, where
we force all measurement points to be in full NLOS. To this end, we
remove the respective APs that does provide LOS information, if
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(a) High density testbed.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Localization error [m]

0

0.2

0.4

0.6

0.8

1

UbiLocate [ADT]
UbiLocate [AT]
Spotfi [A]
Fusic [T]
Spring [AT]

(c) Medium density NLOS only

Figure 9: Localization performance of UbiLocate compared to state-of-the-art systems.
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Figure 10: Empirical CDF for AoA and ToF error for all APs,
and for LOS (solid lines) and NLOS (dashed lines).

any, i.e., for the measurement points in room 1 we remove the AP
in room 1 and test the localization performance in that room with
the remaining APs. This process is repeated for all other rooms as
well. While this scenario is extreme and LOS will be available for at
least some of the locations in a regular deployment, it gives a good
indication of the expected performance when additional moving
obstacles (such as persons) in the rooms obstruct and distort the
only available LOS path.

The results are shown in Fig. 9c. There is a small performance
degradation in localization accuracy, but UbiLocate still provides
meter-level median accuracy with an error of 1.1 m and 1.2 m for
the [ADT] and [AT], respectively. In contrast, the median errors for
SPRING, FUSIC, and Spotfi are 4 m, 2.6 m and 3.5 m, respectively,
around a factor of 2 to 3 worse than UbiLocate.2 Finally, UbiLocate
[A] has a median error of 2.2 m. This good overall performance of
UbiLocate in NLOS indicates that path information from APs under
obstructed LOS is valuable, if the paths can be resolved accurately.

4.5 Low density scenario
Compared to the previous scenarios, the low density scenario
shown in Fig. 8 is much more sparse and for half of the points
the client only sees two APs. This AP density is realistic for real-
world deployments, where coverage depends very much on the
geometry of the deployment. For the points with only two APs,
Fusic and Spotfi cannot determine a location since they both need
at least 3 APs within range to locate the user. In addition, the office
furniture and the people moving around produce a rich multipath
environment and dynamic channel conditions. We again first show

2Note that in [27] a higher NLOS accuracy for Spotfi was reported. However, their
NLOS deployment typically has around two APs with LOS per measurement point,
whereas we consider as true NLOS only points for which none of the APs are in LOS.

the performance of the individual features and then the general
localization performance.

4.5.1 Individual features. We compare the AoA and ToF estima-
tion in this challenging case to the previous scenarios. Again, the
graphs include the raw estimates for all APs, whereas for the actual
localization, UbiLocate filters out some of the outliers.

AoA. The AoA results are shown in Fig. 11a with UbiLocate
obtaining a median error of 2.7 and 8.5 degrees for LOS and NLOS
settings for the [ADT] version and 4.3 and 12 degrees for [AT].
Spotfi and MUSIC have similar performance and achieve a median
error of 5.6 and 6.2 degrees for LOS and 12 and 13 degrees for NLOS,
respectively. This degradation in the LOS and NLOS performance
is caused by the larger distances and the rich multipath compared
to the medium and high density scenarios.

Ranging. As shown in Fig. 11b, UbiLocate has an excellent me-
dian error of 0.5 m in LOS while for NLOS it achieves 2 m. FUSIC
and FTM have the same median error of 1.8 m for LOS and 2.8 and
3.4 m in NLOS, respectively. UbiLocate has the lowest maximum
error of 12 m, while Fusic and FTM errors reach 18 m.

4.5.2 General localization. The localization errors can be found
in Fig. 12. Since Fusic and Spotfi cannot be applied for all of the
measurement points, their CDF curves do not reach 1, whereas
SPRING does since it works with just a single AP. As in the other
evaluation, the [ADT] and [AD] versions of UbiLocate have similar
performance with a median error of 1 m, while Spring achieves
a 4 m error. Regarding the highest errors, UbiLocate [ADT] and
[AD] reach 10 m while SPRING has up to 24 m. As expected, the
low AP density and the rich multipath environment produce larger
outliers compared to the medium density NLOS case. Similar to
Spotfi, UbiLocate [A] only works in 55% of the points and achieves
a median error of 12.4 m. The few large outliers with UbiLocate
come from extreme points in far corners of the building that have
large angles to the one or two APs within range under NLOS. In
those cases, achieving better accuracy is only possible by deploying
another AP. It is worth highlighting that UbiLocate generally deals
very well even with such a sparse scenario with a complex channel
environment, a low error in most cases. While the performance of
UbiLocate is similar for the low density and NLOS-only scenarios,
the reasons are different. The NLOS-only scenario is more dense
with four APs in coverage, but none of them have a clear LOS,
whereas the low density scenario has only 2 or 3 APs to localize,
but there are cases with a clear LOS. These different effects happen
to compensate each other in the specific scenarios under study.
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Figure 11: Empirical CDF for AoA and ToF error of
UbiLocate compared to state-of-the-art systems for the
low density scenario for all APs.
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Figure 12: Localization performance of UbiLocate and
state-of-the-art systems for the low density scenario.

