| Well Name: LLANBEDR (MOC Operator: IGS / UCW Aberystwyth | , | SUP | PLEMENTARY DATA, | 1. STRATIGRA | APHICAL DISTRIB | BUTION OF FORA | AMINIFERA IN THE HETTA | NGIAN-SINEMURIAN OF | F THE LLANBEDR (MOCHRA | AS FARM) BOREI | |--|---|---|--|---|---|--
--|---|---|---|--|---|---|---|---|--|--|---|---|--|--|---|---|---|--|--|---|--|---|--|--|---| | Scale : 1:1000 HETTANG Chart date: 11 January 2014 Monograp Authors: I | MINIFERA DISTRIBUTION CHART NGIAN - SINEMURIAN raph of the Palaeontographical Socety, Publication 6 s: Philip Copestake & Ben Johnson | 341, Volume 167 (for 2013) | GD Boundary Key | . Absolute abundance (15mm: | 50 counts) | | | | | | | | | | | Foraminife | ninifera Calcareous | | | | | | | | | | | | | | | Absolut | Foraminifera Agglutinatin | ng | | | stratigraphy tostratigraphy nostratigraphy | minifera | | | sfadyeni
e | | | | | sata | | | |) E | | | | ma
rica | | | | <i>Yerma</i> | | | rica
- | | rana
ta | μ | - | iloculare | | Significant l | Biostratigraphic Events | | ft) Lithos one Ammo | E Forar e susica substriara | a tenera tenera a tenera tenuistriata aff. mucronata cf. ventricosa parvula subsiliqua nomala rva i planiconvexa aticosta udocommunis | inaequale
nuensteri muensteri
vrians varians
calomorpha
n liasicum | um madadyeni mac
um madadyeni mac
um northamptonense
m strictum
va lanceolata
cerrua | a lanceolata cf. breoni suboligostegia tortilis issima arata vulata minima | iiasina
brizaeformis
'erquemi barnardi
srquemi sulcata
'ulcata
tensis | osaria multicostata
aphela
na
na tenuistriata
a varians
ntinensis
na | whittakeri a nodigera terquemi vetustissima erquemi bicostata liassicum liassicum mitiva era | a Iongiscata Iongisc
a? solecensis
simplex
usleri
Yiata | auperata gr.
saria vulgata gr.
'Tacrimaforma
liassicum teres | n liassicum teres nitis ara implex reoni naequistriata rotracta gr. Imidium orbiculare a sinemuriensis | na prima praerugosa
ina crenata
ina paucicosta
na ovata
speciosus gr.
initidana
ina arbuscula | a paucicurvata
terquemi terquemi
tenera tenera form
a matutina | ua lamellosa i apheilolocula iclaviformis ina cf. paucicurvata ina oclithica ina prima insignis | a paranodosaria
involuta involuta
rima incisa
rruginea
1 lanceolata | segmentata urva urva urva urva urva urva urva urv | It pikettyi ssaria oviformis margarita dorsopla sbulata anchisphaen is mrecta cf. bartensteini sica | prima rugosa xxcostata ichra excelsa a varians haeusleri | a bangae sila mesotriassica minuta vasta rteheri mochrasensis | olioligera recrnua ssp.A recrnua ssp.A tenera pupa ? cf. compressa % perlucida ligitalis | agenoides onstricta vonstricta yularis vencostata vechyderma pachyd | asna
prima insignis
is exerata
vtensis
bliquecostulata
kunzi | sti
udoinornata
rmeri | a tenera subprismat
retensis
sherborni
triloculina
1.A
margarita margarita | a robusta asidentatus paucicostata sleri nticulatacostata tublaevis sublaevis | sublaevis hannover. 1? inopinata is denticulatacarinat is erzingensis of. turgida iveutoburgensis aria dubia | urgoti 'ord sis mediomatricorum concentrica rquemi squamosa ntegra usa | Jausa
bicornis
f. neglecta
orima spinata
trigona
trigona
trivoluta
striata
tenera occidentalis
C.C.
