
Supplemental Material: What we talk about

when we talk about software test �akiness

Morena Barboni1, Antonia Bertolino2, and Guglielmo De Angelis1

1 IASI-CNR, Rome, Italy
{morena.barboni, guglielmo.deangelis}@iasi.cnr.it

2 ISTI-CNR, Pisa, Italy
antonia.bertolino@isti.cnr.it

Supplemental Material

This supplemental material details the de�nitions of the concepts that have
been found by conducting the scoping review [3, 32] of both the white and grey
literature introduced in Section 2 of the manuscript titled:�What we talk about
when we talk about software test �akiness�.

Reference Title De�nition(s)

[34]
Test Flakiness � Methods for
identifying and dealing with
�aky tests

A �aky test is a test that both passes and
fails periodically without any code changes.

. . .

[26] We Have A Flaky Test
Problem

A �aky test is a test that both passes and fails
periodically without any code changes.101

. . .

[43] Dealing with �aky tests

A �aky test is a test that's unreliable in be-
haviour, meaning that it yields di�erent re-
sults inconsistently.

They are sometimes referred to as �random
failures�, but in reality, it's often less about
actual randomness than very reproducible
edge cases that happen in a seemingly ran-
dom fashion.

The majority of the time, a test's �akiness
is not due to randomness. If conditions can
be reproduced accurately, then the test will
always behave the same.

Even though they appear to happen ran-
domly, they're usually triggered by a very re-
producible set of conditions.

[42] What is �akiness and how we
deal with it

Sometimes you run your tests multiple times
in a row with no code change, and even then,
the results are di�erent. This instability is
called �akiness.

A �aky test is a test that can be failing or
passing with no changes in the application or
infrastructure.

ii M. Barboni, A. Bertolino, G. De Angelis

Two main reasons are standing behind test
suite instability - bugs in your application or
defects in your testing code. Here are some
examples of failures in our app that have led
to �akiness in our tests.

If �akiness is caused by the instability of
something bigger (like our infra or deploy-
ment process), we very rarely introduce
mechanisms for automatic test reruns

In most cases, �akiness is caused by issues in
testing code. One of the reasons may be using
the application in the wrong way.

Flakiness caused by fails in testing code can
also be coming from improper usage of the
testing tool.

[10] Flaky Tests (And How To
Avoid Them)

A ��aky� test is one that has a non-
deterministic outcome: it can pass sometimes
and fail others, for the same code, running
the same test.

Flaky tests (sometimes also called �Flap-
pers�)

their failure does not necessarily indicate a
bug

We then grepped through the log for key-
words ��ak� and �intermit� to catch varia-
tions of the words �aky and intermittent.

These tests are usually �aky because the de-
veloper made an incorrect assumption about
the ordering of operations being performed
by di�erent threads.

The �nal category of �aky tests we looked at
in detail are those that would pass or fail de-
pending on which tests were executed before
them.

[44] Flaky Tests are Not Random
Failures

same de�nitions as in [43]

[6]
Flaky tests caused by a
production bug: �x the
�akiness, not the bug

�aky tests, i.e. tests which fail randomly

Despite the low probability, when run hun-
dreds of times on the CI, �aky tests will cause
the CI to fail regularly for no real reason at
all.

[27]
A machine learning solution
for detecting and mitigating
�aky tests

A test which passes or fails in a nondetermin-
istic way is referred to as �aky.

There are two main types of �aky tests.
Those that are �aky due to some external
conditions, such as network issues, machine
crashes, power outages etc. . . . The second
type of �akiness is due to defects in the test
case's code or in the CUT (code under test),
such as asynchronous waits, concurrency is-
sues such as race conditions, priority inver-
sion or incorrect assumptions about time-
zones or database ordering.

Flaky tests pass and fail on successive git re-
visions over a long period of time

Supplemental Material iii

[16] Dealing with the �akiness of
UI Tests

no defs in this article

[33] Flaky tests
Part of the test or production code has a non-
deterministic outcome.

The test is �aky because the code doesn't al-
ways return the same result.

Flakiness in tests is caused by poor quality
of test code or bug in production code.

Researchers split the root causes of �akiness
into 10 categories. The top three categories
of �aky tests are Async Wait, Concurrency,
and Test Order Dependency.102

[31] Flaky Tests at Google and
How We Mitigate Them

We de�ne a "�aky" test result as a test that
exhibits both a passing and a failing result
with the same code.

[11] Eradicating
Non-Determinism in Tests

A test is non-deterministic when it passes
sometimes and fails sometimes, without any
noticeable change in the code, tests, or envi-
ronment. Test failures for such tests are seem-
ingly random.

