
CONTENTS

PRINCIPLES FOR
THE DEVELOPMENT
AND ASSURANCE
OF AUTONOMOUS
SYSTEMS FOR SAFE
USE IN HAZARDOUS
ENVIRONMENTS

White Paper, 14 June 2021

22

Contents
Executive Summary 3
	 Scope 3

	 High-Level Recommendations 3

1 Introduction 6
2 Prerequisite Concepts 10
	 2.1 Ethical Impact 10

	 2.2 Materials Suitability 11

	 2.3 Verification and Validation of Autonomous and Robotic Software 12

	 	 2.3.1 Verification and Validation (V&V) Challenges from Autonomous and Robotic Systems 12

		 2.3.2 Formal Methods 13

	 	 2.3.3 Verification & Validation Tools 14

	 2.4 Mixed-Criticality Systems 15

3 General Principles for Safety-Critical Robotic Systems 16
	 3.1 Design 16

	 3.2 Verification and Validation 17

	 3.3 Operation 17

	 3.4 Maintainance, Recovery and Decommissioning 18

4 Principles for Human-Controlled Robotic Systems 19
	 4.1 Design 19

	 4.2 Verification and Validation 20

	 4.3 Operation 20

5 Principles for Autonomous Robotic Systems 21
	 5.1 Design 22

	 5.2 Verification and Validation 23

	 5.3 Operation 23

Authors, Glossary and References 24

3CONTENTS<

Autonomous systems are increasingly
being used (or proposed for use) in
situations where they are near or interact
(physically or otherwise) with humans.
They can be useful for performing tasks
that are dirty or dangerous, or jobs that
are simply distant or dull. This white
paper sets out principles to consider
when designing, developing, and
regulating autonomous systems that
are required to operate in hazardous
environments.
Autonomous systems use software to make decisions
without the need for human control. They are often
embedded in a robotic system, to enable interaction
with the real world. This means that autonomous robotic
systems are often safety-critical, where failures can
cause human harm or death. For the sorts of autonomous
robotic systems considered by this white paper, the risk
of harm is likely to fall on human workers (the system’s
users or operators). Autonomous systems also raise
issues of security and data privacy, both because of the
sensitive data that the system might process and because
a security failure can cause a safety failure.

Scope
This white paper is intended to be an add-on to the
relevant existing standards and guidance for (for example)
robotics, electronic systems, control systems, and safety-
critical software. These existing standards provide good

practice for their respective areas, but do not provide
guidance for autonomous systems. This white paper adds
to the emerging good practice for developing autonomous
robotic systems that are amenable to strong Verification &
Validation.

The intended audience of this white paper is developers
of autonomous and robotic systems. It aims to provide a
description of things that need to be demonstrable by or
of their systems, and recommendations of ways to achieve
this. This aims to enable strong Verification & Validation
of the resulting autonomous system, and to mitigate some
of the hazards already occurring in autonomous systems.

High-Level
Recommendations
This white paper can be summarised in seven high-level
recommendations for the development and deployment of
autonomous robotic systems, which are each discussed in
more detail in the main text.

1. Remember both the hardware and software
components during system assurance.

It is important to remember that an autonomous robotic
system contains both hardware and software; both parts
should be developed to be as safe as possible. In addition
to any sector-specific standard and guidelines for robotic
systems, the choice of materials used in the robot should
be suitable for the potential hazards in the environment.
For example, a robotic system deployed in a radioactive
environment should be assessed for the suitability of the
materials used to build the robot’s structure and casing,
as well as the materials used in its internal, electrical, and
mechanical components.

Executive
Summary

4CONTENTS<

The software parts of the system should also be
developed using appropriate, possibly sector-specific,
standards and guidelines. In addition, careful attention
should be paid to autonomous components, since they
will be making executive decisions or interpreting sensor
data, upon which decisions will be made. The strongest
Verification & Validation should be used where this is
possible, and Formal Methods should be considered where
they are applicable.

2. Hazard assessments should include risks
that have an ethical impact, as well as those
that have safety and security impacts.

The introduction of robotic and autonomous systems will
have an ethical impact on the workplaces and workforces
where they are deployed. Risks involving safety and
security are obviously ethical impacts, but here we mean
risks that are not necessarily safety or security risks, but
are risks of an only ethical nature.

The standard BS 8611 ethical design and application of
robots and robotic systems (British Standards Institution
2016) provides a framework for ensuring that ethical
impacts are understood and accounted for when
developing an autonomous robotic system. BS 8611 uses
the terminology of ethical hazards: a potential source
of ethical harm, which is anything likely to compromise
psychological and/or societal and environmental well-
being. These ethical hazards describe a number of
recognised ethical impacts that can arise from the
development and deployment of robotic systems.

The identification of ethical hazards should be specifically
included in the system’s hazard assessment, and care
should be taken to not introduce them where they can
be avoided. Like other (for example safety) hazards it is
important that ethical hazards are identified early and
designed out of the final system. Ethical hazards that
make it into the final system become more difficult to
correct, they are ‘baked in’. For example, hidden bias in a
data set used to train a machine learning component can
become an integral part of the system’s decision-making
process, producing systemically biased decision-making.

3. Take both a corroborative and a mixed-
criticality approach to Verification & Validation.

Each of an autonomous robotic system’s components
(both hardware and software) may need different
assurance methods. One methodology for achieving
this could be the corroborative Verification & Validation
described in (Webster et al. 2020); where Formal Methods,
simulation-based testing, and physical testing are all
used in assuring a single system. Formal Methods are
very precise but the might require abstract models of
the system (though there are formal approaches that
work directly on programs or at runtime). Physical testing
with robots provides realism, because it uses the robotic
system in a real environment, but will struggle to be
exhaustive. Simulations sit between these two extremes.
The corroborative Verification & Validation approach links
results from each of these methods to provide confidence
in an overall result, and enables an iterative development
and assurance workflow.

It is also likely that the different components of an
autonomous robotic system will have different levels
of criticality, where criticality means the level of
assurance against failure that a given component needs.
We recommend analysing the criticality of a system’s
components, so that the strongest Verification &
Validation methods can be focussed on the most critical
components, where they will have the biggest impact.
This enables the use of, for example, Formal Methods for
verifying a system’s executive decisions without implying
that the whole system must be formally verified. This idea
pairs well with the concept of corroborative Verification &
Validation described previously.

4. Autonomous components should be as
transparent and verifiable as possible.

Where autonomy is used to make executive decisions
about what the system should do, it is very important to be
able to understand why a decision has been taken and to be
able to verify that the correct decision will be made under
all circumstances. This is particularly useful for mitigating
the challenge of extensively testing robotic systems.

Executive Summary

5CONTENTS<

Where autonomy is used to, for example, interpret sensor
data, it is important to minimise incorrect interpretations
and to ensure that a incorrect interpretation does not lead
to unsafe behaviour. If this cannot be achieved directly,
then the system’s architecture should be arranged so
that there is a more analysable ‘governor’ between the
autonomous component and the rest of the system.

In both cases, the choice of how to implement autonomy
will impact the kinds of Verification & Validation
techniques that are available. For example, an agent-
based approach to autonomy is likely to be easier to
formally verify than an approach based on machine-
learning. How autonomous decisions are implemented
should be considered analogously to picking a
programming language for a safety-critical system: how
easy it is to verify, understand, and demonstrate the safety
of the autonomous component should be key factors in
the decision of how to implement that component.

5. Tasks and missions that the system will
perform should be clearly defined.

Task definitions could include expected inputs and
outputs, a step-by-step description of the behaviour,
potential failure modes, etc. Mission definitions could
be seen as a collection of tasks, but should also include
higher-lever concerns, like potential hazards in the
deployment environment. These definitions makes it clear
to the developers and end users what the system can and
cannot do. It also describes the system’s requirements,
which are essential for meaningful Verification &
Validation; and the system’s deployment context, which
is essential for things like assessing the suitability of the
materials used to build the robotic system (as previously
described).

6. Dynamic Verification & Validation
should be used to complement static
Verification & Validation.

Static checking can provide crucial confidence in a
system’s correctness. For example, verifying that an
autonomous component that makes executive decisions
will never choose an unsafe behaviour. However, any

system that interacts with the real world is bound to face
some uncertainty, so dynamic Verification & Validation
techniques (techniques deployed at runtime) should be
used as well. This helps to bridge the reality gap, between
design-time assumptions about the environment and the
run-time reality. In addition to just performing runtime
monitoring, this approach could be extended to perform
runtime enforcement.