sp.
ynaria | prima interrupta victonica selfingensis selfingensis selfingensis selfingensis madadyeni tenui f. terquemi f. terquemi f. crassa selfingensis selfingensis selfingensis | s siliceus pattoris pattoris la liassica noides d' canui noides d' canui noides kingakensis a difflugitormis a sp. a tangentia thuringicus ensis lurassica A flagellum canningensis d, orvoi | a sablei a sp.A sp. fes favus les liasinus CODI | Biostratigraphic Events ast Downhole Occurrence First Downhole Occurrence | | Ones Hand Group Age Age Approximately 1123 Ag | Subzon Subzon Subzon Subzon Sample Foguttulina lia | Paralingulin. Paralingulin. Prodentalina Prodentalina Prodentalina Aginulina ar Vaginulina pa Maginulina pa Maginulina pa Maginulina pa | Duoplanum . Lenticulina ra Nodosaria ct | Ophthalmidiu Ophthalmidiu Ophthalmidiu Palaeomiliolin Paralingulina (| Paralingulina Prodentalina Prodentalina Prodentalina Prodentalina Prodentalina Bullopora colli Bullopora glob | Cornuspira i Ichthyolaria t Ichthy | Pseudonodc Reussoolina Spirillina infir Mesodentalin Nodosaria for | Nodosaria w Prodentalina Prodentalina Prodentalina | Paralingulin. Planispirillina Prodentalina . Lagena? hae. Nodosaria rad | Planularia p: Pseudonodos Reussoolina? Loxostomum I. | Nodosaria ra Nodosaria ra Nodosaria si Nodosaria si Planularia br. Planularia inz Planularia pr. Praeophthalm Prodentalina s | Marginulina Prodentalina Prodentalina Reussoolina Astacolus spe Nodosaria nitii | Prodentalina Prodentalina Ichthyolaria I Paralingulina Mesodentalina | Marginulina Nodosaria at. Nodosaria ck Prodentalina Prodentalina Prodentalina et. | Paralingulin: Berthelinella Marginulina pi Palmula cf. fei | Procerolage Saracenaria Vaginulina c Marginulina c Prodentalina Prodentalina Prodentalina Prodentalina Prodentalina Redentalina Lagena liasica | modosaria p Planularia a. Pseudonodo Reinholdella Bullopora glc Incertae sedi Nodosaria po Prodentalina Involutina lias. | Marginulina Marginulina Marginulina Planularia pu. Semiinvoluta Mesodentalin: | Neobulimina Oberhausere Paralingulina Prodentalina Profentalina Reinholdella c. Reinholdella c. | Nodosaria d. Paralingulina: Paralingulina: Prodentalina o | rrodentaline Nodosaria lɛ Vaginulina o Nodosaria reg Nodosaria no Reinholdella p | Marginulina Marginulina Vaginulinops Nodosaria ho Marginulina o, Nodosaria cf. Astacolus sem. | Vaginulina li: Tubinella pse Marginulina tu | Paralingulin: Vaginulina tr. Marginulina s. Nubecularia t. Palmula sp. Vaginulina sp. Reinholdella t. | Reinholdelle Astacolus be Prodentalina Nodosaria iss Nodosaria del Saracenaria se Brizalino lizze | Saracenaria Saracenaria Spiroloculina Vaginulinopsi Prodentalina t