An extension of testing 6-state recoding strategies to address substitution bias and compositional heterogeneity

Principal Investigator: Joseph Ryan and Alexandra Hernandez Draft or Version Number: v.1.2 1 October 2018

LIST OF ABBREVIATIONS

TTL	Jones-Thornton-Taylor (a model for amino acid substitution)		
PAM	Point accepted mutation (a model for amino acid substitution)		
RFD	Robinson-foulds distance		
SICB	Society for Integrative and Comparative Biology		
S&R-6	Susko & Roger 6-state recoding		
RAxML	Randomized Axelerated Maximum Likelihood		
TOPD	TOPological Distance		
FMTS	From Multiple to Single		
GTR	general time-reversible model		
LG	Le & Gascuel (a model for amino acid substitution)		
ML	Maximum-likelihood		

1 INTRODUCTION: BACKGROUND INFORMATION AND SCIENTIFIC RATIONALE

1.1 BACKGROUND INFORMATION

Dayhoff, JTT, and LG matrices are 20-state amino acid replacement models used to score amino acid substitutions in phylogenetic analyses. Recently, recoding techniques have been employed to address difficulties that these models have dealing with compositional heterogeneity and substitution saturation (Susko & Roger 2007). Dayhoff recoding (i.e., Dayhoff-6) specifically recodes amino acids from Dayhoff matrices according to 6 groups of chemically related amino acids that frequently replace one another (Hrdy et al. 2004), while JTT recoding (i.e., S&R-6) is a 6-state recoding strategy based off binning experiments on the JTT model by Susko & Roger (2007).

1.2 RATIONALE

The principle of using recoding to address substitution saturation and compositional heterogeneity is appealing from a theoretical perspective but has never been tested empirically. Evidence from our analysis presented at the SICB 2018 Conference showed that under all simulations in the study, Dayhoff-6 recoding performed worse than the PAM250 (Dayhoff) model. These preliminary results raised doubts about the benefits of using recoding approaches. However, we received feedback that our analyses did not directly address compositional heterogeneity and that since we used the same model for simulation and testing, we did not consider problems stemming from poor model fit. The proposed analyses herein aim to address these concerns.

1.3 OBJECTIVES

This is a three-part study that will serve as an extension to our project investigating 6-state recoding strategies (*https://github.com/josephryan/Hernandez_Ryan_2018_RecodingSim*). The objectives are 1) determine how recoding performs compared to a model that was not used for simulation (i.e. does recoding improve results when the non-recoded model fit is poor?) 2) verify the performance of recoding strategies using inferred model parameters from the data under a range of saturation levels 3) determine if recoding addresses problems with compositional heterogeneity.

2 STUDY DESIGN AND ENDPOINTS

2.1 Effect of model fit on recoding vs. non-recoding using LG model

2.1.1. Reconstruct topologies in RAxML (Stamatakis 2014) using the LG model to estimate trees for the data generated in the previous analysis via simulations in Seq-Gen (Rambaut & Grassly 1997) (*https://github.com/josephryan/Hernandez_Ryan_2018_RecodingSim*). These previous datasets were simulated over the Chang et al. (2015) phylogeny under both the Dayhoff and JTT models with branch-length scaling factors (-s) set to 1, 5, 10, 15, and 20.

raxmlHPC -p 420 -m PROTGAMMALG -n Chang.1.LG -s Chang.PAM.1.phy

2.1.2 Use the program TOPD/FMTS (Puigbó et al. 2007) to compute Robinson-Foulds distances (RFDs) between LG-generated trees and the tree from Chang et al. (2015) that was used to simulate the data. We will compare these RFDs to those from comparisons between the trees estimated using recoded amino acids.

cat Chang_orig_phylobayes.tre RAxML_best* > Chang_all_trees.tre
perl topd v4.6.pl -f Chang all trees.tre -m split -r no