Runtime monitoring (or enforcement) can be high-level,
for example checking the robotic system doesn’t exceed
a safe speed; or it could be low-level and more focussed,
for example governing a machine learning component to
ensure that it doesn’t make decisions outside of a safe
operating envelope. Either way, dynamic Verification &
Validation during deployment can help to provide extra
confidence that the system is continuing to operate
correctly.

7. System requirements should be clearly
traceable through the design, the development
processes, and into the deployed system.

Autonomous robotic systems that are deployed into
hazardous environments often require approval from
a regulatory body before they can be used. Even if they
don’t, then it is likely that the system will need to be
acceptable to, and trusted by, human users or operators.
Traceability of the system’s requirements through
the development process is key to showing that the
verification is checking for properties or behaviours that
support the requirements, giving overall confidence
in the correctness of the system. Being able to trace
the requirements through to the final system (either as
artefacts of static Verification & Validation, dynamic
Verification & Validation components, or both) helps
provide confidence that the final system fulfils the original
requirements. This can help to ease regulatory efforts at
the same time as potentially reducing risk.

Executive Summary

6CONTENTS<

1	 Introduction

These guidelines set out key principles
to consider when designing, developing,
and regulating autonomous systems that
are specifically required to operate in
hazardous environments (eg radiological,
chemotoxic, etc). Particular questions
that this white paper addresses include:
1.	 What do we consider to be an autonomous robotic

system?

2.	 How do we demonstrate that the risks and benefits
arising from the application of robotic or autonomous
systems are acceptable?

3.	 What are the differences between safety engineering
for a human-controlled robot and for an autonomously-
controlled robot?

4.	 What are the factors to be considered in the
implementation of an autonomous system?

An autonomous robotic system can be viewed as a
combination of a physical (robotic) element and a logical
(software) element. The robotic part of the system
enables interaction with the physical world. The software
part of the system enables autonomous decision-making,
based on sensor input and (often pre-built) models of its
environment. Autonomous robotic systems are highly
complex, usually mission-critical, and often safety-
critical. Autonomous systems are discussed in more detail
later in this section.

Moving from a system being broadly human controlled
(either remotely or via scripted automation) to autonomous
control requires a new approach to Verification &
Validation. Adding a software component or layer that
make choices brings both new challenges and new
opportunities. While it is challenging to ensure that the
system will make safe choices, given the available sensor
input; it also provides the opportunity to improve the
confidence in the safety of the system by examining the
decision-making process. As such, it should not be wasted.

Physical safety controls can be used to constrain the
robotic system, but strong Verification & Validation of the
software system is also highly recommended, not least
to help establish user trust. Where physical controls are
not possible, then the strongest Verification & Validation
methods that are applicable to the system (or component)
should be used. In either case, care should be taken to
choose Verification & Validation methods that are suitable
for describing both the system and the properties to be
checked.

It is important to have detailed definitions of the tasks
that an autonomous robotic system will perform. Task
definitions are key design artefacts that ease Verification
& Validation efforts, they also makes it clear to the
developers and end users what the system can and cannot
do. A task definition could include: expected inputs and
outputs, a step-by-step description of the behaviour,
potential failure modes, etc. It is also important to have
a detail definition of the mission that an autonomous
robotic system will perform. A mission definition could
be seen as a collection of tasks that achieve the mission.

7CONTENTS<

A good mission definition should also include higher-
lever concerns, like the types of hazard expected in the
deployment environment. Again, this sort of definition
is useful for Verification & Validation methods and the
mitigation of potential hazards, but also for useror
operator trust.

A single system will often require multiple methods of
assurance, because of the multiple different types of
components that compose one system. One methodology
for achieving this could be the corroborative Verification
& Validation described in (Webster et al. 2020); where
Formal Methods, simulation-based testing, and physical
testing are combined in the assurance of a single system.

In addition to hazards that arise from the violation of
traditional safety principles, there are hazards that can
arise from a range of considerations that are often loosely
grouped together under the term ethics and artificial
intelligence. The global landscape of ethics guidelines
for AI is fragmented, but a recent survey has found
convergence on five principles: transparency, justice and
fairness, non-maleficence, responsibility, and privacy,
with a further six principles: beneficence, freedom and
autonomy, trust, sustainability, dignity and solidarity
mentioned in many guideline documents (Jobin, Ienca,
and Vayena 2019).

Carelessly developed and deployed AI systems have
already been seen to violate these principles both through
unintended side-effects of their operation and through
their interactions with users. This can bring reputational
harm to the organisations responsible for the systems
and, at worst, cause real damage to users, bystanders and
the general public. As our understanding of the ethical
risks posed by AI and autonomous systems is maturing,
so too is the development of methodologies for ethical
risk and impact assessments as well as standards for the
design and development of systems that adhere to these
principles. It is therefore both practical and desirable to
perform such assessments when proposing the use of an
autonomous system in order to identify potential hazards
that can arise from violations of the principles. This is
discussed in Section 2.1 and further guidance can be
found in (British Standards Institution 2016)

Key Points
•	 The introduction of a robotic or autonomous system
must be to the benefit of the operators or users of the
system. This includes: giving priority to automating
(with a robotic or autonomous system) tasks that are
potentially harmful (physically, mentally, ethically,
etc.) to operators or users, even if this would be more
expensive (see (High-Level Expert Group on AI 2019
Recommendation 3.2); the consultation of workers
during the design and development of robotic or
autonomous systems (see (High-Level Expert Group
on AI 2019 Recommendation 3.3)); and ensuring that
data collection or monitoring by the system does not
become surveillance of the operators, users, or any
responsible person.

•	 Ethical issues are potential sources of hazards, so a
hazard assessment should include the assessment
of ethical issues. Such an assessment needs to be a
specific part of the system’s requirements and design.
(See, for example, the BSI guide to ethical design
and application of robots and robotic systems (British
Standards Institution 2016).)

•	 Autonomous components that make high risk decisions
should be designed and implemented in a way that
enables strong Verification & Validation of their choices,
for example through the use of Formal Methods. This
is particularly necessary to mitigate the difficulty
(and safety implications) of checking the autonomous
decisions via extensively testing robotic system.

•	 The physical (robotic) part of the system should be
developed and assured using appropriate standards or
guidelines. Additionally, the choice of materials used in
the robot need to be suitable for the potential hazards
(e.g radiation) in the environment.

•	 The software architecture of the system should be
arranged so that components that are unpredictable
or difficult to analyse are not able to directly influence
the system’s decisions; their output should be checked
by more reliable or analysable components. For
example, a statistical data-driven machine learning
classifier should not be directly connected to actuation,
without having the classifications checked by a more
analysable ‘governor’.

1 Introduction

8CONTENTS<

•	 The overall design of a robotic or autonomous system
should aim to maximise the system’s effectiveness while
also minimising safety risks, risks of failure, operation
and maintenance risks, etc. This includes all aspects
of the design, such as its mechanical arrangement,
hardware and software selection, etc.

•	 Task and safety requirements need to be clearly
traceable in the design, the development processes, and
through to the system

This final point is considered to be of crucial importance
to those organisations developing autonomous systems
and justifying their use.

What is an Autonomous
System?
At its most basic, an autonomous system is one that
has the capability to make decisions free from human
intervention. This is subtly different to automatic
systems or adaptive systems, which can react to changes
in their environment without human intervention but
doesn’t make decisions. For example, a thermostat can
automatically toggle a switch or adapt the heating/cooling
in reaction to sensed temperature changes, but we do not
consider it to have made a decision. These three concepts
can be described as follows.

•	 Automatic systems are pre-programmed to react to
input and are unlikely to have internal models if their
environment. They are useful for more predictable
situations where the system is required to perform a
small number of tasks repeatedly.

•	 Adaptive systems are tightly linked to (and often driven
by) the system’s operating environment using feedback
controllers described using differential equations. Such
approaches are useful where the system is performing
monitoring tasks where the object is to maintain some
state that can be described using calculus.

•	 Autonomous systems are able to make decisions that
require intelligence and situational understanding.
These decisions will will take the environment into
account, but the system decides what to do based on
its internal priorities and goals. They are useful in open
environments where there is a large range of possible
decisions to be made, often based on uncertain input.