101 Adopted from the Google's De�nition at https://testing.googleblog.com/2016/
05/flaky-tests-at-google-and-how-we.html

102 The blog posts in referring to [28]

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

iv M. Barboni, A. Bertolino, G. De Angelis

Table 2: Details of Flaky Tests de�nitions in the White Literature

Paper Title De�nition Synonym(s)

[9]
Understanding Flaky
Tests: The Developer's
Perspective

Flaky tests are software
tests that exhibit a seem-
ingly random outcome
(pass or fail) despite ex-
ercising unchanged code.
. . . since �aky tests fail in-
termittently, their priority
is often lower than those of
permanent failures

Intermittently
Failing
Tests Non-
Deterministic
Tests -

[37]

The Impact of Failing,
Flaky, and High Failure
Tests on the Number of
Crash Reports Associated
with Firefox Builds

Flaky tests fail non-
deterministically. For
example, a test may both
pass and fail on the same
build.

Non-
Deterministic
Tests

[28]
An empirical analysis of
�aky tests

Test outcomes are not re-
liable for tests that can
intermittently pass or fail
even for the same code
version. Following practi-
tioners, we call such tests
�aky: their outcome is non-
deterministic with respect
to a given software version.

Intermittently
Failing
Tests Non-
Deterministic
Tests

[41]
Shake It! Detecting Flaky
Tests Caused by Concur-
rency with Shaker

A test is said to be
�aky when it non-
deterministically passes
or fails depending on the
running environment

-

[47]
An Empirical Study of
Flaky Tests in Android
Apps

Flaky tests are the tests
that terminate with nonde-
terministic outcomes given
the same CUT (code under
test)

-

[25]
A large-scale longitudinal
study of �aky tests

A test that can both pass
and fail in repeated runs,
on the same SUT (even
without new changes), is
known as a �aky test.

-

Continued on next page

Supplemental Material v

Table 2 � continued from previous page
Paper Title De�nition Synonym(s)

[20]
Root causing �aky tests in
a large-scale industrial set-
ting

are tests that that may pass
and fail with the same ver-
sion of source code and the
same con�guration.

Non-
Deterministic
Tests

[45]
Intermittently failing tests
in the embedded systems
domain

Flaky tests are tests that
yield di�ering verdicts
when nothing in the SW,
HW or TW (TestWare)
have been changed.

-

[30]
Automated Analysis
of Flakiness-mitigating
Delays

Such tests are commonly
called �aky and can be de-
scribed as a test that when
applied to a system S yields
di�erent outcomes on dif-
ferent occasions in appar-
ently identical test scenar-
ios

-

[13]

Practical Automatic Light-
weight Nondeterminism
and Flaky Test Detection
and Debugging for Python

. . . regression tests that do
not behave reliably (known
as �aky tests). Flaky tests
are regression tests that fail
in an intermittent, unreli-
able fashion. The essence
of a �aky test is that, for
the same snapshot of test
code and code under test, it
sometimes fails and some-
times passes.

-

[49]
Test Analysis: Searching
for Faults in Tests

. . . this type of dependency
has been identi�ed as one
of the main sources of �aky
tests. . . . this type of pat-
tern can lead to tests that
fail intermittently.

Intermittently
Failing Tests

[22]
IDFlakies: A framework
for detecting and partially
classifying �aky tests

Previous work de�nes �aky
tests as tests that may
non-deterministically pass
or fail even on the same
version of the code under
test.

Non-
Deterministic
Tests

Continued on next page

vi M. Barboni, A. Bertolino, G. De Angelis

Table 2 � continued from previous page
Paper Title De�nition Synonym(s)

[39]

Detecting Assumptions on
Deterministic Implementa-
tions of Non-deterministic
Speci�cations

Unexpected behavior of
ADINS code can lead
to �aky tests, which are
tests that seem to non-
deterministically pass or
fail.

-

[40]
IFixFlakies: A framework
for automatically �xing
order-dependent �aky tests

Flaky tests can pass or fail
even when run on the same
code, without any changes.

-

[1]

Empirical analysis of fac-
tors and their e�ect on
test �akiness � practition-
ers perceptions

Developers submit code
changes and expect pos-
sible test failures to be
connected with the sub-
mitted change. Unfortu-
nately, some test failures
are not due to the submit-
ted changes but �aky tests.
In addition to this, tests
failing without any change
in the code base (e.g., re-
gression tests executing on
the same build) are also
called �aky tests.