2.2 Effect of model fit on recoding vs. non-recoding using data simulated w/ estimated model

2.2.1 Simulate the evolution of amino acids along the phylogeny produced in Chang et al. (2015) using Seq-Gen and apply model parameters inferred from the data (i.e., amino acid frequency, alpha parameter, and transition rates taken from the main ML tree of Chang et al. 2015). We asked the authors of Chang et al. (2015) for their RAxML output files, but they did not have these available, so we will reestimate these values using the exact RAxML run that was used in the original study. The branch-length parameter (-s) for simulations will be set to 1, 5, 10, 15, and 20.

```
seq-gen -z420 -mGENERAL -r[rates] -f[frequency] -a[alpha] -n1000 -s1 -or
Chang orig phylobayes.tre > Chang.mismatch.1.phy
```

seq-gen -z420 -mGENERAL -r[rates] -f[frequency] -a[alpha] -n1000 -s5 -or Chang_orig_phylobayes.tre > Chang.mismatch.5.phy

seq-gen -z420 -mGENERAL -r[rates] -f[frequency] -a[alpha] -n1000 -s10 -or Chang orig phylobayes.tre > Chang.mismatch.10.phy

seq-gen -z420 -mGENERAL -r[rates] -f[frequency] -a[alpha] -n1000 -s15 -or Chang_orig_phylobayes.tre > Chang.mismatch.15.phy

seq-gen -z420 -mGENERAL -r[rates] -f[frequency] -a[alpha] -n1000 -s20 -or Chang_orig_phylobayes.tre > Chang.mismatch.20.phy

divide.pl (For all 5 commands above, divide the 1000 datasets outputted by Seq-Gen into separate phylip files)

perl divide.pl Chang.mismatch.1.phy Chang.mismatch.1

2.2.2 Convert simulated sequences to Dayhoff-6 recoded datasets using the script chunkify2.pl. Chunkify2.pl also generates scripts to perform maximum-likelihood analyses in RAxML for each non-recoded dataset under the Dayhoff model and for each recoded dataset under the MULTIGAMMA multi-state model with GTR.

*Note: Chunkify2.pl requires the user to input data on servers being used and processors available for each server (this is hard-coded in the script and should be altered when reproducing results on another machine).

perl chunkify2.pl

To execute the scripts generated from chunkify2.pl for maximum-likelihood analyses of both recoded and non-recoded datasets:

ls -1 servername* | perl -ne 'chomp; print "sh \$ &\n";' | sh

2.2.3 Concatenate trees from section 2.2.2 into one tree file along with the true tree used for simulation, then calculate RFDs in TOPD/FMTS to compare differences between trees. Box plots will be used to visually compare RFDs and t-tests will be used to determine if there are significant differences in RFDs between non-recoded and recoded trees in R (R Core Team 2017). The script compare_trees_to_sim.pl.v04 performs these analyses.

*Note: The directories in which to perform these analyses are hardcoded and should be altered when reproducing results on another machine.

perl compare trees to sim.pl.v04

2.3 Effect of compositional heterogeneity

2.3.1 To create compositionally heterogeneous datasets, we will use P4 (Foster 2004) to simulate the evolution of amino acids 1,000 times along a 20-taxa tree (Figure 1). For each simulation, we will apply the GTR model and set the same amino acid frequencies for clades A and C using the setModelThing parameter, while applying a different set of amino acid frequencies to the rest of the tree. This will make clades A and C compositionally homogenous to each other, clades B and D compositionally homogeneous to each other, and any other combination of these clades as compositionally heterogeneous to each other.

The initial rates and frequencies we will use will be determined from the tree generated from Chang et al. (2015). In successive runs, we will alter amino acid frequencies (either an increase or decrease) by a factor we call the inflation parameter. If a frequency for clades A and C is increased by the inflation parameter, that same frequency for clades B and D will be decreased by the inflation parameter. These datasets are generated in our script comphet.pl.

perl comphet.pl

2.3.2 To create a null distribution, we will simulate the evolution of amino acids 1,000,000 times along the same 20-taxa tree (Figure 1) to produce non-heterogeneous datasets using P4. We will use the amino acid frequencies and rates from Chang et al. (2015) and simulate under GTR. The shell scripts we use to create these datasets are generated in our script split_random_runs.pl.

perl split random runs.pl

To execute the scripts generated from split_random_runs.pl we run the following:

```
ls -1 scripts/ | grep 'servername*' | perl -ne 'chomp; print "sh scripts/$_
&\n";' | sh
```


Figure 1. Tree used for simulation in P4. Blue arrows point out which branches we will shorten if there is no significant difference in the comp-het index between the heterogeneous datasets and null distribution.

2.3.3 For our heterogeneous datasets, we will verify that clades A and C are compositionally different from clades B and D by computing amino acid frequencies across the 1,000 datasets. We will calculate the sum of frequency differences for each of the following clade combinations: AB, AD, BC, and CD. This sum of differences will represent clades that should be heterogeneous to each other. We will then compute the average sum of frequency differences for all heterogenous clade combinations (AB+AD+BC+CD/4).