Broadly, autonomous robotic systems can be
described as:

•	 semi-autonomous, where the “robot and a human
operator plan and conduct the task, requiring various
levels of human interaction” (Standing Committee
for Standards Activities of the IEEE Robotics and
Automation Society 2015), or;

•	 fully-autonomous, where the robot performs a task
“without human intervention, while adapting to
operations and environmental conditions” (Standing
Committee for Standards Activities of the IEEE Robotics
and Automation Society 2015).

A newly deployed robotic system might be designed to be
fully-autonomous, but often a human-controlled system
will be adapted to become (semi or fully) autonomous. As
a simple example of an autonomous system, consider a
robot vacuum cleaner. An automatic cleaner will follow
exactly the same path around a room, regardless of the
different environmental conditions. An adaptive cleaner
could be programmed to spend longer on the dirtiest area.
Whereas, an autonomous cleaner could choose either of
the above, but could also choose not to do any cleaning,
perhaps because it knows that someone in the house is
sleeping and it has decided that the cleaning noise will
wake them or because waiting until tomorrow to clean
(when no one is in the house) will provide better efficiency.

There are various frameworks describing the different
levels of autonomy that a system might have, with no
single framework being universally adopted. They can
be useful for describing a system’s capabilities, but it
important to be clear which levels of autonomy you are
referring to.

1 Introduction

9CONTENTS<

The original levels of autonomy were defined for undersea
teleoperation systems (Sheridan and Verplank 1978),
though they are worded rather neutrally so may have wider
applicability, and were revised in (Endsley 1999). The levels
of autonomy developed by SAE International for driverless
cars (On-Road Automated Driving (ORAD) committee,
SAE International 2018) are often adapted to suit the
deployment context of the autonomous system, but this is
by no means ideal. There have been other efforts to create
frameworks that are specific to particular deployment
contexts, for example spacecraft (Proud, Hart, and
Mrozinski 2003); or to be generic and applicable to all
autonomous systems, for example (Huang et al. 2005;
Beer, Fisk, and Rogers 2014). A detailed review of different
frameworks for levels of autonomy can be found in (Beer,
Fisk, and Rogers 2014, Sect. 3).

Whichever ‘level’ of autonomy a system has, it is important
to note that autonomy can be achieved in different ways
and that the chosen approach has implications for the
Verification & Validation techniques that can be applied
to the system’s decision-making. For safety-critical
deployments, autonomy should be achieved by means
that enable strong Verification & Validation methods. We
discuss this in more detail in Section 2.3.

Document Structure
The rest of this white paper is arranged as follows. Section
2 discusses principles that we consider to be prerequisite
to those discussed in later sections, but are are beyond
the scope this document to describe in detail. Section 3
describes general principles for robotic systems intended
for use in hazardous environments. Section 4 describes
principles to consider when developing and deploying
a human-controlled system, and Section 5 describes
principles for autonomous systems.

Sections 3, 4, and 5 each build on the previous section.
For example, when developing an autonomous system,
the principles in Section 5 should be considered alongside
those in Sections 3 and 4.

1 Introduction

10CONTENTS<

2	Prerequisite
Concepts

The scope of this document is the
development and assurance of
autonomous systems. However there
are principles that we consider to be
prerequisite to the development and the
deployment of an autonomous system.
These principles are also very complex,
so this section aims to introduce them
and guide the reader to more detailed
information.

2.1 Ethical Impact
All technologies have ethical impacts as they are
introduced into society. The integration of complex
computational and robotic systems into workplaces are
raising a number of ethical issues which, even where
these do not translate directly into hazards, have impacts
on user trust and societal acceptability. The analysis
and assessment of the ethical impact and risks posed
by the introduction of autonomous systems is a fast
moving area. While standards for the ethical development
and deployment of AI and autonomous systems are in
development by organisations such as the IEEE, most of
these have yet to be published. However, BS 8611 ethical
design and application of robots and robotic systems (British
Standards Institution 2016), published in 2016, provides
a standards-based framework for ensuring that ethical
impacts are understood and accounted for when proposing
the introduction of an autonomous robotic system. The
development of similar standards is already underway.

BS 8611 uses the terminology of ethical hazards: a
potential source of ethical harm, which is anything
likely to compromise psychological and/or societal and
environmental well-being. These ethical hazards describe
a number of recognised ethical impacts that can arise
from the development and deployment of robotic systems.
We adopt this terminology of ethical hazard here but this
should not be interpreted as implying an insistence that
systems adhere to BS 8611 specifically.

Any hazard assessment should include the assessment of
ethical hazards. Like other hazards (such as safety hazards)
it is important that ethical hazards are identified early and
designed out of the final system. Ethical hazards that make
it into the final system become more difficult to correct,
they are ‘baked in’. For example, hidden bias in a data set
used to train a machine learning component can become
an integral part of the system’s decision-making process,
thereby producing systemically biased decision-making.

Ignoring ethical hazards, or leaving them to be discovered
or dealt with after the system has been deployed is
likely to be costly and less effective. The harms these
hazards can cause can directly impact the system safety,
particularly where they effect the way that the operators
or users interact with the system. Ethical hazards
that make it into the final system can also cause huge
reputational damage to the system’s developing and/or
operating organisation. Finally, not addressing ethical
hazards is, by definition, un-ethical.

The ethical hazards will change for different systems and
different people, so a comprehensive assessment of the
ethical hazards of the specific system with its operators
and users should be performed. Defining the principles
and process for this assessment is outside the scope of

11CONTENTS<

this document; this sub-section presents suggestions for
both principles and process, but leaves the developer the
flexibility to choose the most suitable route.

Before development, the impact of introducing a robotic
or autonomous system needs to be analysed, to ensure
that it would be to the benefit of the operators or users
of the (current or proposed) system. For example,
priority should be given to automating (with a robotic or
autonomous system) tasks that are potentially harmful
(physically, mentally, ethically, etc.) to operators or users,
even if this would be more expensive (High-Level Expert
Group on AI 2019 Recommendation 3.2). To ensure that
the system would benefit the operators or users, they
should be meaningfully consulted during the design and
development of the system (High-Level Expert Group on AI
2019 Recommendation 3.3).

The standard BS 8611 ethical design and application of
robots and robotic systems (British Standards Institution
2016) outlines a process of identifying the potential ethical
hazard and then determining the ethical risks1 (British
Standards Institution 2016 Sect. 4).

A first step in understanding the potential ethical
hazard posed by a system is identifying the relevant
ethical principles to which the system should adhere.
Listing the ethical principles to use in the assessment
of every possible robotic or autonomous system would
not be useful. BS 8611 recommends that the relevant
ethical principles should be “identified and defined by
engaging with end users, specific stakeholders and
the public”. Nevertheless numerous sets of suggested
principles exist that can be used as starting points. A
recent survey of standards and guidelines on ethics for
artificial intelligence found that they had converged on
the principles of transparency, justice and fairness, non-
maleficence, responsibility, and privacy (Jobin, Ienca,
and Vayena 2019). The same survey found a further six
principles that were present in some of the existing ethics
guidelines: beneficence, freedom and autonomy, trust,
sustainability, dignity, and solidarity.

BS 8611 itself describes some general ethical principles
that can be used in addition to a bespoke assessment

(British Standards Institution 2016 Sect. 5). They are
divided into four ethical issues, each comprising several
ethical hazard. First are societal issues: loss of trust in
the system, deception, anthropomorphisation, privacy
and confidentiality, lack of respect for cultural diversity
and pluralism, robot addiction, and employment.
Next are application issues: misuse, unsuitable use,
dehumanisation of users and operators, inappropriate
“trust” of a human by the robot, and self-learning systems
exceeding their remit. Then, commercial or financial
issues: approbation of legal responsibility and authority,
employment, equality of access, learning by autonomous
robots, informed consent, and informed command.
Finally, environmental issues: environmental awareness
for both the robot and appliances, and the operations and
applications.

BS 8611 highlights methods of mitigating, validating
and verifying (the absence of) these types of hazards.
Mitigation methods include things like including a
particular principle in the system’s design, or providing a
particular type of information to an operators or users.
Validation and verification includes well known techniques
like user validation, compliance testing, and software
verification; as well as techniques requiring wider
expertise, such as structured assessments of economic,
social, and legal impacts.