-

[4]
DeFlaker: Automatically
Detecting Flaky Tests

As in previous work,
we de�ne a �aky test
as a test that can non-
deterministically pass
or fail when run on the
same version of the code.
. . . recall that a test is
�aky if it both passes and
fails when the code that is
executed by the test did
not change;

Non-
Deterministic
Tests

[21]
A study on the lifecycle of
�aky tests

Flaky Tests are tests
that pass and fail non-
deterministically on the
same code.

Non-
Deterministic
Tests

[17]
Towards a Bayesian Net-
work Model for Predicting
Flaky Automated Tests

Flaky tests exhibit both
passing and failing results
although neither the code
nor test has changed.

Non-
Deterministic
Tests

Continued on next page

Supplemental Material vii

Table 2 � continued from previous page
Paper Title De�nition Synonym(s)

[2]
FlakeFlagger: Predict-
ing Flakiness Without
Rerunning Tests

Flaky Tests are non-
deterministic tests which
pass and fail when run on
the exact same version of a
codebase

Non-
Deterministic
Tests

[23]
Dependent-test-aware re-
gression testing techniques

Flaky tests are tests that
can both pass and fail when
run multiple times on the
same version of code and
tests.

-

[8]
Detecting Flaky Tests in
Probabilistic and Machine
Learning Applications

�aky tests � tests which fail
non-deterministically when
run on the same version of
code

Non-
Deterministic
Tests

[36]

Wait Wait. No, Tell Me.
Analyzing Selenium Con-
�guration E�ects on Test
Flakiness.

A common issue is that
Selenium tests, like other
automated tests with a
broad scope, are often non-
deterministic (�aky).

Non-
Deterministic
Tests

[46]

A Container-Based Infras-
tructure for Fuzzy-Driven
Root Causing of Flaky
Tests

This kind of tests are called
��aky� (non-deterministic),
that is, a test that passes
or fails intermittently for
the same code version, the
same inputs, and the same
con�guration.

Non-
Deterministic
Tests

[51]

De-Flake Your Tests - Au-
tomatically Locating Root
Causes of Flaky Tests in
Code At Google

If the test suite is exe-
cuted without any changes
with the same con�gu-
ration parameters, they
should either always pass
or always fail. Unfortu-
nately, there might be
non-deterministic,so called
�aky.

Non-
Deterministic
Tests

[38]
Mitigating the E�ects of
Flaky Tests on Mutation
Testing

. . . �aky tests, which can
exhibit di�erent behaviors
(e.g., passing or failing)
even with no changes to the
code under test.

-

Continued on next page

viii M. Barboni, A. Bertolino, G. De Angelis

Table 2 � continued from previous page
Paper Title De�nition Synonym(s)

[29] Predictive Test Selection

Flakiness is the phe-
nomenon whereby the
same test produces di�er-
ent outcomes upon mul-
tiple independent trials.
. . . the non-determinism of
test outcomes, also known
as test �akiness.

Non-
Deterministic
Tests

[19]
Modeling and Ranking
Flaky Tests at Apple

A �aky test is one that
may fail or pass non-
deterministically.

-

[24]

Understanding Repro-
ducibility and Charac-
teristics of Flaky Tests
Through Test Reruns in
Java Projects

Flaky tests are tests that
can non-deterministically
pass and fail in di�erent
test runs, even for the
same code under test and
the same test environment
that the developers can
easily control.

-

[52]

Root causing, detecting,
and �xing �aky tests: State
of the art and future
roadmap

A �aky test is a test that
exhibits both passing and
failing results even though
there is no code change in
CUT (code under test) or
test code whose outcome is
non deterministic.

-

[35]

Flake It 'Till You Make
It: Using Automated Re-
pair to Induce and Fix La-
tent Test Flakiness

Flaky tests are software
tests that appear to exhibit
an element of randomness
in their outcome despite
covering code that has not
changed.

-

[12]
Practical Test Dependency
Detection

Rerunning tests on the
same code should not cause
the outcome of any test to
change. However, in prac-
tice this is not always the
case, and tests may be
�aky, passing and failing
non-deterministically.

Continued on next page

Supplemental Material ix

Table 2 � continued from previous page
Paper Title De�nition Synonym(s)

[48]
An Empirical Study of
Bugs in Test Code

Flaky Tests: These test
bugs are caused by non-
deterministic behaviour of
test cases, which intermit-
tently pass or fail.

x M. Barboni, A. Bertolino, G. De Angelis

Table 3: Details of other de�nitions in the White Literature

Paper Title De�nition Synonym(s)

Latent Flaky Test

[35]

Flake It 'Till You Make
It: Using Automated Re-
pair to Induce and Fix La-
tent Test Flakiness

We refer to tests that
are not currently �aky,
but that could become so,
as having latent �akiness.
There two most critical
sources of latent �akiness
are test order dependencies
and test resource leaks.