Prodentalina t Prodentalina t Prodentalina t Prodentalina t Prodentalina t Vinelinino s | Vinelloidea I Vinelloidea I Vinelloidea I Vaginulinops Spiroloculina Ichthyolaria te Prodentalina ii Vacinulise I | Vaginulina c Produina c Produina i Vaginulina i Saracenella Caracini i controloria ligita i Controloria ligita i Paralingulina sp Berthelinella s Controloria i igni | Reinholdelle Marginulina , Haynesella F Nodosaria as Oberhausere Podenthalmidiu Prodentellina ci Prodentellina ci Acrulianmina ci Acrulianmina ci | Ammodiscu. Glomospira, Glomospira, Glomospira, Haplophragn. Haplophragn. Lagenammin. Lagenammin. Lagenammin. Lagenammin. Tagenammin. Tokybammina. Trochammina. | Trochammin Trochammin Trochammin Verneuilinoid Verneuilinoid | | | 240m— 4050'— 4050'— 4100'— 10007 N H H 200 I 1153.8 1000 I 1153.9 1153.8 1153.9 | § | | [2 14 48 48 48 48 48 48 48 48 48 48 48 48 48 | 15 38 (2
39 4 (2
16) 5 h | 177 165 128 | 44 | (1) (2 | (3 1 C C C C C C C C C | | | (1) (2) (3) (1) (2) (1) (1) (1) (2) (1) (1) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2 | • | [2
 |)n | 3 21
12
23 | fn (32
jn jn | | 1 | (h | 24)1
(h)1? 18 | | | 35 | 3 h | | | | | (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | | FDO V. denticulatacarinata @ 1245.3 | | | 90m— 4200'— | 1279.12 39 1279.12 1279.12 139 1279.12 139 139 137 137 137 139 137 137 137 137 137 137 137 137 137 137 | | 18 28 | 16 30 4 12 12 12 12 12 12 12 12 12 12 12 12 12 | 14 789 | | | 671 | Z 6 | 7 8 | | 11 (27 (2 (3
1. 11 | | Q2 | | . (k | | | | 27 | | | | | 1 | | 9 | 9 G | , | <u> </u> | LDO M. prima interrupta @ 1270.61n LDOs P. testudinaria & R. pachydern 1 1 1 FDOs frequent A. speciosus & v. con LDO P. tenera occidentalis @ 1287.7 | rma humilis @ 1279.12m | | 4250'-
m-
4300'-
1000
4300'- | JF8 | 59 S 12 B 13 | 25 23 | | 2 | 27 | |) (s h (a) (c c | 13 | 13 6 | (h 14 |)
1
2 | 17 | 7 2 | G 11 | | , , , , , , , , , , , , , , , , , , , | 7 | | 23 | (<u>P</u> | | 7 | | 24 | 19 | | [n][n | | (2) | II | | | 4350' | 1321.94 13
1330.63 13 | | 13 19 | | 15 <u>)</u> | 7 (2) | | 12 (2 (3 h h h h | [3]
[3] | B 10 | | DB | [2? [3] | | 1 (1
 2 (1 | | | | | 20 J1 J2? | | | | | h | | (2 l)1 l)2 l)2 l)1 l)2 l)2 l)1 l)2 l)2 l)1 l)2 | 01 01 01 01 01 01 01 01 01 01 01 01 01 0 | | <u> </u> | I DOI tomori. | .61m | | R SINEMURIAN Oxynotum | ● 1349.15 S | | B 24 | | | | | | | | | | | | |) | | | | (3) (4) (4) | | | | | | 1g | | | | (2) | -LUU I, terquemi squamosa @ 134 | | | 4500'-
4550'- | Simpsoni
378.4
Sign JF7 ■ 1384.61 It | | 21 14 | | | 19 15 2 | 11° 2 1 1 | lo lo | | | 01 |)r 0 | ()t ()E | | ħ | | | ()s | | | | | | [t] | | | | | | 1 | | | | 4600'-
4650'-
E | ● 1402.64 28 ● 1412.85 | 19 (8 (8) | | | 27 | 30 J3 J3 S | 230 (3 d) (3 d) (4 | | 22 12 | G 14 | | | | 21 | 5 3 h | | | 18 De | | 1 D D D | 1 B | | ()2
(7) ()2 | 17 9 | ()2 ()1
()1
()3 | | | | | | | | | 4700'- | 1430.05
1430.10
1430.89
1438.63 | | 45 45 11 | | | 215 16 30 30 14 14 12 21 2 21 33 30 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | <u>p</u> h <u>10</u> | | | | | | [8] | 7 | | | | 23 23° 14 | | | | 0- | G | 13 31 7 | 59 12
20
13 | 12) [2 [h] [2 [h] [3] | | | | þi G | —FDOs P. inaequistriata, R. margarita —FDO N. bangae; LDOs B. liasica & V | | | 4800'- | JF6 | |) (2
21 1 | h (7 (3 | | | | h h h 7 h - | 10 |)1 ()1
()3 (10 ()1 | 01 01 11 01 | h g | ()2 11
 11 | | D2 | | [B | []≥ | <u>i</u> | 6 | 8 | h | | | 1 1 1 | | | | | [22 | —LDO N. issleri @ 1455.80m | | | 4850'- | ● 1477.62
● 1480.31 | | , j | | 16 | | (g(g(h | | [3 | | |) | [3]
[1] |] | | - (<u>p</u> 2 | | | | | | | 5
6 | | | | | | | | —LDO M. varians haeusleri @ 1471.98 —FDO A. semireticulatus @ 1488.54m | n | | 50'- | 518.8 | [2 | 8 | p De Ds | 10 (3 5 | <u> </u> | 1 79 | | (c) | [2
10 [2 | [5] [1] [1] | | 2 1 3
 2? 14 | ā | Üt | | | | ji | <u>l</u> e | | | [S] |)1 | | | | - | | | —LDOs M. turneri & P. tenera subprism | imatica @ 1514.80m | | y | JF5 1531.72 3 | | | (2 1 (2 (2 | 2 18 2 31 | 24) 22 | 3 (3 (h) (3 (| | G (2 | (13 | 14 12 | <u>37</u> | (a) | | 199 | | | | 3 | | 1 (2) | | | | | | | | |
Qz | | | | 4S GROUP micostatum | ● 1557.45
● 1565.81 | 26 11b | p h 48 2 42 | 3 6 | 15
19
33
8 7 | 7 11 16
29 7 14 1 16 | | 13 H (2 | (c | |); (); (); (); (); (); (); (); (); (); (| | 6 | | <u> </u> 1 | 11.2 11 12 12 12 13 14 15 15 15 15 15 15 15 | | 10 Land | 10
10
41
43 | (5 th? 3 th? 1th | 1 3 | 9 19 13 | 1 ²² ()1
(3 | | | | | | | J | []1 []1 []1 ——LDOs V. listi, common M. matutina & | & common A. semireticulatus @ | | 10BIAN 1988. | 1581.8 1581.8 • 1581.76 • | 23 169 7
79 70) 12 1 1 50 | Q 4 19 (2 |) | 44 (2 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 20 6 3 | | | h @ | 20 3 4 | [2]1
13 | | | ji?
De | | | | | 269 | (\$? 11 18
()1 (8 | | 2 1 1 4 4 4 4 4 4 4 | | | | | | | | | LDO superabundant N. bangae @ 18 —LDO v. common A. speciosus gr. @ —LDO v. common V. exarata @ 1598.8 |) 1590.22m | | LOWER SINE | 1601.67 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | § 32
43 | (k) | | 21 16 | 1 | in Da | ()2 ()2
()3 ()1 | 3 | (h (ls h | D2 | | h (2 | no no | | | 1? | [s |)t t | (c) | , | | | | | | | | (b) | v. common V. exarata @ 15 | | | klandi - Semicostatt | JF4b JF4b JF4b JF4b JF4b JF4b | 32 79 10 1 12 19 19 19 14 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14 |) 10 | | · | 2db 14 15 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 |) 1 1 1 1 1 1 1 1 1 | (h (7) (h (1) | [2] 2 2 1?