We reiterate that these are suggested starting points
for the identification and mitigation of ethical hazards.
A thorough analysis is needed for each system in its final
context, which should be repeated if the context (mission,
users, operators, software, hardware, etc) changes.

2.2 Materials Suitability
To affect the real world, an autonomous system is usually
embedded in a robotic system. This gives it a physical
presence and the ability to interact with its surroundings,
but leaves the system vulnerable to hazards in its
environment. So, the materials used in the robot need to
be assessed for their suitability to the hazards presenting
in the deployment environment. It is important to note
that this covers both the materials used to build the

1. An ethical risk is the probability of ethical harm from occurring from the frequency and severity of exposure to a hazard.

2 Prerequisite Concepts

12CONTENTS<

robot’s structure and casing, as well as the materials used
in its internal, electrical, and mechanical components.

For example, deployment in a radioactive environment
will influence choices of materials used in a robot.
Different types of radiation will have different effects
on different materials. This can impact a wide range
of components, from the metals used to construct the
robot, to the plastics used for electrical insulation, and
even the lubricants used for moving parts. There is also
the potential for radiation to affect the state of a robotic
system’s electronic components, so the likelihood and
impact of this should also be analysed.

In this example deployment, the types of radiation that are
expected in the robot’s environment should be analysed to
identify how they will impact the materials used in every
part of the robotic system. This analysis should be used,
alongside an agreed Mission Definition (detailing mission
duration, forecast dose rate, operational requirements,
etc.), to determine which materials are suitable for the
deployment environment. A detailed description of how
long each part of the robotic system can be expected to
last under particular radioactive conditions should be
compiled. This can be used by runtime monitors (see
Sections 3.3, 4.3 and 5.3) to provide ‘health’ information to
a user, operator, and/or autonomous system.

2.3 Verification and
Validation of Autonomous
and Robotic Software
There are a range of techniques for checking that
a software system functions correctly. Much of
an autonomous software system (in particular an
autonomous robotic system) may use well-understood
software and algorithms. As such, it is expected that
relevant, current good practice is observed during
the system’s development. This may include current
guidelines, standards, or regulator advice that is
applicable to the system and its intended use. Examples
of software verification techniques already in use for
robotic systems include: standardised or restricted

middleware architectures, software or physical testing
and simulations, domain specific languages for specifying
checkable constraints, graphical notations for designs,
and generating code using model-driven engineering
approaches (Luckcuck et al. 2019, Sect. 2). However,
systematic testing of autonomous robotic systems can be
challenging.

2.3.1 Verification & Validation Challenges from
Autonomous and Robotic Systems

Physical tests with a robotic system can be dangerous
in early phases of development, and are often difficult
or time-consuming to set-up or run. As such, greater
reliance on approaches based on simulation and code
analysis may be necessary even though these may lack
the fidelity of the actual operating environment. Even so,
there is some evidence that even a low-fidelity simulation
of a robot’s environment can reproduce bugs that were
found during field tests of the same robot; Sotiropoulos et
al. (2017) found that of the 33 bugs that occurred during a
field test of a robot, only one could not be reproduced in
their low-fidelity simulation.

Autonomous systems are often designed to be used
in (partially) unknown situations, where the autonomy
enables the system to operate when plans cannot be made
beforehand. Some techniques for implementing autonomy
create artefacts that are opaque, difficult to analyse,
which may find solutions that are surprising to humans.
In many situations this very ability to behave flexibly in
unexpected ways is a requirement of the software and
the reason for its development, but it clearly presents
challenges to the analysis of the risks of deploying the
system.

For many autonomous systems it may be possible to
limit the number of components that are difficult to
analyse. This reduces the amount of mitigation, related
to these components, required to argue that the system
is adequately safe. It may also be possible to pair a
component that is difficult to analyse with a monitor that
checks that component’s outputs against its expected
behaviour or range of behaviours. If the component’s
behaviour differs from the expectation, then the monitor

2 Prerequisite Concepts

13CONTENTS<

can take some mitigating action, for example: logging,
alerting a useror operator, or some automatic remedial
behaviour. In the case of a monitor triggering remedial
behaviour, this could be considered runtime enforcement.
The system’s expected behaviour could be described in
a formal specification or as a more traditional software
artefact. The key features of a monitor is that is should
be simpler and more analysable than the component it
is monitoring. Also, it may be appropriate for a monitor
to run on hardware that is separate from the component
it is monitoring, to safeguard against a hardware error
effecting both the component and the monitor. These
software engineering and architecture techniques are to
be encouraged where they can help improve analysability
or overall safety.

Aside from the challenges that autonomous software
presents, it also provides the opportunity to examine
a system’s decision-making mechanisms. Especially
where an autonomous component is taking over from
a previously human-made decision, this can play a
key role in maintaining or improving system safety in a
demonstrable way. Ignoring the chance to interrogate the
decisions an autonomous system is making would be a
waste of this opportunity.

The choice of technique to implement autonomy impacts
the kinds of Verification & Validation techniques that can
be applied to it – as mentioned in Section 1. Autonomous
software is often implemented in a different programming
paradigm to procedural or object-orientated programs.
For example, agent-based autonomy is often a collection
of guarded actions that the system chooses from at
runtime, based on what is perceived in the environment.
Machine learning techniques may enable a system to
derive and exploit complex statistical relationships
between inputs, sequences of actions, and results.
Sometimes these relationships, once learned, can be
expressed as clear rules which can then be analysed in
traditional ways, but in some cases these relationships
are too complex to be meaningfully expressed in this way.
Clearly uses of machine learning that produce analysable
results are preferable in terms of assurance, but where
this is not possible consideration must be given to how

incorrect derivations can be detected and mitigated.

Adaptive autonomous systems are often implemented
using feedback control approaches, which usually
use differential equations to model the system being
controlled when the feedback controller is being tuned.
Three key properties that should be checked for these
approaches are: (1) that the model is validated against
the real world, and that it is based on valid data; (2) that
any abstractions in the implementation of the feedback
controller are valid, and; (3) that the feedback controller is
robust against variations in the systems performance, and
can cope with any differences between its model and the
real system.

Many autonomous robotic systems have their perception
units and/or control units implemented with Deep Neural
Networks (DNNs). Techniques are being developed for
the verification and testing of deep learning (a survey of
the current state of the art can be found in (Huang et al.
2020)). A key property that should be considered when
making a case for the correctness of a DNN is whether two
inputs to the classifier that appear identical to a human
observer can be classified differently by the classifier -
clear definitions that attempt to capture this property
exist as do approaches to verifying (either formally or via
testing) that they hold. Therefore any safety case for an
autonomous system that includes such a classifier should
include evidence that the classifier conforms to one of
these definitions.

2.3.2 Formal Methods

The most rigorous Verification & Validation techniques
are referred to as formal methods: mathematical and
logical techniques for defining desired system properties,
and the analysis of specifications, designs and even
source code using mathematical proof-based techniques.
Formal methods can also be used to generate provably
correct source code from specifications and designs.
These techniques can be strategically applied to minimise
the likelihood of introducing faults during software
development.

2 Prerequisite Concepts

14CONTENTS<

There are many examples of formal specification and
verification applied to robotic and autonomous systems
in the research literature (Luckcuck et al. 2019), but there
are notable examples of their application in industry as
well (Woodcock et al. 2009). One potential use for formal
methods is to provide an unambiguous specification
of the system’s requirements. This enables the
verification of a design against its requirements. Formal
specifications are often built by examining a natural-
language specification and corresponding with domain
experts, to fill in the gaps. Formalising requirements
was found to be the most often used technique in the
industrial projects surveyed in (Woodcock et al. 2009).
Clear and unambiguous specifications, linked to designs,
can also help show where opaque and difficult to analyse
parts of the system can be eliminated, and where they are
truly necessary.

Formal methods can also be used to perform rigorous
static and dynamic analysis. The static analysis technique
most often used it the research literature is model
checking (Luckcuck et al. 2019), which is an automatic
process that exhaustively checks if a property holds in
every state of a formal system specification. Some model-
checkers accept timed or probabilistic specifications, and
program model-checkers can check a program against
a formal specification. There are also statistical model-
checkers that, in similar way to statistical testing, take
samples of the available paths through a specification.
This can enable the checking of very large specifications.