-

Non-Flaky Test

[9]

Understanding Repro-
ducibility and Charac-
teristics of Flaky Tests
Through Test Reruns in
Java Projects

Tests that are not �aky ei-
ther always pass (all orders
have 0% failure rate) or al-
ways fail (all orders have
100% failure rate)

-

Non-Hermetic Test

[19]
Modeling and Ranking
Flaky Tests at Apple

Quantifying �akiness is
useful where all tests have
some degree of �akiness, a
situation not uncommon in
practice for non-hermetic
tests (i.e., tests not run
in pure isolation), such as
system tests.

-

ND (Non-Deterministic) Test

[25]
A large-scale longitudinal
study of �aky tests

tests that non-
deterministically pass
or fail with no changes
to test execution order
or implementation of test
dependencies

-

ID (Implementation-Dependent) Test

Continued on next page

Supplemental Material xi

Table 3 � continued from previous page
Paper Title De�nition Synonym(s)

[25]
A large-scale longitudinal
study of �aky tests

Other �aky tests may
be implementation-
dependent, where a
test is �aky due to an
assumption that an API
is deterministic, when
that API is not (e.g., the
order of iteration over a
HashSet) . . . �aky tests
whose test result depends
on the implementation
of a non-deterministic
speci�cation;

-

Smelly Test

[45]
Intermittently failing tests
in the embedded systems
domain

Tests can also be �aky be-
cause of poor design. These
are sometimes called smelly
tests.

-

[1]

Empirical analysis of fac-
tors and their e�ect on
test �akiness � practition-
ers perceptions

Smells refer to any char-
acteristic in the program-
ming code that possibly
indicate a problem. Code
smells refer to smells in
source code or system un-
der test whereas test smells
refer to smells in the test
case code. The test smell is
one of the factors that can
a�ect test �akiness.

-

[2]
FlakeFlagger: Predict-
ing Flakiness Without
Rerunning Tests

A recent survey has found
23 factors that increase, de-
crease and otherwise a�ect
the ability to identify �aki-
ness in tests. These factors
include features such as the
presence of test smells.

-

Intermittently Failing Test

Continued on next page

xii M. Barboni, A. Bertolino, G. De Angelis

Table 3 � continued from previous page
Paper Title De�nition Synonym(s)

[45]
Intermittently failing tests
in the embedded systems
domain

We de�ne an intermittently
failing test to be a test case
that has been executed re-
peatedly while there is a
potential evolution in SW,
HW or TW, and where the
verdict changes over time.
They are di�erent from
�aky tests in that they al-
low changes in the SW or
HW of the ES under test,
as well as in the TW used
for testing.

-

Consistently Failing Test

[45]
Intermittently failing tests
in the embedded systems
domain

are tests that consistently
cause failures.

-

Supplemental Material xiii

Table 4: Additional de�nitions related to �aky test behaviour.

Paper Title De�nition Synonym(s)

Test Flakiness

[46]

A Container-Based Infras-
tructure for Fuzzy-Driven
Root Causing of Flaky
Tests

Intermittent test failures -

[19]
Modeling and ranking �aky
tests at apple

Inability to reliably repeat
a test's Pass/Fail outcome

-

[29] Predictive Test Selection

Flakiness is the phe-
nomenon whereby the
same test produces di�er-
ent outcomes upon mul-
tiple independent trials.
. . . the non-determinism of
test outcomes, also known
as test �akiness.

-

[17]
Towards a Bayesian Net-
work Model for Predicting
Flaky Automated Tests

Maintaining automated
test scripts at scale can be
costly, especially if they
become slow and unstable
� a problem referred to as
test �akiness [8], [17], [25]

-

[1]

Empirical analysis of fac-
tors and their e�ect on
test �akiness � practition-
ers perceptions

Di�erent participants pro-
vided di�erent perception
for what �akiness is and
whether we should call it
test �akiness, source code
�akiness or environment
�akiness.

-

False Alarm

[15]
Empirically Detecting
False Test Alarms Using
Association Rules

A false test alarm is a test
failure that is due to any
other reason than a code
defect. In most cases, such
false alarms are caused by
test and infrastructure is-
sues.

[48]
An Empirical Study of
Bugs in Test Code

The majority of test bugs
are false alarms, i.e., test
fails while the production
code is correct.