For clade combinations expected to be homogeneous to each other (AC and BD), we will sum frequency differences and calculate the average for these values (AC + BD/2). The average value for the homogeneous clade combinations will be subtracted from the average value of heterogenous clade combinations:

((AB+AD+BC+CD/4) - (AC+BD/2))

This is called the compositional heterogeneity index, or comp-het index for short. This comp-het index will be used as a test statistic for our heterogeneous datasets. Using this same script, we will compute 1,000 comp-het indices from the 1,000,000 non-heterogeneous datasets and calculate the number of these that are greater than our test statistic. If our test statistic is not significant (i.e., we identify more than 50 comp-het indices from non-

heterogeneous datasets that are greater than our test statistic), we will shorten the shortest internode branches on the 20-taxa tree (Figure 1) to decrease the amount of shared evolution between clades A and B as well as between clades C and D and perform 2.3.1 and test again (as done in this section 2.3.3). The script comphet.pl will generate the p-value telling whether there is a significant difference between our heterogeneous datasets (generated in 2.3.1) and our null distribution (generated in 2.3.2).

perl comphet.pl all.out > pvals.out

2.3.4 We will recode the 1,000 heterogenous datasets selected from section 2.3.3 using Dayhoff-6 recoding and perform maximum-likelihood analyses in RAxML for both the recoded and non-recoded datasets under the Dayhoff model using the script chunkify_comphet_trees.pl (performs the same as chunkify2.pl but with parameters specifically set for this dataset).

perl chunkify comphet trees.pl

To execute the scripts generated from chunkify_comphet_trees.pl for maximum-likelihood analyses of both recoded and non-recoded datasets:

```
ls -1 scripts/ | grep 'servername*' | perl -ne 'chomp; print "sh scripts/$_
&\n";' | sh
```

2.3.5 We will use the is_mono.pl to determine what proportion of trees resolve a monophyletic clade of A and B and a monophyletic clade of C and D.

perl is mono.pl dir/

2.3.6 To get an idea of the extent that compositional heterogeneity impacts tree reconstruction we will run 2.3.1-2.3.5 until there are trees correctly resolved that fall into the following categories: 5-25% correctly resolved, 25-50% correctly resolved, and 50-75% correctly resolved.

3 WORK COMPLETED SO FAR W DATES

June 26, 2018: We have not performed any additional tests after completing the work from the Hernandez_Ryan_2018_RecodingSim repo.

September 26, 2018: We have completed 2.1 and 2.2. We also completed a previous version of 2.3, where the tree used for simulation had very long branches connecting clades A with B and clades C with D. The alignments produced with this tree were predicted by all methods 100% correct every time, and therefore were not useful for testing or realistic. This new version of 2.3 is aimed at correcting this problem.

4 LITERATURE REFERENCES

- Chang, E. S., Neuhof, M., Rubinstein, N. D., Diamant, A., Philippe, H., Huchon, D., & Cartwright, P. (2015). Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. *Proceedings of the National Academy of Sciences of the United States of America*, *112*(48), 14912–7. https://doi.org/10.1073/pnas.1511468112
- Hrdy, I., Hirt, R. P., Dolezal, P., Bardonová, L., Foster, P. G., Tachezy, J., & Martin Embley, T. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. *Nature*, 432(7017), 618–622. https://doi.org/10.1038/nature03149

- Puigbo, P., Garcia-Vallve, S., & McInerney, J. O. (2007). TOPD/FMTS: a new software to compare phylogenetic trees. *Bioinformatics*, 23(12), 1556–1558. https://doi.org/10.1093/bioinformatics/btm135
- R Development Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
- Rambaut, A., & Grass, N. C. (1997). Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. *Bioinformatics*, *13*(3), 235–238. https://doi.org/10.1093/bioinformatics/13.3.235
- Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Susko, E., & Roger, A. J. (2007). On Reduced Amino Acid Alphabets for Phylogenetic Inference. *Molecular Biology and Evolution*, *24*(9), 2139–2150. https://doi.org/10.1093/molbev/msm144

5 PHYLOTOCOL AMENDMENT HISTORY

Version	Date	Significant Revisions
1.1	26 June 2018	Changed methods in section 2.3
1.2	1 October 2018	Changed methods in section 2.3 because we could not adequately simulate and test compositional heterogeneity