Statistical AI approaches, such as deep neural networks,
can also be analysed by statistical model-checking,
which can be useful even where absolute guarantees
of behaviour can’t be given. Such techniques can help
identify worst-case boundaries of the output, and analyse
the stability of the system in the face of small changes
in input (e.g., whether altering a few pixels in an image
might cause a drastic change in the resulting analysis – for
instance interpreting a red traffic light as a green one).

For dynamic analysis of a system, runtime verification can
be used: this is the style of monitoring described above;
where the system’s behaviour is compared to a formal
specification. If the system’s behaviour differs from the

specification, then the monitor can log the failure, alert
the user, or trigger mitigating actions. An extension
of this idea is predictive runtime verification, where a
formal description of the system is used to predict the
satisfaction or violation of a property. If the property will
continue to be satisfied, then the monitor can be removed
to save system resources; if the property will be violated,
then action can be taken to prevent it.

In general, runtime verification bridges the reality
gap (between a model and the real world) by checking
formal properties and assumptions at runtime. runtime
verification has the potential to mitigate the risks involved
in incorporating unpredictable or statistical techniques
into autonomous software, by providing guarantees
that a component’s behaviour will remain within some
guaranteed safe envelope, while enabling the creativity
of the statistical technique to find solutions within that
envelope. As previously mentioned, a runtime monitor
might be extended to trigger runtime enforcement of
safety properties.

Using formal methods are not always possible or
practicable, but they are a useful part of the toolkit for
verifying autonomous systems. There are also a range of
less formal but still rigorous approaches to the analysis
and testing of software that help identify and eliminate
bugs in order to provide high degrees of assurance of
system behaviour.

2.3.3 Verification & Validation Tools

The development of software for autonomous systems
relies upon effective use of appropriate Verification &
Validation tools, such as debuggers, test frameworks,
simulators, and formal methods tools, as part of a well-
structured rigorous modern process that follows a defined
software engineering lifecycle. These are software tools
that do not make it into the final software but are used
during development to support testing and assurance
activities to demonstrate that the system’s software
is correct. A key concern is being able to establish the
suitability of Verification & Validation tools that are used
and to show that they cannot unintentionally undermine
the assurance they are being used to provide.

2 Prerequisite Concepts

15CONTENTS<

In assessing the suitability of a Verification & Validation
tool, consider how it might fail and the consequences of a
failure. The types of failures are likely to be dependant on
the type of tool. The following non-exhaustive examples
demonstrate some of the types of failure that could occur:

•	 a software testing framework might be vulnerable to
similar programming errors as the language it is testing,
like confusing “=” and “==”;

•	 a simulator might not accurately account for certain
physical measurements, such as friction; or,

•	 the state space of a specification might be too big for
the model checker (or rather the hardware running the
model checker) to cope with.

If the consequences of Verification & Validation tool failing
only have a small impact on the system’s safety assurance,
then a fairly untested tool might be acceptable. If, as is
more likely, the consequences could have a high impact on
the assurance for safety of the system or component, then
prevention or mitigation measures should be considered.
The categorisation of the impact of a Verification &
Validation tool failing, and of the appropriate prevention
or mitigation measures, will depend on things like the
system’s deployment environment, mission, and applicable
regulatory regime. For example, the part of the tool that is
known to fail to identify errors could be avoided, or if there
are types of known error that a tool fails to identify these
could be detected by an independent tool or technique,
or for higher levels of assurance use of more than one
third-party accredited Verification & Validation tool with
comparison of types of errors detected.

2.4 Mixed-Criticality
Systems
Real-Time and embedded systems are increasingly
often composed of components with different levels of
criticality on the same hardware platform, hence mixed-
criticality systems. Here, criticality means the level of
assurance against failure that a given system component
needs. Different definitions of these criticality levels
exist, and they may be named, for example, Automotive

Safety and Integrity Levels, Design Assurance Levels
(or Development Assurance Levels), or Safety Integrity
Levels. The use of mixed-criticality systems is often
driven by strict non-functional requirements, such as
weight, heat generation, or power consumption. For
a comprehensive review of mixed-criticality systems
research see (Burns and Davis 2018).

In Sections 3, 4, and 5 we recommend analysis of the
criticality of system components to enable to the
strongest Verification & Validation methods (such
as Formal Methods) to be used on the most critical
components. This suggestion aims to ensure that the
most critical components are assured against failure,
without requiring the entire system to be (for example)
formally verified.

To avoid confusion with nuclear criticality, in the rest
of this document we refer to the criticality of system
components as their ‘importance to the system’s safety’.
This can still be thought of in terms of Automotive
Safety and Integrity Levels, Design Assurance Levels (or
Development Assurance Level), or Safety Integrity Levels.

2 Prerequisite Concepts

CONTENTS< 16

3	General
Principles
for Safety-
Critical Robotic
Systems

This section introduces general
principles to consider for robotic
systems that are deployed in hazardous
environments. These principles focus
on the physical aspects and deployment
context of the system. They should be
considered alongside those in Sections 4
and 5, as appropriate to the system.

3.1 Design
1.	 Identify the importance to safety2 of each software and

hardware component, then use the most robust design
methods for the most important.

This can produce a design that can have its safety
assured, while focussing robust methods on the
components that are key to the system’s safety.
(See 3.2 (1), 3.3(1) and 4.2 (1)).

2.	 Design of the facility may need to be physically
extended to accommodate the robotic system. This
may include considering the storage and maintenance
of the robot and how it is transported between these
areas and its deployment environment.

3.	 If the design of the system requires that it, its
components, or any debris may be removed from the
deployment environment, this needs to be assessed
for potential contamination.

4.	 The design needs to describe the decommissioning
approach for the system. It may be that parts of the
system can be decontaminated and removed, or
the system may need to be disposed of ‘whole’. This
element of the design needs to take into account
the environmental impacts of the decommissioning
strategy.

2. See Section 2.4.

17CONTENTS<

3.2 Verification
and Validation
1.	 Use strong Verification & Validation techniques, such

as Formal Methods, at early stages of the system’s
lifecycle. These can be used to prototype for a task or
a software component that is highly important to the
system’s safety, while ensuring (if Formal Methods are
used) that the specification of the task or component
is rigorous.

2.	 Introduce simulation-based testing to check the
system’s integration and to find statistically unlikely
states that cause a failure. It is crucial that the
simulation’s limitations are well understood and that
the differences between it and the actual system are
adequately managed. Simulations will, ideally, include
high fidelity controls that enable the assessment of
how a user’s or operator’s actions impact the system’s
behaviour.

3.	 Demonstrate by several methods – which should
include physical testing – that the system operates
as specified, in the absence of potential hazards. It is
important to note that physical or software testing will
struggle to be exhaustive, which is why it needs to be
combined with or preceded by Verification & Validation
techniques that can be exhaustive (such as Formal
Methods). An example of using different Verification &
Validation techniques to corroborate each other can be
found in (Webster et al. 2020).

3.3 Operation
1.	 Verifiably correct runtime monitors could be used to

perform ‘online requirements checking’, comparing the
system’s operational behaviour to its requirements.
The behaviour of the whole system could be
monitored, or the monitoring could be focussed on the
components most important to the system’s safety3 as
described in 3.1 (1). If the requirements are no longer
being met, then the system could: move to a safe state
until the problem is resolved (see. 3.3 (2)), report the
failure to a responsible person, or log the failure.

2.	 For components that are important to the system’s
safety3 runtime monitors could be extended to provide
runtime enforcement. For example, if the monitor
find that the system is no longer meeting its safety
requirements, then it could trigger a safe state until
the problem is resolved (see 4.1).This could include
enforcing limits on the speed of movement or force
applied by the system, even when a userattempts to
exceed these limits.

3.	 In addition to any physical barriers used to contain
the system, its software can be used to create
logical barriers (this is related to 3.3 (2). For example,
monitoring a robot’s position and preventing it from
moving forward once it enters a ‘buffer’ zone around
the physical barrier. This has the advantage of reducing
the likelihood of a robot becoming stuck at a physical
barrier, which would require manual intervention to
remedy. Validating the logical barriers is important and
highly context dependent. One example of validating
logical barriers could involve analysing the reaction and
braking time of the robot at its maximum speed and
ensuring that the logical barrier is far enough away that
it wont hit the physical barrier.