Silent Horror

Continued on next page

xiv M. Barboni, A. Bertolino, G. De Angelis

Table 4 � continued from previous page
Paper Title De�nition Synonym(s)

[48]
An Empirical Study of
Bugs in Test Code

. . . a minority of these bugs
result in silent horrors, i.e.,
test passes while the pro-
duction code is incorrect

Intermittent Test Failures

[46]

A Container-Based Infras-
tructure for Fuzzy-Driven
Root Causing of Flaky
Tests

Intermittent test failures
(test �akiness) is common
during continuous integra-
tion as modern software
systems have become in-
herently non-deterministic.

Test Flaki-
ness

Supplemental Material xv

Table 5: Order dependent test de�nitions in the White Literature

Paper Title De�nition Synonym(s)

OD (Order-Dependent) Test

[9]
Understanding Flaky
Tests: The Developer's
Perspective

Test Order Dependency:
This class is characterized
by the result of the test run
depending on the execution
order of the tests.

[28]
An empirical analysis of
�aky tests

Test Order Dependency:
We classify a commit into
this category when the test
outcome depends on the or-
der in which the tests are
run.

[22]
IDFlakies: A framework
for detecting and partially
classifying �aky tests

Following prior work,
we refer to �aky tests
whose only source of
non-determinism is order
dependencies as order-
dependent (OD) tests. OD
tests can deterministically
pass or fail depending on
the order in which the tests
are run.

[40]
IFixFlakies: A framework
for automatically �xing
order-dependent �aky tests

A common kind of �aky
tests are order-dependent
tests, which pass or fail de-
pending on the order in
which the tests are run. We
classify an order-dependent
test into one of two types:
victim or brittle.

Continued on next page

xvi M. Barboni, A. Bertolino, G. De Angelis

Table 5 � continued from previous page
Paper Title De�nition Synonym(s)

[24]

Understanding Repro-
ducibility and Charac-
teristics of Flaky Tests
Through Test Reruns in
Java Projects

Order-dependent (OD)
tests can deterministically
pass or fail based on the
order in which the tests are
run. OD tests determinis-
tically fail for some order
of tests in a test suite but
deterministically pass for
some other orders. Such
tests are deterministic in
that their failure rates are
either 0% or 100% for each
order, and they have at
least two orders whose
failure rates di�er.

-

[2]
FlakeFlagger:Predicting
Flakiness Without Rerun-
ning Tests

Other �aky tests may be
order dependent, which
means that when they run
in a di�erent order than is
expected, they can fail (be
�aky)

[50]
Empirically Revisiting
the Test Independence
Assumption

We call A an order-
dependent test, since its
result depends on whether
it runs after B or not.
Manifest test dependence
requires a concrete order
of the test suite that pro-
duces di�erent results than
expected.

Dependent
Tests

[23]
Dependent-test-aware re-
gression testing techniques

One prominent type
of �aky tests is order-
dependent (OD) tests.
An OD test is a test that
passes or fails depending
only on the order in which
the test is run.

Continued on next page

Supplemental Material xvii

Table 5 � continued from previous page
Paper Title De�nition Synonym(s)

[14]
Reliable Testing: Detect-
ing State-Polluting Tests to
Prevent Test Dependency

. . . even for the same ver-
sion of the code under test,
the tests could pass when
executed in one order but
fail when executed in an-
other order.

Dependent
Tests

[38]
Mitigating the E�ects of
Flaky Tests on Mutation
Testing

When multiple tests share
resources, they may be sub-
ject to �akiness due to test-
order dependencies: the be-
havior of a test might
change based on which
tests had run previously.

[52]

Root causing, detecting,
and �xing �aky tests: State
of the art and future
roadmap

Order-dependent tests pro-
duce �aky tests due to the
order of sequence in which
the tests run. If there were
test A and test B, chang-
ing the order of the tests on
the CUT may result in dif-
ferent outcomes.

-

[25]
A large-scale longitudinal
study of �aky tests

�aky tests whose test result
depends on the order the
tests are run.

-

OD Vic (Order-Dependent Victim)

[22]

iFixFlakies: A Framework
for Automatically Fixing
Order-Dependent Flaky
Tests

A victim is an order-
dependent test that consis-
tently passes when run by
itself in isolation from other
tests (but fails when run
with some other tests).