4.6 Additional Considerations
Impact of MIMO and bandwidth. All the experiments described
up to this point are performed with the same 4x4 MIMO configu-
ration with 80 MHz bandwidth. However, in principle UbiLocate
can work with any hardware configuration. To characterize the
localization performance for devices ranging from low-end to high-
end hardware complexity, we evaluate UbiLocate for the follow-
ing bandwidth and MIMO configurations in the medium density
testbed (LOS + NLOS). We consider three bandwidth combinations
(20/40/80 MHz) and four antenna configurations (1x1/2x2/3x3/4x4),
resulting in 12 configurations overall.

The results of this evaluation are illustrated in the box plot in
Fig. 13. Let us first consider the 4x4 MIMO configuration. As ex-
pected, the median error rises from 0.7 m when working with a
bandwidth of 80 MHz to 1 m and 1.6 m when reducing the band-
width to 40 MHz and 20 MHz, respectively. The worst performance
is obtained with the single-antenna system and 20 MHz of band-
width, with a median error of 4 m and a maximum error of 18 m.
For comparison, the median error with one antenna and 80 MHz
is only 1.8 m. Finally, the importance of AoA information can be
seen from the sudden drop in the median localization error when
moving from the 1x1 to the 2x2 MIMO configurations. However,
decimeter-level median accuracy can only be achieved with 3x3 and
4x4 MIMO and 80 MHz, or with 4x4 MIMO and 40 MHz bandwidth,
indicating that 802.11n hardware capabilities with 3x3 MIMO and
40 MHz are insufficient to achieve this very high accuracy.

Time complexity. Time complexity plays a crucial role espe-
cially in real-time processing. The dimensionality of the parameters
and their granularity considerably affect the time complexity of the
optimization algorithm. To evaluate it, we run the two versions of
UbiLocate and Spotfi using the traces collected during the localiza-
tion evaluation. UbiLocate applies Nelder-Mead search for the five
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Figure 13: UbiLocate location accuracy of different
configurations of (number of antennas/bandwidth)
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Figure 14: Time complexity for UbiLocate and SpotFi.

most significant paths. The server used for this evaluation is an
Intel(R) Core(TM) i7-6800K CPU with 3.40GHz and 16 GB of RAM
running MATLAB 2019a. The results are illustrated in Fig. 14. We
observe that for 80 MHz, UbiLocate [ADT], which estimates the
three path parameters, is faster than Spotfi which only estimates
two. UbiLocate [AT], which estimates two parameters, has an exe-
cution time of half second and reduces the time complexity by 85%
compared to Spotfi. The significant difference in time complexity
between [AT] and [ADT] comes from the combinatorial complexity
with respect to the number of path parameters to be estimated. This
is exacerbated by the high number of spatial streams of the MIMO
system, since the channel complexity increases with the possible
transmit/receiver antenna pairs.3 While the time complexity of
UbiLocate [AT] is significantly lower than that of [ADT], adding
AoD information does reduce the maximum localization error, as
discussed in Section 4.4. In addition, we observe that when we
reduce the bandwidth by half, the time required to run the system
is also approximately reduced by half. Our implementation uses
unoptimized Matlab code using the predefined Matlab functions.
We expect an improvement of the time complexity by a factor of
5-10 with an optimized implementation in native C.

5 RELATEDWORK
Wireless localization is a very hot topic and has been widely studied
both from theoretical and practical perspectives [4]. Below, we
survey the most important approaches in the research area.

Path parameter estimators. Extracting the path parameters of
the radio-frequency signal has been largely analyzed for positioning
purposes, especially in the field of AoA estimation. Many classical
algorithms such as MUSIC [46] and ESPRIT [43] are currently used
but they do not well resolve AoAs of highly correlated signals [49].
Spatial smoothing techniques allow to decorrelate these signals [38,
3Note that if Spotfi were to consider AoD together with AoA and the path delays, its
time complexity would increase over-proportionally, since the Nelder-Mead search we
use deals with the complexity increase more efficiently than 3D MUSIC.
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52] and provide better performance. Compressed sensing further
improves over these algorithms [15, 33, 59]. These schemes rely on a
search that minimizes the difference between the overall signal and
the superimposed signals in terms of the path parameters. However,
the complexity of the algorithms is computationally prohibitive
when multiple path parameters are estimated jointly, due to the
extremely high number of possible combinations. To deal with that,
UbiLocate firstly estimates the path parameters iteratively, and then
refines them using the Nelder-Mead search algorithm.

Active localization. Here, the goal is to estimate the position
of the device which sends the radio frequency signal. We can dis-
tinguish the following main approaches:

RSSI-based: The propagation losses of the radio frequency sig-
nal is modeled to estimate the distance between transmitter and
receiver. Many well-known models can be found in the literature
[6, 9, 16, 18, 29, 62]. Unfortunately, this approach has been demon-
strated to provide limited accuracy compared to other approaches,
as the received power depends on many environmental factors.