 2 1 | 23 (3 | De 🗟 h (h | | () 12 | (t) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s | (2) | [3 [37] | | | U1 | [2] (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | | | | | | | | | | | Ds | | |)-
 | JF4 | 28 67) (3? (2 15 32 | | | | | | | | 20 | Sandi i | ● 1688.87 | 420 6 7 11 36 27 27 38 38 70 A B B 18 | B 41 p | n (25) | G | 23h 12 d 3. | 30 h | | | | | [2] | <u> 12 </u> | | | | p | h 22 k | | 1 | te | | | | | | | | | | | | | 00'-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | JF4a → 1715.06 37 | | p 18 | - - - - - - - - - - | 24 43 1 2 | | 1 (2 (1) | | ()3 | 36 (2 | () (2)2 (3 | | [2 89] | (a) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | 3 | | D D B | 1? (2 3 7)2 | | | | | | | | | | | | | | orima rugosa & superabundant I. | | 00'-
1741.1 1741.1 1741.1 1741.1 | onybean
741.1 | 17 45 11 11 12 | | | 3 33 [2 35] | | | | | | | | 11? | 17 12 | De la | S jn jn 19 j2 | | | | | | | | | | | | | | | —FDO P. tenera substriata @ 1732.03i | 3m | | 800'- | QC - 1774.93 | 11 100 h h h G | | jı (þ. | | |)1 G | (n) | 11 G H | 6 h | | [2 | | jn?
@ | (h? | | | | | | | | | | | | | | | | —LDO M. prima incisa @ 1774.93m | | | 900'- | 1783.46 1 | 18) 33 | 16 | Ds | 3
5
1
1
1
1
1
1
1 | e e :0 | 17? | jn 7 jn in | [k] | 13 | 1 | | (S) | | , | | | | | | | | | | | | | | | | —FDO I. terquemi barnardi & LDO M. p —LDO M. matutina @ 1803.20m | prima insignis @ 1792.02m | | 5950'-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | ■ 1808.73 | 130 G H S S | | | 2 149 h |) 18 <u>26</u>) H | | [2
[3 8 19 1 [3 | | 36 | (1) (2) (1) (2) (1) (2) (3) (4) (5) (4) (5) | | [i i i | 6050'-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | Snephber JF2 | j1 1 Q | 3 9 | ig 1 | 23 40 180 180 180 180 180 180 180 180 180 18 | 5 | le III | in 12 | jn g g | | A A 11 11 11 12 123 13 12 11? | · | | | | | | | | | | | | | | | | | | 1 1 | —LDO P. inaequistriata @ 1834.44m —LDO consistent P. tenera substriata @ —FDO P. tenera collenoti @ 1853.69m | | | 6100'-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | → 1862.25 S → 1876.75 S | B 330 | ∬t —FDO R? planiconvexa & LDO I. terqu | quemi barnardi @ 1876.75m | | 6200'- 1882.5 Jo 1882.5 Si Go La | ohnstoni
988.2
97
97
97
97
97
97
97
97
97
97 | 139 2 17 1 1 7 1 | | 13(\$\overline{\partial}{2}\) 1? 1 (3) (2) (1) | —LDO abundant R? planiconvexa @ 1: —LDO R? planiconvexa @ 1888.64m —LDOs P. tenera collenoti & P. tenera deepest sample analysed | 1885.65m
a substriata @ 1903.65m | | UPPER TAMASSICA | Well Name: LLANSEDR (MOCHRAS FARM) BOREHOLE Openitor: 1500 1100 Mark Tables Institute 140 Amily Tables Institute 140 Amily Tables Amil | -\frac{2}{\sqrt{2}}\rightarrow \frac{2}{\sqrt{1}}\rightarrow \frac{2}{\sqrt{2}}\rightarrow \frac | *3 Raricostatum *4 Masseanum? - Valdani Abso | olute abundance (15mm=50 counts) | | | | | | | | | | Foraminifera (| Calcareous | | | | | | | | | | | | Absolute abundance (15mm=50 counts) | Foraminifera Agglu | ıtinating | | |--|--|---|--|--|--
--|---|---|---|---|---|---|--|--|---|--|---|---|---|---|---|---|---|---|--|--|---|--| | Chronostratigrap Chronozone Subzone Subzone | Biozone Subzone Samples Samples | Eoguttulina liassica Paralingulina tenera tenera Paralingulina tenera tenuistriata Prodentalina aff murronata | Prodentalina cf. ventricosa Prodentalina parvula Prodentalina parvula Vaginulina parva Reinholdella? planiconvexa Dentalina pseudocommunis Lenticulina muensteri muensteri | Nodosaria of. calomorpha Dohthalmidium madadyeni macfadyeni Ophthalmidium northamptonense Palaeomiliolina lanceolata Paralingulina cernua | Paralingulina esseyana Paralingulina lanceolata Prodentalina cf. breoni Prodentalina totilis Spirillina tenuissima | Cornuspira liasina Cornuspira liasina Ichthyolaria brizaeformis Chithyolaria terquemi sulcata Lagena semisulcata Nodosaria metensis Pseudonodosaria multicostata Reussoolina aphela | Spirillina infima
Mesodentalina tenuistriata Mesodentalina varians varians Nodosaria fontinensis Nodosaria whittakeri Prodentalina nodigera Prodentalina terquemi | Prodentalina vetustissima | Prantiaria pauporata gr. Pseudonodosaria vulgata gr. Reussoolina? lacrimaforma Nodosaria mitis Nodosaria simplex Praeophthalmidium orbiculare Prodentalina sinemuriensis Mardinulina prima praeruosa | Prodentalina crenata Prodentalina paucicosta Astacolus speciosus gr. Nodosaria nitidana Prodentalina arbuscula Prodentalina clavata Prodentalina paucicurvata Ichthyolaria terquemi terquemi Modosaria apheilolocula Nodosaria apheilolocula Prodentalina ci paucicurvata | Prodentalina di. Padolon da
Prodentalina oolithica
Paralingulina paranodosaria
Berthelinella involuta involuta
Prodentalina glandulinoides
Prodentalina torta
Nodosaria crispata
Reussoolina minutissima
Lagena liasica | Nodosaria pseudoclaviformis Pseudonodosaria oviformis Incertae sedis Nodosaria porrecta Prodentalina cf. bartensteini Involutina liassica Marginulina prima rugosa Semiinvoluta excelsa | Mesodentalina varians haeusleri Oberhauserella mesotriassica Prodentalina vasta Reinholdella dreheri Reinholdella? mochrasensis | t 6.085595 | Reinholdella pachyderma pachyderma Nodosaria hortensis Vaginulina listi Tubinella pseudoinornata Paralingulina tenera subprismatica Vaginulina metensis Nubecularia triloculina Vaginulina sp.A | Nedinducina robusta Nodosaria issleri Nodosaria issleri Nodosaria denticulatacostata Saracenaria sublaevis sublaevis Brizalina liasica Spiroloculina? inopinata Vaginulinopsis denticulatacarinata Prodentalina teutoburgensis | Pseudonodosaria dubia Vinelloidea bigoti Vinelloidea lordi Spiroloculina concentrica Ichthyolaria terquemi squamosa Vaginulina clausa Prodentalina bicornis Marginulina prima spinata Berthelinella involuta striata | Paralingulina tenera occidentalis Ichthyolaria lignaria Paralingulina testudinaria Reinholdella pachyderma humilis Marginulina prima interrupta Haynesella pictonica | Oberhauserella d. rhaetica Oberhauserella d. rhaetica Ophthalmidium madadyeni tenuiloculare Marginulina cf. terquemi