-

[25]
A large-scale longitudinal
study of �aky tests

Order-dependent victim
(OD Vic) are tests that
pass when run in isolation
but fail when run after
some speci�c tests;

OD Brit (Order-Dependent Brittle)

Continued on next page

xviii M. Barboni, A. Bertolino, G. De Angelis

Table 5 � continued from previous page
Paper Title De�nition Synonym(s)

[22]

iFixFlakies: A Framework
for Automatically Fixing
Order-Dependent Flaky
Tests

A brittle is an order-
dependent test that consis-
tently fails when run by it-
self in isolation (but passes
when run with some other
test(s))

-

[25]
A large-scale longitudinal
study of �aky tests

Order-dependent brittle
(OD Brit) are tests that
fail when run in isolation
but pass when run after
some speci�c tests;

Supplemental Material xix

Table 6: Related concepts to order dependent tests in the White
Literature

Paper Title De�nition Synonym(s)

Helper

[22]

iFixFlakies: A Framework
for Automatically Fixing
Order-Dependent Flaky
Tests

Helpers are tests whose
logic (re)sets the state re-
quired for order-dependent
tests to pass. Both cleaners
(for victims) and state-
setters (for brittles) help
make order-dependent
tests pass when they run in
certain test orders. Hence,
we refer to cleaners and
state-setters as helpers.

-

Polluter

[22]

iFixFlakies: A Framework
for Automatically Fixing
Order-Dependent Flaky
Tests

These tests pollute the
state (e.g., global vari-
able, �le system, network)
on which the victim de-
pends. A polluter can con-
sist of multiple tests, where
the combination of running
those tests in a certain or-
der leads to the victim fail-
ing.

-

[14]
Reliable Testing: Detect-
ing State-Polluting Tests to
Prevent Test Dependency

Polluters are tests that pol-
lute the shared state. These
are tests that modify some
location on the heap shared
across tests or on the �le
system; a subsequent test
could fail if it assumes
the shared location to have
the initial value before the
state was modi�ed.

State-
Polluting
Tests

[12]
Practical Test Dependency
Detection

In this paper, we con-
sider the problem caused
by state polluting tests:
tests that leave the envi-
ronment in a di�erent state
than they found it in

State-
Polluting
Tests

Cleaner

Continued on next page

xx M. Barboni, A. Bertolino, G. De Angelis

Table 6 � continued from previous page
Paper Title De�nition Synonym(s)

[22]

iFixFlakies: A Framework
for Automatically Fixing
Order-Dependent Flaky
Tests

A cleaner is a test order
that resets the state pol-
luted by a polluter;

-

State-Setter

[22]

iFixFlakies: A Framework
for Automatically Fixing
Order-Dependent Flaky
Tests

A state-setter is a test or-
der that sets up the state
for a brittle.

-

Supplemental Material xxi

Table 7: Non-order dependent test de�nitions in the White Litera-
ture

Paper Title De�nition Synonym(s)

NOD (Non-Order-Dependent) Test

[22]
IDFlakies: A framework
for detecting and partially
classifying �aky tests

We refer to all other types
of �aky tests, which are
not OD tests, as non-order-
dependent (NOD) tests.

-

[2]
FlakeFlagger: Predict-
ing Flakiness Without
Rerunning Tests

Tests that are �aky regard-
less of execution order.

-

[24]

Understanding Repro-
ducibility and Charac-
teristics of Flaky Tests
Through Test Reruns in
Java Projects

Non-order-dependent
(NOD) tests are �aky
but not OD. NOD tests
can non-deterministically
pass and fail even for
the same order of tests.
Such tests have at least
one order where the test
fails non-deterministically
(failure rate is neither 0%
nor 100%).

-

NDOD (Non-Deterministic Order-Dependent) Test

[24]

Understanding Repro-
ducibility and Charac-
teristics of Flaky Tests
Through Test Reruns in
Java Projects

NDOD tests are NOD tests
where at least one or-
der's failure rate signi�-
cantly di�ers from other or-
ders' failure rates. e.g., a
test that has a 99% failure
rate in one order but 0% in
another.

-

NDOI (Non-Deterministic Order-Independent) Test

[24]

Understanding Repro-
ducibility and Charac-
teristics of Flaky Tests
Through Test Reruns in
Java Projects

NDOI tests are NOD tests
where all failure rates do
not signi�cantly di�er.