3. See Section 2.4.

3 General Principles for Safety-Critical Robotic Systems

18CONTENTS<

3.4 Maintainance, Recovery
and Decommissioning
1.	 To enable for maintenance, recovery, and

decommissioning; ensure either safe human access
to, or safe removal of, the robotic system from its
hazardous environment.

This could include access to the system’s deployment
environment (while powered down) or the ability to
remove the physical system from the deployment
environment (if needed or possible). It needs to be
demonstrable that this is possible even in the event
of some or all of the system failing. This is likely to
need multiple techniques, for example the analysis of
the system and deployment environment, simulation,
formal analysis of the control algorithm, physical
testing, etc.

2.	 If the system, its components, or any debris may be
removed from the deployment environment, this
needs to be assessed for potential contamination. This
requires that the potential for this to happen has been
considered, as mentioned in 3.1 (3) and 3.1 (4).

3.	 The decommissioning strategy (which should be
considered during the design phase, 3.1 (4)) should
take into account the environmental impacts of
decommissioning the system.

4.	 Modifications to the software or hardware (which
may include upgrade, reconfigurations, etc) need
to be assessed against the system’s original design
and verification artefacts, to ensure that the safety
properties (of both the modified component and the
whole system) are preserved. Additional monitors, or
modifications to existing monitors, may be required.

5.	 Components should be added to the system to allow
it to monitor its own ‘health’. This can be used to track
its current capability and suitability for the task, and
to predict future (hardware or software) failures.
This is useful for issues like hardware wear and tear,
augmenting the human ability to consider replacing a
component when it ‘feels like its about to break’ with
data- or model-based prognostics.

It needs to be provable that the data collection and
monitoring does not become surveillance of any
human interacting with the system.

3 General Principles for Safety-Critical Robotic Systems

CONTENTS< 19

4	Principles
for Human-
Controlled
Robotic
Systems

In addition the principles in Section 3,
this section outlines the principles to
consider for robotic systems where there
is significant human-in-the-loop control.
This can range from remote-control, where a “human
operator controls the robot on a continuous basis, from a
location off the robot, via only [their] direct observation”
(Standing Committee for Standards Activities of the IEEE
Robotics and Automation Society 2015); to telecontrol,
where a “human operator, using sensory feedback, either
directly controls the actuators or assigns incremental
goals on a continuous basis, from a location off the robot”
(Standing Committee for Standards Activities of the IEEE
Robotics and Automation Society 2015)4.

The principles below are organised into three sections:
Design, Sect. 4.1; Verification & Validation, Sect, 4.2; and
Operation, Sect.4.3. The principles are numbered for
identification not to indicate ordering.

4.1 Design
1.	 Design of the robotic system’s working environment

should contain similar safety constraints to a
conventional (non-robotic) deployment environment,
to mitigate the foreseeable hazards caused by the task
itself. This includes re-design of an existing working
environment to accommodate a robotic system. Where
an existing human working environment is being re-
designed to accommodate human-controlled robotic
systems, attention should be paid to the potential
difference in speed, range of movement and strength
of the robotic system in comparison to humans.

4. The key difference between remote-control and teleoperation is
whether the operator is directly observing the robot, with their eyes;
or indirectly observing the robot, via sensors.

20CONTENTS<

2.	 Designing the task(s) that the robotic system will
perform may involve simply replicating how a human
worker does it, but the task may need re-designing to,
for example: accommodate the differences between
robots and humans, or to improve efficiency.

The robotic system should perform a task
demonstrably as safely a trained useroroperator.
Additional safety considerations (e.g. failsafe states
and/or passive measures) are likely to be necessary.

3.	 Multiple, parallel, safety systems could be designed, to
provide the required level of assurance (e.g. through
defence-in-depth). These could be a combination of
physical, hardware systems, and software systems.

4.2 Verification & Validation
1.	 Use the most robust Verification & Validation

methods for the most critical hardware and software
components. This requires the identification of those
components most important to the system’s safety5, as
described in 3.1 (1). For example, if the system’s design
has identified the need for components that limit the
robot’s speed of movement or potential to apply force,
then these components should be candidates for
robust Verification & Validation.

This approach enables system safety assurance,
whilst prioritising the components that are key to the
system’s safety when chooisng where to apply robust
Verification & Validation. (Also see 3.3 (1)).

2.	 Demonstrate (via human factors assessments and/
or user evaluation studies) both user competence and
user confidence in the new remote-controlled system.

3.	 If a robotic system that is replacing an existing system
(robotic or otherwise), then the safety boundaries and
constraints of the new system should be assessed to
ensure that no additional safety concerns have been
introduced and that existing safety mitigations remain
valid. This should be done before deployment of the
new system.

4.	 users and operators should only be in physical
proximity to the robot after it has been demonstrated
that the robot cannot harm them under any
circumstance, including failures.

4.3 Operation
1.	 Information about the use of a robotic system could

be logged to, for example, help model how a task is
performed safely or highlight areas where new safety
features could be useful. This information could
also be used to validate how an autonomous system
performs the task. However, his data collection needs
to be transparent to the humans involved and only be
collected with informed consent (see 4.3 (2)).

2.	 It should be demonstrable that any data collection
or monitoring does not become surveillance of any
operator, user, or any other human interacting with
the system. Any monitoring by or of the system needs
to be transparent to the humans involved and only be
collected with informed consent.

5. See Section 2.4 for a discussion of this concept.

4 Principles for Human-Controlled Robotic Systems

CONTENTS< 21

5	Principles for
Autonomous
Robotic
Systems

In addition to the principles in Sections 3
and 4, this section outlines the principles
to consider for systems ranging
from semi-autonomous up to fully-
autonomous.
In a semi-autonomous robotic system the “robot and a
human operator plan and conduct the task, requiring
various levels of human interaction” (Standing Committee
for Standards Activities of the IEEE Robotics and
Automation Society 2015). This works best where
well-defined tasks are delegated by the operator
to the autonomous system. In a fully-autonomous
robotic system, the robot performs a task “without
human intervention, while adapting to operations and
environmental conditions” (Standing Committee for
Standards Activities of the IEEE Robotics and Automation
Society 2015).

A common route for the introduction of an autonomous
robotic system is to begin with a remote-controlled
system, where a human operator is still making the key
decisions, and steadily delegate tasks or decisions to

autonomous components of the system. This staged
approach has the advantage of only automating small sets
of tasks or decisions at a time, which can aid Verification
& Validation and monitoring efforts, as well as slowly
building the confidence of users and operators in the
system’s safety. As previously mentioned, priority should
be given to automating tasks that are potentially harmful
(physically, mentally, ethically, etc.) to operators or users,
even if this would be more expensive (High-Level Expert
Group on AI 2019 Recommendation 3.2). To ensure that
the system would benefit the operators or users, they
should be meaningfully consulted during the design and
development of the system (High-Level Expert Group
on AI 2019 Recommendation 3.3). Staged introduction
of a robotic or autonomous system is likely to involve
data collection and monitoring, to check the system is
operating correctly and safely, but this should not become
surveillance of the operators, users, or any responsible
person.

The principles below are organised into three sections:
Design, Sect. 5.1; Verification & Validation, Sect. 5.2; and
Operation, Sect. 5.3. The principles are numbered for
identification not to indicate ordering.

22CONTENTS<

5.1 Design
1.	 The guiding principles of an autonomous system’s

design should be that it improves the well-being
and safety of front-line workers, by complementing
their skills; and be demonstrably trustworthy and
adequately safe in the eyes of those workers. This will
involve ongoing consultation with front-line workers
about which task(s) would most usefully (for them) be
delegated to an autonomous system.

This is in addition to ensuring that the system’s
required level of safety can be demonstrated to the
regulators.

2.	 If an autonomous system is being introduced to control
a robotic system, then it should (initially) make use
of existing physical barriers to contain the robot, to
provide a final line of defence if the software and
hardware safety systems fail.

3.	 The introduction and implementation of autonomy, or
autonomous components, should focus on the system’s
transparency and amenability to strong verification (for
example, Formal Methods, formally specified runtime
monitors, etc). Opaque statistical AI techniques (e.g.
data-driven machine learning) should only be used
where they are necessary.