Prodentalina cf. crassa Paralingulina longiscata cf. alpha Paralingulina tochoides Conicospirillina trochoides | — Duoplanum cf. tori — Tristix liasina — Ammomassilina sp. — Marginulina picturata — Prodentalina pauliniae — Vaginulina sp. B — Carixia langi — Nodosaria kuhni — Prodentalina cf. guembeli — Spiroloculina centrata | Lenticulina muensteri acutianguiata Ichthyolaria terquemi mediumcostata Astacolus primus Astacolus scalptus Lenticulina muensteri polygonata Lenticulina varians barnardi Marginulina prima spinata Ichthyolaria sp. | Vinelloidea tibia Citharina longuemari gr. Ichthyolaria pupiformis Citharina sherringtoni Nodosaria cf. issleri Nodosaria globulata Nodosaria liassica Prodentalina numismalis | Reinholdella macfadyeni Palmula deslongchampsi Extonia aspera Citharina sagittiformis Citharina frankei Nodosaria sp. Lenficulina dorbionvi | Lenticulina dorbignyi Bullopora rostrata Lenticulina quenstedti Marginulina breviformis Nodosaria pseudoregularis Palmula tenuistriata Prodentalina aff. paudicurvata Saracenella mochrasensis Ramulina sp. | Trochammina sablei Ammodiscus siliceus Haplophragmoides kingakensis Lagenammina difflugiformis Trochammina canningensis Lagenammina sp. | Reophax aff. thuringicus Reophax metensis Lagenammina tangentia Lagenammina pseudofusiformis Verneuliinoides liasinus Ammobaculites vetustus Tolypammina flagellum Glomospira perplexa | Verneuilinoides mauritii Haplophragmoides αushmani Ammovertella? humphriesi Psamminopelta? sp. Rhabdammina sp. | Gaudryina? sp. Textularia sp.B Thurammina subfavosa Trochammina? sp.B A T COCHAMMINA? Sp.B C O O O O O O O O O O O O O O O O O O | | Pseudoradiosa Squei Pseudo | ### ### #### ######################### | | | 17 03 | | | | | | | | | | [h? | 1
1 | | đ ₂ | | # | | | | | | | | | FDOs N. pseudoregulari
FDOs L. dorbignyi, P. ter
FDO R. macfadyeni @ 6 | | Ouarsense Dispansum Dispansum Fallaciosum Fallaciosum | ● 640.67
● 645.01
● 647.78
● 649.15
● 652.12
● 656.44
● 658.82
● 662.25
● 665.17
● 665.17
● 671.04
● 673.96 | | | | |]1 | 25
25
25
3 1?
10
50
50
3 |]3 1 12 1 1 1 1 1 1 1 | | (3))1
)1)1
(3) (3)
(3) (3) | | [3]]1
[3]]1
[2] [2] [2] [3] [4] [4] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6 | 3 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 01?
01
01 | C C C C C C C C | h
h | | | | | | | | | U J — LDO P. tenuistriata @ 68 U J — LDO N. peudoregularis (— LDO common R. macfad — LDO frequent L. dorbign | | AT Fascigerum Silling | ### ### ############################## | | | | |]1 | |]t [t] | |]1
]1 | | 13 1 13 14 15 |];
];
]; | h
h
h | 1
1
1
2
2 | | js
J | | | | | | |]3 | | | | FDO P. tenera tenera @ | | Bifrons Bifrons Crassum Crassu | 716.23
-719.15
-726.38
-730.68
-733.58
-736.37
-749.88
-747.80 | | | | | h | | h (h | | | | | 2
 3
 1
 1
 3
 | | 1. 1.2 | | - | | | | | | | B ₁ | | | | —FDO P. terquemi; LDO I | | Lalciferum Palciferum | JF14 |)1
 1
 B
 1
 1
 1 | | | h |]1 | |)1 | | 1?
 1 1
 1 1
 1 1 1 1 1 1 | | 1 | | | 1
1
1
1 |)1 | | 1 | |] | | | 11?