-

ND (Non-Deterministic) Test

Continued on next page

xxii M. Barboni, A. Bertolino, G. De Angelis

Table 7 � continued from previous page
Paper Title De�nition Synonym(s)

[25]
A large-scale longitudinal
study of �aky tests

tests that non-
deterministically pass
or fail with no changes
to test execution order
or implementation of test
dependencies

-

References

1. Ahmad, A., Lei�er, O., Sandahl, K.: Empirical analysis of factors and their e�ect
on test �akiness-practitioners' perceptions. arXiv preprint arXiv:1906.00673 (2019)

2. Alshammari, A., Morris, C., Hilton, M., Bell, J.: FlakeFlagger: Predicting �akiness
without rerunning tests. In: Proc. ICSE Art. Ev. track. IEEE (2021)

3. Arksey, H., O'Malley, L.: Scoping studies: towards a methodological framework.
International Journal of Social Research Methodology 8(1), 19�32 (2005)

4. Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.: DeFlaker:
Automatically detecting �aky tests. In: Proc. ICSE. pp. 433�444. ACM (2018)

5. Carver, R.H., Tai, K.C.: Replay and testing for concurrent programs. IEEE Soft-
ware 8(2), 66�74 (1991)

6. Champier, C.: Flaky tests caused by a production bug: �x the �akiness, not the
bug. Online on medium.com (Feb 2019)

7. Cotroneo, D., Grottke, M., Natella, R., Pietrantuono, R., Trivedi, K.S.: Fault trig-
gers in open-source software: An experience report. In: Proc. ISSRE. pp. 178�187.
IEEE (2013)

8. Dutta, S., Shi, A., Choudhary, R., Zhang, Z., Jain, A., Misailovic, S.: Detecting
�aky tests in probabilistic and machine learning applications. In: Proc. ISSTA. pp.
211�224. ACM (2020)

9. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding �aky tests:
The developer's perspective. In: Proc. ESEC/FSE. pp. 830�840. ACM (2019)

10. Eloussi, L.: Flaky tests (and how to avoid them). Online on medium.com (Sep 2016)
11. Fowler, M.: Eradicating non-determinism in tests (Apr 2011)
12. Gambi, A., Bell, J., Zeller, A.: Practical test dependency detection. In: Proc. ICST.

pp. 1�11. IEEE (2018)
13. Groce, A., Holmes, J.: Practical automatic lightweight nondeterminism and �aky

test detection and debugging for Python. In: Proc. QRS. pp. 188�195. IEEE (2020)
14. Gyori, A., Shi, A., Hariri, F., Marinov, D.: Reliable testing: Detecting state-

polluting tests to prevent test dependency. In: Proc. ISSTA. pp. 223�233. ACM
(2015)

15. Herzig, K., Nagappan, N.: Empirically detecting false test alarms using association
rules. In: Proc. ICSE. pp. 39�48. IEEE (2015)

16. Jacob, J.: Dealing with the �akiness of UI tests. Online on medium.com (Mar 2020)
17. King, T.M., Santiago, D., Phillips, J., Clarke, P.J.: Towards a bayesian network

model for predicting �aky automated tests. In: Proc. QRS-C. pp. 100�107. IEEE
(2018)

18. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele
University 33(2004), 1�26 (2004)

Supplemental Material xxiii

19. Kowalczyk, E., Nair, K., Gao, Z., Silberstein, L., Long, T., Memon, A.: Modeling
and ranking �aky tests at Apple. In: Proc. ICSE-SEIP. pp. 110�119. ACM (2020)

20. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root causing
�aky tests in a large-scale industrial setting. In: Proc. ISSTA. pp. 101�111. ACM
(2019)

21. Lam, W., Mu³lu, K., Sajnani, H., Thummalapenta, S.: A study on the lifecycle of
�aky tests. In: Proc. ICSE. pp. 1471�1482. ACM (2020)

22. Lam, W., Oei, R., Shi, A., Marinov, D., Xie, T.: iDFlakies: A framework for de-
tecting and partially classifying �aky tests. In: Proc. ICST. pp. 312�322. IEEE
(2019)

23. Lam, W., Shi, A., Oei, R., Zhang, S., Ernst, M.D., Xie, T.: Dependent-test-aware
regression testing techniques. In: Proc. ISSTA. pp. 298�311. ACM (2020)

24. Lam, W., Winter, S., Astorga, A., Stodden, V., Marinov, D.: Understanding re-
producibility and characteristics of �aky tests through test reruns in Java projects.
In: Proc. ISSRE. pp. 403�413. IEEE (2020)

25. Lam, W., Winter, S., Wei, A., Xie, T., Marinov, D., Bell, J.: A large-scale longitu-
dinal study of �aky tests. Proc. ACM on Programming Languages 4(OOPSLA),
1�29 (2020)

26. Lee, B.: We have a �aky test problem. Online on medium.com (Nov 2019)

27. Liviu, S.: A machine learning solution for detecting and mitigating �aky tests.
Online on medium.com (Oct 2019)

28. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of �aky tests.
In: Proc. FSE. pp. 643�653. ACM (2014)