ToF-based: Timestamps are used in the MAC layer together with
echoing techniques to measure round trip time [11, 14, 41, 61], and
consequently the distance between AP and the target device. This
can be extended using dead reckoning [34] to provide the user
location with only a single AP. This concept was later standard-
ized as the FTM protocol. It was tested in [23] and in [24], where
the claimed sub-meter accuracy was validated. However, this accu-
racy can usually not be achieved in rich multipath environments,
whereas our approach is better able to deal with multipath.

AoA-based: Estimating the angle of arrival from an incoming
signal is a well-known topic in the field of array processing [28].
Combining angle of arrival measurements from several APs can
provide very good localization accuracy. This was validated in
[55] where sub-meter accuracy was achieved with large antenna
arrays that are not yet feasible in commercial off-the-shelf (COTS)
devices. This workwas extended to COTS devices in [27] and in [31],
where a two-dimensional (2D) MUSIC implementation (AoA+ToF)
is carried out, improving the performance of 1D MUSIC at the
cost of increasing the computational complexity. It has been also
extended to 3D (AoA+ AoD + ToF) in [50].

Hybrid (RSSI/ToF + AoA)-based: Several systems combine angle
and distance measurements to localize a device from a single AP.
SPRING [40] combines AoA and ToF data derived from two sepa-
rates hardware devices. Also CUPID [47] extracts angle information
from CSI but uses only coarse RSSI to estimate distance. UbiLocate
exploits both angle and ToF information in the same device.

NLOS. The NLOS case was rarely tackled in the past because it is
an extremely challenging problem. Having the main path partially
or completely obstructed by an object significantly complicates ac-
curate path parameter estimation. The majority of prior works dealt
with NLOS using the high bandwidth available in ultra-wideband
systems [1, 19, 37, 44]. For WiFi there are several proposals for
imaging and mapping through walls [1, 2, 51], but they need flex-
ible high-performance hardware such as software-defined radios
and custom antenna arrays. In addition, active anchors [10, 58]
and reconfigurable intelligence surfaces [22, 32] help dealing with
NLOS and improve positioning accuracy in NLOS cases, but such
special purpose hardware is not available in regular WiFi deploy-
ments. While several localization systems claim to tackle NLOS

issues, many of them evaluated the localization accuracy in mixed
LOS/NLOS environments with a very high fraction of available
LOS paths [27, 45]. None of them were evaluated under pure NLOS
conditions. To the best of our knowledge, UbiLocate is the first
WiFi location system that not only works in pure NLOS scenarios,
but even achieves sub-meter accuracy.

WiFi testbeds. The most widely used CSI extraction tool for
localization is [21] and a lot of works build upon this platform. How-
ever, it uses the outdated IEEE 802.11n standard, which limits the po-
tential performance and foregoes the hardware capabilities of new
WiFi standards such as 802.11ac. Designs based on software-defined
radios are appealing due to their high-quality RF hardware, flexibil-
ity, and powerful processing capabilities of FPGAs. There are even
full stack WiFi implementations for 802.11a/g/n and 802.11a/g/p
available through openwifi [53] and GNU Radio [7]. With such
software-defined radio systems, the clock can be sampled more
accurately and with the reduced dispersion the ToF measurements
would need little or no averaging compared to UbiLocate, whereas
the CSI and thus angle estimation accuracy would be largely the
same. However, for practical real-world deployments, it is of critical
importance that location systems can be implemented on COTS
devices without modification to the underlying hardware.

6 CONCLUSIONS
In this paper, we tackle the challenges of accurate wireless local-
ization in realistic indoor WiFi deployments. While many works
in the recent literature achieve excellent performance under ideal
conditions with high AP densities, we target two critical assump-
tions that are key to realistic environments: i) the prevalence of
NLOS paths when estimating a device position, and ii) the scarcity
of APs, i.e., “anchor” nodes with known location. Based on these
assumptions we developed UbiLocate, an IEEE 802.11ac-basedWiFi
location system that works with realistic AP deployment densities.
UbiLocate exploits both a refined AoA extractor and a fine-grained
ToF ranging system to achieve sub-meter accuracy even in tough
NLOS conditions. Our experimental evaluation in a number of com-
mon scenarios shows an overall improvement of the localization
performance by a factor of 2-3 compared to state-of-the-art systems,
both under LOS and NLOS conditions.

Besides the high-accuracy location system, the framework pre-
sented in this paper provides extremely useful tools to the research
community for wireless experimentation with recent COTS WiFi
platforms, for example for wireless sensing, through wall imaging,
activity recognition, rate adaptation, etc., using the improved hard-
ware capabilities of IEEE 802.11ac. Finally, the ability to associate
very accurate timestamps to complete CSI information is valuable
for novel applications such as fine-grained clock synchronization
and optimal scheduling of interfering links.
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