 11 | | | | | | | Serpentii Serpen | ● 799.26 | | |]3. 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | |]3
 1
 1
 1
 1
 1 | | | lju lju v | | () () () () () () () () () () () () () (| 3 | |]3 | | | | | | | | | | | | | — LDOs C. colliezi & cons — top major influx reinhol superabundant R. dreh — FDO M. prima prima; I — LDO T. subfavosa @ 8 — FDOs M. prima spinata top consistent I. terque | | Tenuicostatum 3.5 863.5 | JF12b — \$81.33 — \$857.78 — \$87.10 — \$87.10 — \$87.10 — \$87.10 — \$87.10 — \$87.11 — \$87.19 — \$874.19 | | | | | is is is a second of the secon | | 1 (3 (12))1 (13 (12))1 (14) | 19 | h? (2) | | | | | | 01
01
01 | | | ()1 | | | | 12?
13
11? | | | | | FDOs E. aspera (frec & P. tenera occidenta | | 901.2 901.2 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0 | → 880.09
→ 884.15
JF12a → 889.96
→ 897.00
→ 904.09
911.3
JF11 | | | j | 32 | | | | |), (1) | | | | |]3
1 | D2 | - |]3
]h | | <u>()</u> 1 | | | | | | | | —FDO M. matutina; LD | | UPPER PLIENSBACHIAN garitatus ubnodosus - Gibbosus | ● 932.54
● 939.49
● 946.40
● 953.62 | | | | | | | 1
 1 |]2 | | | []2 []3 | | | | []2 | | | | D2 D2 | | | | | | | | — LDO common L. mue | | Marc
98i. | JF10 | | | 1 | | | | ji ; | 11 []3 |)1 ()1 ()1 ()2 ()3 ()3 ()3 ()3 ()3 ()3 ()3 ()3 ()3 ()3 | <u>[</u> 1 | | | 30 31 12 2 | |]1 | | | | | | | | | | | | | | 10.7 1010.7 1010.7 Figulinum Capricornus 1024.0 Maculatum | ■ 1029.21 | | | j | | h | [3]1? | , , , , , , , , , , , , , , , , , , , | js js 🗀 | | | jı
jlıjlı-> |) | | | 11? | | | 1 ? | | | | | | | | | —FDOs P. tenera subpr | | npi.n. 1090.3 | ● 1054.00 | 50 17 33 | | | | | | | |]1]3]1]1]1]1]1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (12 (13 (h) h) h | | [h | | 1? (1)1 (1?)1
1 (1?
1 (3) | [3 [3 [1] | | | []2 [
]1 []2 | 1 12 | | | | | 0 | | | —FDO V. mauritii @ 104 | | HIAN | ● 1087.22 | 3 12 | | 11 2 3 | 1 2 | | []s]t []s | jn jn? |] [2 [2
]2 | jı jı | | | | [3 1 1 1 1 1 1 1 1 1 | | <u>]</u> | <mark>l</mark> 3 |]3
]3
]1 | J1 ()1 | | | | | | | | 0 | —LDO V. mauritii @ 11 | | Previspinal Jameson LOWER PLIENSBA | JF9 —●1137.41 —●1145.23 —●1151.92 | 3 | | 3 33 | |]2 | | p (1≥) (1≥) (1) (1) (1) (1) (1) (1 | ja . | | | | 1 | [3] [2] [2] [3] [1] [4] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6 | 1?
 1?
 1 | | |]3
]2
]3 | | | | | | | | | | | | Jamesoni
/morphus | ● 1168.27
● 1184.83
● 1193.47 | |) h | | 1 2 | 11? |)ı |]1 1 1 | | - | l) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j | [2
]2 | | | 1? (1? (2
) | | [h | 1 | h | | | | | | | | | | | Taylori - Poly | ● 1210.64 | | | 3 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 1 | | [2] [3] [4] [3] [4] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6 |]3 Jg | | | |]2
 D2 | 0 | | | la l | | []2 | | | | | | | | | | | | *2 *3 Macdonnelli - Aplanatum 1468.5 1332.0 1295.6 |
1248.94 | 41 13 11 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22 12 | 2 17 1 237 | | | | | [2? | 1 12 | | <u>[</u> e | 13 | h 35 | | [2 | | | 1 | | | | | 0 | 0 0 | | —FDO V. denticulatacarir |