29. Machalica, M., Samylkin, A., Porth, M., Chandra, S.: Predictive test selection. In:
Proc. ICSE-SEIP. pp. 91�100. IEEE (2019)

30. Malm, J., Causevic, A., Lisper, B., Eldh, S.: Automated analysis of �akiness-
mitigating delays. In: Proc. AST. pp. 81�84. IEEE (2020)

31. Micco, J.: Flaky tests at Google and how we mitigate them (May 2016)

32. Munn, Z., Peters, M.D., Stern, C., Tufanaru, C., McArthur, A., Aromataris, E.:
Systematic review or scoping review? guidance for authors when choosing between
a systematic or scoping review approach. BMC medical research methodology
18(1), 1�7 (2018)

33. Otrebski, K.: Flaky tests. Online on medium.com (Apr 2018)

34. Palmer, J.: Test �akiness � methods for identifying and dealing with �aky tests.
Online on medium.com (Nov 2019)

35. Parry, O., Kapfhammer, G.M., Hilton, M., McMinn, P.: Flake it'till you make it:
Using automated repair to induce and �x latent test �akiness. In: Proc. ICSE
Workshops. pp. 11�12. ACM (2020)

36. Presler-Marshall, K., Horton, E., Heckman, S., Stolee, K.: Wait, wait. no, tell me.
analyzing selenium con�guration e�ects on test �akiness. In: Proc. Wksp AST. pp.
7�13. IEEE (2019)

37. Rahman, M.T., Rigby, P.C.: The impact of failing, �aky, and high failure tests on
the number of crash reports associated with Firefox builds. In: Proc. ESEC/FSE.
pp. 857�862. ACM (2018)

38. Shi, A., Bell, J., Marinov, D.: Mitigating the e�ects of �aky tests on mutation
testing. In: Proc. ISSTA. pp. 112�122. ACM (2019)

39. Shi, A., Gyori, A., Legunsen, O., Marinov, D.: Detecting assumptions on deter-
ministic implementations of non-deterministic speci�cations. In: Proc. ICST. pp.
80�90. IEEE (2016)

xxiv M. Barboni, A. Bertolino, G. De Angelis

40. Shi, A., Lam, W., Oei, R., Xie, T., Marinov, D.: iFixFlakies: A framework for
automatically �xing order-dependent �aky tests. In: Proc. ESEC/FSE. pp. 545�
555. ACM (2019)

41. Silva, D., Teixeira, L., d'Amorim, M.: Shake it! detecting �aky tests caused by
concurrency with Shaker. In: Proc. ICSME. pp. 301�311. IEEE (2020)

42. Sªapi«ski, M.: What is �akiness and how we deal with it. Online on medium.com

(Feb 2020)
43. Stosik, D.: Dealing with �aky tests. Online on medium.com (Nov 2019)
44. Stosik, D.: Flaky tests are not random failures. Online on medium.com (Nov 2019)
45. Strandberg, P.E., Ostrand, T.J., Weyuker, E.J., Afzal, W., Sundmark, D.: Inter-

mittently failing tests in the embedded systems domain. In: Proc. ISSTA. pp.
337�348. ACM (2020)

46. Terragni, V., Salza, P., Ferrucci, F.: A container-based infrastructure for fuzzy-
driven root causing of �aky tests. In: Proc. ICSE-NIER. pp. 69�72. IEEE (2020)

47. Thorve, S., Sreshtha, C., Meng, N.: An empirical study of �aky tests in android
apps. In: Proc. ICSME. pp. 534�538. IEEE (2018)

48. Vahabzadeh, A., Fard, A.M., Mesbah, A.: An empirical study of bugs in test code.
In: Proc. ICSME. pp. 101�110. IEEE (2015)

49. Waterloo, M., Person, S., Elbaum, S.: Test analysis: Searching for faults in tests
(n). In: Proc. ASE. IEEE (Nov 2015)

50. Zhang, S., Jalali, D., Wuttke, J., Mu³lu, K., Lam, W., Ernst, M.D., Notkin, D.:
Empirically revisiting the test independence assumption. In: Proc. ISSTA. pp. 385�
396. ACM (2014)

51. Ziftci, C., Cavalcanti, D.: De-Flake your tests: Automatically locating root causes
of �aky tests in code at Google. In: Proc. ICSME. pp. 736�745. IEEE (2020)

52. Zolfaghari, B., Parizi, R.M., Srivastava, G., Hailemariam, Y.: Root causing, detect-
ing, and �xing �aky tests: State of the art and future roadmap. Software: Practice
and Experience (2020)