4.	 An autonomous system should maintain the remote-
control option as a backup, so that the system can be
operated or made safe if the autonomous software
fails. This implies that the remote-control link is part
of the system and should also be demonstrated to be
adequately safe.

5.	 Clearly identify and fully define the task(s) that the
autonomous system will perform. This should include,
for example: its context and inputs (and any other
preconditions), how it performs the task, the expected
outputs (and any other postconditions), what might
cause the task to fail and how the system should
recover, etc. The intent of these task definitions is to
make it clear to both the development team and the
end users what the system can and cannot do.

6.	 If the autonomous system is being delegated a task
from a human, then the task design process should
begin with a clear analysis of how the human operator
currently does the job safely. Safety enhancements,
that are enabled by an autonomous robotic system
with higher capabilities than a human operator, can be
included after the system copying the human operator
can be shown to be acceptably safe.

This has several benefits. First, it involves current
front-line workers in the design process, which
improves the likelihood that actual safe practice is
captured (and not just the documented safe practice).
Second, it provides the system’s requirements, which
are essential for meaningful Verification & Validation
(see Section 5.2). Third, the system’s actions are more
understandable, which can improve front-line worker’s
trust and the ability to identify failures in performing
the task.

7.	 For each task, design high-level pre-and post-
condition (or assume-guarantee) properties to
describe what things the task assumes to be true
before it starts and after it executes and a low-level
procedural description of the task (e.g. a flowchart or
state machine).

The design should consider the potential for a task to
fail during its operation, and define a fallback task (or
tasks) to safely recover from the failure or transition to
a failsafe state (for example, see Viard, Ciarletta, and
Moreau 2019).

8.	 When designing an autonomous system to take-over
tasks with a high importance to safety6, a decision
support system can be used as a prototype for the
full system, to validate the task model and decision
processes. This could also improve user trust in the
autonomous system’s decisions, in a way that does not
give the software physical control of the task(s).

9.	 If an unpredictable component (such as a machine
learning or evolutionary systems) is used, ensure
that the goal of the system and its ethical and safety
properties (things it must avoid doing or choosing) are
well defined beforehand (see 5.3 (2)).

6. See Section 2.4 for a discussion of this concept.

5 Principles for Autonomous Robotic Systems

23CONTENTS<

10.	 If an AI Planning system is used to plan the
movement (or other actions) from a user supplied
world model, then experts in the operational context
should be involved in the design of this world model
because the correctness of the resulting plans
depends upon the accuracy of the world model. Formal
techniques can be used to analyse the model for
consistency and detect ambiguities.

5.2 Verification & Validation
1.	 For each task, verify that its implementation respects

both the high-level (pre- and post-condition) and low-
level design (see 5.1 (7)).

2.	 users and operators should only be in physical
proximity to the robot after it has been demonstrated
that the robot cannot harm them under any
circumstance, including failures.

3.	 If statistical techniques (such as deep neural networks)
are used, then they should be analysed, to the extent
possible, to identify worst-case mis-classification
ratio and their robustness to small changes in input.
For example, it should be demonstrated that if a human
observer (or other oracle) would classify two inputs
(that the neural network has been trained on) as the
same (or the same type), then they are also classified
as the same (or the same type) by the neural network.

4.	 Online learning: that is systems that will continue to
use observations of the outcomes of their actions
within the environment to modify their operation
after deployment should be avoided unless absolutely
necessary.

5.	 If feedback controllers are used, then it should be
demonstrated that (1) the model of the system
(which is likely to be a collection of differential
equations) is validated against the real world, and
that it is based on valid data; (2) that any abstractions
in the implementation of the feedback controller are
valid, and; (3) that the feedback controller is robust
against variations in the systems performance, and
can cope with any differences between its model
and the real system.

5.3 Operation
1.	 The system should monitor its hardware for signs

of degradation, this could include excess noise or
vibration etc. This monitoring enables prediction of
when components need replacing and could feed
into the system’s planning software. This is especially
important where an autonomous system will work
more intensively than a human, as degradation rates
are likely to increase and may be less easy to predict.

It needs to be provable that the data collection and
monitoring does not become surveillance of any
human interacting with the system.

2.	 If unpredictable software components (such as
machine learning, or evolutionary systems) are used
(see 5.1 (9)), then verifiably correct (for example, by
using Formal Methods) runtime monitors should be
used to enforce the goal, ethical, and safety properties
that have been defined in the design. This ensures
that the system remains in an acceptable behavioural
envelope. This envelope should be transparent and
understood by human operators, users, and the
responsible person. This enables human detection of
deviations from the behavioural envelope at runtime.
(See (Mallozzi, Pelliccione, and Menghi 2018) for an
example of this approach.)

3.	 Autonomous systems often use internal models of the
real world to plan behaviour and interact with their
environment, such as a pre-built map of the system’s
environment for navigation and planning. These
models are abstractions of the real world, but if the
abstractions are wrong or the real world changes, then
the model becomes less correct. The system should
monitor its environment to ensure that its internal
models remain correct. If a change is detected, then
the system could attempt to update its model or alert
an operator or responsible person if it is unable to.

5 Principles for Autonomous Robotic Systems

CONTENTS< 24

Authors,
Glossary and
References
Authors
•	 Matt Luckcuck, Department of Computer Science,

Maynooth University, Ireland7

•	 Michael Fisher, Autonomy & Verification Group,
The University of Manchester, UK8

•	 Louise Dennis, Autonomy & Verification Group,
The University of Manchester, UK9

•	 Steve Frost, Office for Nuclear Regulation, Bootle, UK

•	 Andy White, Office for Nuclear Regulation, Bootle, UK

•	 Doug Styles, Office for Nuclear Regulation, Bootle, UK

Our thanks go to Vince Page, and Xiaowei Huang for
contributing their expert advice; and to our early
reviewers: Xingyu Zhao, Başak Sarac̣-Lesavre, and Nick
Hawes for their invaluable discussion and comments.

Glossary
ASIL Automotive Safety and Integrity Level.

Assurance Justified confidence in a property.

Criticality The level of assurance against failure needed
for a system component.

DAL Design Assurance Levels or Development Assurance
Level.

Deployment Environment The environment in which the
robotic or autonomous system has been designed to work.

Ethical Risk The probability of ethical harm occurring
from the frequency and severity of exposure of a hazard.
See BS 8611:2016 (British Standards Institution. 2016).

Ethical Hazard A potential source of ethical harm. See BS
8611:2016 (British Standards Institution. 2016).

Ethical Harm Anything likely to compromise psychological
and/or societal and environmental well-being. See BS
8611:2016 (British Standards Institution. 2016).

Formal Methods Mathematical approaches to software
and system development that support the rigorous
specification, design, and verification of computer
systems.

Fully-Autonomous Robotic System A system where the
robot performs a task “without human intervention, while
adapting to operations and environmental conditions”
(Standing Committee for Standards Activities of the IEEE
Robotics and Automation Society. 2015).

MCS Mixed-Criticality System.

Mission-Critical A mission-critical system is one where
a failure may lead to large data- and financial-losses.
Examples include deep-sea submersibles, automatic
exploration vehicles (for example, the Mars rovers), and
other scientific monitoring systems.

7. The majority of Matt Luckcuck’s work on this white paper was done while he was employed by the Universities of Liverpool and Manchester.
https://orcid.org/0000-0002-6444-9312

8. Michael Fisher https://web.cs.manchester.ac.uk/~michael
9. Louise Dennis: https://personalpages.manchester.ac.uk/staff/louise.dennis

https://personalpages.manchester.ac.uk/staff/louise.dennis/
https://orcid.org/0000-0002-6444-9312
https://web.cs.manchester.ac.uk/~michael/
https://web.cs.manchester.ac.uk/~michael
https://personalpages.manchester.ac.uk/staff/louise.dennis/
https://personalpages.manchester.ac.uk/staff/louise.dennis

25CONTENTS<

Operator A human providing a robotic system with
instructions or direction.

Predictive Runtime Verification An extension of Runtime
Verification, where a formal specification of the system
is used to try to predict satisfaction or violation of a
property.

Responsible Person A human who has the legal
responsibility for a robotic system, see (Principles of
robotics – EPSRC website, Rule 5).

Runtime Verification An approach where the system is
monitored, and its behaviour is compared to a formal
specification. Action can be taken if the behaviour differs
from the specification.

Safety-Critical A safety-critical system is one where a
failure may lead to ecological or financial disaster, serious
injury, or death. Examples include medical equipment,
cars, aeroplanes, and power plants.

Semi-Autonomous Robotic System A system where the
“robot and a human operator plan and conduct the task,
requiring various levels of human interaction” (Standing
Committee for Standards Activities of the IEEE Robotics
and Automation Society. 2015).

SIL Safety Integrity Level.

User A human interacting with a robotic system, who may
or may not be an employee.

V&V Verification and Validation.

References
Beer, Jenay M, Arthur D Fisk, and Wendy A Rogers. 2014.
“Toward a Framework for Levels of Robot Autonomy in
Human-Robot Interaction.” Journal of Human-Robot
Interaction 3 (2): 74.
https://doi.org/10.5898/JHRI.3.2.Beer

British Standards Institution. 2016. BS 8611:2016 -
Robots and robotic devices. Guide to the ethical design
and application of robots and robotic systems. British
Standards Institution.
http://shop.bsigroup.com/
ProductDetail?pid=000000000030320089

Burns, Alan, and Robert Davis. 2018. “Mixed Criticality
Systems - A Review.” August 2018. York: University of York.
https://www-users.cs.york.ac.uk/ burns/review.pdf

Endsley, Mica R. 1999. “Level of Automation Effects on
Performance, Situation Awareness and Workload in a
Dynamic Control Task.” Ergonomics 42 (3): 462–92.
https://doi.org/10.1080/001401399185595

High-Level Expert Group on AI (AI HLEG). 2019. “Policy and
investment recommendations for trustworthy Artificial
Intelligence.” European Commission.
https://ec.europa.eu/digital-single-market/en/news/
policy-and-investment-recommendations-trustworthy-
artificial-intelligence

Huang, Hui-Min, Kerry Pavek, James Albus, and Elena
Messina. 2005. “Autonomy Levels for Unmanned Systems
(ALFUS) Framework: An Update.” In, edited by Grant R.
Gerhart, Charles M. Shoemaker, and Douglas W. Gage, 439.
Orlando, Florida, USA.
https://doi.org/10.1117/12.603725

Huang, Xiaowei, Daniel Kroening, Wenjie Ruan, James
Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping
Yi. 2020. “A Survey of Safety and Trustworthiness of Deep
Neural Networks: Verification, Testing, Adversarial Attack
and Defence, and Interpretability.” Computer Science
Review 37 (August): 100270.
https://doi.org/10.1016/j.cosrev.2020.100270

Jobin, Anna, Marcello Ienca, and Effy Vayena. 2019. “The
global landscape of AI ethics guidelines.” Nature Machine
Intelligence 1 (9): 389–99.
https://doi.org/10.1038/s42256-019-0088-2

Luckcuck, Matt, Marie Farrell, Louise A Dennis, Clare
Dixon, and Michael Fisher. 2019. “Formal Specification and
Verification of Autonomous Robotic Systems: A Survey.”
ACM Computing Surveys 52 (5): 1–41.
https://doi.org/10.1145/3342355

Mallozzi, Piergiuseppe, Patrizio Pelliccione, and Claudio
Menghi. 2018. “Keeping intelligence under control.”
2018 IEEE/ACM 1st International Workshop on Software
Engineering for Cognitive Services (SE4COG), 37–40.
https://doi.org/10.1145/3195555.3195558

Authors, Glossary and References

https://doi.org/10.5898/JHRI.3.2.Beer
http://shop.bsigroup.com/ProductDetail?pid=000000000030320089
http://shop.bsigroup.com/ProductDetail?pid=000000000030320089
https://www-users.cs.york.ac.uk/burns/review.pdf
https://doi.org/10.1080/001401399185595
https://ec.europa.eu/digital-single-market/en/news/policy-and-investment-recommendations-trustworthy
https://ec.europa.eu/digital-single-market/en/news/policy-and-investment-recommendations-trustworthy
https://ec.europa.eu/digital-single-market/en/news/policy-and-investment-recommendations-trustworthy
https://doi.org/10.1117/12.603725
https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3195555.3195558

26CONTENTS<

On-Road Automated Driving (ORAD) committee, SAE
International. 2018. “Taxonomy and Definitions for Terms
Related to Driving Automation Systems for on-Road Motor
Vehicles.” J3016_201806. SAE International.
https://doi.org/10.4271/J3016_201806

Ryan Proud, Jeremy Hart, and Richard Mrozinski. 2003.
“Methods for Determining the Level of Autonomy to Design
into a Human Spaceflight Vehicle: A Function Specific
Approach.” In, 15. Gaithersburg, MD; United States.
http://handle.dtic.mil/100.2/ADA515467

Sheridan, Thomas B, and William L Verplank. 1978.
“Human and Computer Control of Undersea
Teleoperators.” Massachusetts Inst of Tech Cambridge
Man-Machine Systems Lab.
https://apps.dtic.mil/sti/citations/ADA057655

Sotiropoulos, Thierry, Hélène Waeselynck, Jérémie
Guiochet, and Félix Ingrand. 2017. “Can robot navigation
bugs be found in simulation? An exploratory study.” In
Softw. Qual. Reliab. Secur., 150–59. IEEE.
https://doi.org/10.1109/QRS.2017.25

Standing Committee for Standards Activities of the IEEE
Robotics and Automation Society. 2015. “IEEE Standard
Ontologies for Robotics and Automation.” IEEE.
https://standards.ieee.org/standard/1872-2015.html

Viard, Louis, Laurent Ciarletta, and Pierre-Etienne
Moreau. 2019. “Monitor-centric mission definition with
sophrosyne.” In 2019 Int. Conf. Unmanned Aircr. Syst. ICUAS
2019, 111–19. Atlanta, United States.
https://doi.org/10.1109/ICUAS.2019.8797898

Webster, Matt, David Western, Dejanira Araiza-Illan,
Clare Dixon, Kerstin Eder, Michael Fisher, and Anthony
G Pipe. 2020. “A Corroborative Approach to Verification
and Validation of Human–Robot Teams.” The International
Journal of Robotics Research 39 (1): 73–99.
https://doi.org/10.1177/0278364919883338

Woodcock, Jim, Peter Gorm Larsen, Juan Bicarregui, and
John Fitzgerald. 2009. “Formal Methods: Practice and
Experience.” ACM Computing Surveys 41 (4): 1–36.
https://doi.org/10.1145/1592434.1592436

Authors, Glossary and References

https://doi.org/10.4271/J3016_201806
https://doi.org/10.1145/1592434.1592436
https://apps.dtic.mil/sti/citations/ADA057655
https://doi.org/10.1109/QRS.2017.25
https://standards.ieee.org/standard/1872-2015.html
https://doi.org/10.1109/ICUAS.2019.8797898
https://doi.org/10.1177/0278364919883338
https://doi.org/10.1145/1592434.1592436

27CONTENTS<

The RAIN Hub: a radical change
to existing nuclear programmes
and initiatives.

The RAIN Hub’s objectives are to
overcome the challenges facing the
nuclear industry. Through applying
our scientific knowledge and
understanding we can improve safety
and efficiency in the nuclear sector,
benefiting the UK economy and
creating a safer working environment.

3625.06.21

Department of Electrical and Electronic Engineering
The University of Manchester
Oxford Road
Manchester
M13 9PL
United Kingdom

Tel: {+44} 0161 306 2622
Email: info@rainhub.org.uk

www.rainhub.org.uk

	 @RAIN_Hub

	Executive Summary
	Scope
	High-Level Recommendations

	Button 22:
	Button 26:
	Button 27:
	Page 2:

	Button 28:
	Page 2:

	Button 17:
	Button 18:
	Button 5:
	Page 3:
	Page 6:
	Page 10:

	Button 6:
	Page 3:
	Page 6:
	Page 10:

	Button 3:
	Page 4:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 17:
	Page 18:
	Page 20:
	Page 22:
	Page 23:
	Page 25:
	Page 26:

	Button 4:
	Page 4:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 17:
	Page 18:
	Page 20:
	Page 22:
	Page 23:
	Page 25:
	Page 26:

	Button 7:
	Button 8:
	Button 9:
	Button 10:
	Button 11:
	Button 12:
	Button 15:
	Button 16:
	Button 23:
	Page 27:

