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Autonomous systems are increasingly 
being used (or proposed for use) in 
situations where they are near or interact 
(physically or otherwise) with humans. 
They can be useful for performing tasks 
that are dirty or dangerous, or jobs that 
are simply distant or dull. This white 
paper sets out principles to consider 
when designing, developing, and 
regulating autonomous systems that 
are required to operate in hazardous 
environments.
Autonomous systems use software to make decisions 
without the need for human control. They are often 
embedded in a robotic system, to enable interaction 
with the real world. This means that autonomous robotic 
systems are often safety-critical, where failures can 
cause human harm or death. For the sorts of autonomous 
robotic systems considered by this white paper, the risk 
of harm is likely to fall on human workers (the system’s 
users or operators). Autonomous systems also raise 
issues of security and data privacy, both because of the 
sensitive data that the system might process and because 
a security failure can cause a safety failure.

Scope
This white paper is intended to be an add-on to the 
relevant existing standards and guidance for (for example) 
robotics, electronic systems, control systems, and safety-
critical software. These existing standards provide good 

practice for their respective areas, but do not provide 
guidance for autonomous systems. This white paper adds 
to the emerging good practice for developing autonomous 
robotic systems that are amenable to strong Verification & 
Validation.

The intended audience of this white paper is developers 
of autonomous and robotic systems. It aims to provide a 
description of things that need to be demonstrable by or 
of their systems, and recommendations of ways to achieve 
this. This aims to enable strong Verification & Validation 
of the resulting autonomous system, and to mitigate some 
of the hazards already occurring in autonomous systems.

High-Level 
Recommendations
This white paper can be summarised in seven high-level 
recommendations for the development and deployment of 
autonomous robotic systems, which are each discussed in 
more detail in the main text.

1. Remember both the hardware and software 
components during system assurance.

It is important to remember that an autonomous robotic 
system contains both hardware and software; both parts 
should be developed to be as safe as possible. In addition 
to any sector-specific standard and guidelines for robotic 
systems, the choice of materials used in the robot should 
be suitable for the potential hazards in the environment. 
For example, a robotic system deployed in a radioactive 
environment should be assessed for the suitability of the 
materials used to build the robot’s structure and casing, 
as well as the materials used in its internal, electrical, and 
mechanical components.

Executive  
Summary
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The software parts of the system should also be 
developed using appropriate, possibly sector-specific, 
standards and guidelines. In addition, careful attention 
should be paid to autonomous components, since they 
will be making executive decisions or interpreting sensor 
data, upon which decisions will be made. The strongest 
Verification & Validation should be used where this is 
possible, and Formal Methods should be considered where 
they are applicable.

2. Hazard assessments should include risks 
that have an ethical impact, as well as those 
that have safety and security impacts.

The introduction of robotic and autonomous systems will 
have an ethical impact on the workplaces and workforces 
where they are deployed. Risks involving safety and 
security are obviously ethical impacts, but here we mean 
risks that are not necessarily safety or security risks, but 
are risks of an only ethical nature.

The standard BS 8611 ethical design and application of 
robots and robotic systems (British Standards Institution 
2016) provides a framework for ensuring that ethical 
impacts are understood and accounted for when 
developing an autonomous robotic system. BS 8611 uses 
the terminology of ethical hazards: a potential source 
of ethical harm, which is anything likely to compromise 
psychological and/or societal and environmental well-
being. These ethical hazards describe a number of 
recognised ethical impacts that can arise from the 
development and deployment of robotic systems.

The identification of ethical hazards should be specifically 
included in the system’s hazard assessment, and care 
should be taken to not introduce them where they can 
be avoided. Like other (for example safety) hazards it is 
important that ethical hazards are identified early and 
designed out of the final system. Ethical hazards that 
make it into the final system become more difficult to 
correct, they are ‘baked in’. For example, hidden bias in a 
data set used to train a machine learning component can 
become an integral part of the system’s decision-making 
process, producing systemically biased decision-making.

3. Take both a corroborative and a mixed-
criticality approach to Verification & Validation.

Each of an autonomous robotic system’s components 
(both hardware and software) may need different 
assurance methods. One methodology for achieving 
this could be the corroborative Verification & Validation 
described in (Webster et al. 2020); where Formal Methods, 
simulation-based testing, and physical testing are all 
used in assuring a single system. Formal Methods are 
very precise but the might require abstract models of 
the system (though there are formal approaches that 
work directly on programs or at runtime). Physical testing 
with robots provides realism, because it uses the robotic 
system in a real environment, but will struggle to be 
exhaustive. Simulations sit between these two extremes. 
The corroborative Verification & Validation approach links 
results from each of these methods to provide confidence 
in an overall result, and enables an iterative development 
and assurance workflow.

It is also likely that the different components of an 
autonomous robotic system will have different levels 
of criticality, where criticality means the level of 
assurance against failure that a given component needs. 
We recommend analysing the criticality of a system’s 
components, so that the strongest Verification & 
Validation methods can be focussed on the most critical 
components, where they will have the biggest impact. 
This enables the use of, for example, Formal Methods for 
verifying a system’s executive decisions without implying 
that the whole system must be formally verified. This idea 
pairs well with the concept of corroborative Verification & 
Validation described previously.

4. Autonomous components should be as 
transparent and verifiable as possible.

Where autonomy is used to make executive decisions 
about what the system should do, it is very important to be 
able to understand why a decision has been taken and to be 
able to verify that the correct decision will be made under 
all circumstances. This is particularly useful for mitigating 
the challenge of extensively testing robotic systems.

Executive Summary
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Where autonomy is used to, for example, interpret sensor 
data, it is important to minimise incorrect interpretations 
and to ensure that a incorrect interpretation does not lead 
to unsafe behaviour. If this cannot be achieved directly, 
then the system’s architecture should be arranged so 
that there is a more analysable ‘governor’ between the 
autonomous component and the rest of the system.

In both cases, the choice of how to implement autonomy 
will impact the kinds of Verification & Validation 
techniques that are available. For example, an agent-
based approach to autonomy is likely to be easier to 
formally verify than an approach based on machine-
learning. How autonomous decisions are implemented 
should be considered analogously to picking a 
programming language for a safety-critical system: how 
easy it is to verify, understand, and demonstrate the safety 
of the autonomous component should be key factors in 
the decision of how to implement that component.

5. Tasks and missions that the system will 
perform should be clearly defined.

Task definitions could include expected inputs and 
outputs, a step-by-step description of the behaviour, 
potential failure modes, etc. Mission definitions could 
be seen as a collection of tasks, but should also include 
higher-lever concerns, like potential hazards in the 
deployment environment. These definitions makes it clear 
to the developers and end users what the system can and 
cannot do. It also describes the system’s requirements, 
which are essential for meaningful Verification & 
Validation; and the system’s deployment context, which 
is essential for things like assessing the suitability of the 
materials used to build the robotic system (as previously 
described).

6. Dynamic Verification & Validation  
should be used to complement static 
Verification & Validation.

Static checking can provide crucial confidence in a 
system’s correctness. For example, verifying that an 
autonomous component that makes executive decisions 
will never choose an unsafe behaviour. However, any 

system that interacts with the real world is bound to face 
some uncertainty, so dynamic Verification & Validation 
techniques (techniques deployed at runtime) should be 
used as well. This helps to bridge the reality gap, between 
design-time assumptions about the environment and the 
run-time reality. In addition to just performing runtime 
monitoring, this approach could be extended to perform 
runtime enforcement.

Runtime monitoring (or enforcement) can be high-level, 
for example checking the robotic system doesn’t exceed 
a safe speed; or it could be low-level and more focussed, 
for example governing a machine learning component to 
ensure that it doesn’t make decisions outside of a safe 
operating envelope. Either way, dynamic Verification & 
Validation during deployment can help to provide extra 
confidence that the system is continuing to operate 
correctly.

7. System requirements should be clearly 
traceable through the design, the development 
processes, and into the deployed system.

Autonomous robotic systems that are deployed into 
hazardous environments often require approval from 
a regulatory body before they can be used. Even if they 
don’t, then it is likely that the system will need to be 
acceptable to, and trusted by, human users or operators. 
Traceability of the system’s requirements through 
the development process is key to showing that the 
verification is checking for properties or behaviours that 
support the requirements, giving overall confidence 
in the correctness of the system. Being able to trace 
the requirements through to the final system (either as 
artefacts of static Verification & Validation, dynamic 
Verification & Validation components, or both) helps 
provide confidence that the final system fulfils the original 
requirements. This can help to ease regulatory efforts at 
the same time as potentially reducing risk.

Executive Summary
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1	 Introduction

These guidelines set out key principles 
to consider when designing, developing, 
and regulating autonomous systems that 
are specifically required to operate in 
hazardous environments (eg radiological, 
chemotoxic, etc). Particular questions 
that this white paper addresses include:
1.	 What do we consider to be an autonomous robotic 

system?

2.	 How do we demonstrate that the risks and benefits 
arising from the application of robotic or autonomous 
systems are acceptable?

3.	 What are the differences between safety engineering 
for a human-controlled robot and for an autonomously-
controlled robot?

4.	 What are the factors to be considered in the 
implementation of an autonomous system?

An autonomous robotic system can be viewed as a 
combination of a physical (robotic) element and a logical 
(software) element. The robotic part of the system 
enables interaction with the physical world. The software 
part of the system enables autonomous decision-making, 
based on sensor input and (often pre-built) models of its 
environment. Autonomous robotic systems are highly 
complex, usually mission-critical, and often safety-
critical. Autonomous systems are discussed in more detail 
later in this section.

Moving from a system being broadly human controlled 
(either remotely or via scripted automation) to autonomous 
control requires a new approach to Verification & 
Validation. Adding a software component or layer that 
make choices brings both new challenges and new 
opportunities. While it is challenging to ensure that the 
system will make safe choices, given the available sensor 
input; it also provides the opportunity to improve the 
confidence in the safety of the system by examining the 
decision-making process. As such, it should not be wasted.

Physical safety controls can be used to constrain the 
robotic system, but strong Verification & Validation of the 
software system is also highly recommended, not least 
to help establish user trust. Where physical controls are 
not possible, then the strongest Verification & Validation 
methods that are applicable to the system (or component) 
should be used. In either case, care should be taken to 
choose Verification & Validation methods that are suitable 
for describing both the system and the properties to be 
checked.

It is important to have detailed definitions of the tasks 
that an autonomous robotic system will perform. Task 
definitions are key design artefacts that ease Verification 
& Validation efforts, they also makes it clear to the 
developers and end users what the system can and cannot 
do. A task definition could include: expected inputs and 
outputs, a step-by-step description of the behaviour, 
potential failure modes, etc. It is also important to have 
a detail definition of the mission that an autonomous 
robotic system will perform. A mission definition could 
be seen as a collection of tasks that achieve the mission. 
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A good mission definition should also include higher-
lever concerns, like the types of hazard expected in the 
deployment environment. Again, this sort of definition 
is useful for Verification & Validation methods and the 
mitigation of potential hazards, but also for useror 
operator trust.

A single system will often require multiple methods of 
assurance, because of the multiple different types of 
components that compose one system. One methodology 
for achieving this could be the corroborative Verification 
& Validation described in (Webster et al. 2020); where 
Formal Methods, simulation-based testing, and physical 
testing are combined in the assurance of a single system.

In addition to hazards that arise from the violation of 
traditional safety principles, there are hazards that can 
arise from a range of considerations that are often loosely 
grouped together under the term ethics and artificial 
intelligence. The global landscape of ethics guidelines 
for AI is fragmented, but a recent survey has found 
convergence on five principles: transparency, justice and 
fairness, non-maleficence, responsibility, and privacy, 
with a further six principles: beneficence, freedom and 
autonomy, trust, sustainability, dignity and solidarity 
mentioned in many guideline documents (Jobin, Ienca, 
and Vayena 2019).

Carelessly developed and deployed AI systems have 
already been seen to violate these principles both through 
unintended side-effects of their operation and through 
their interactions with users. This can bring reputational 
harm to the organisations responsible for the systems 
and, at worst, cause real damage to users, bystanders and 
the general public. As our understanding of the ethical 
risks posed by AI and autonomous systems is maturing, 
so too is the development of methodologies for ethical 
risk and impact assessments as well as standards for the 
design and development of systems that adhere to these 
principles. It is therefore both practical and desirable to 
perform such assessments when proposing the use of an 
autonomous system in order to identify potential hazards 
that can arise from violations of the principles. This is 
discussed in Section 2.1 and further guidance can be 
found in (British Standards Institution 2016)

Key Points
•	 The introduction of a robotic or autonomous system  
must be to the benefit of the operators or users of the 
system. This includes: giving priority to automating 
(with a robotic or autonomous system) tasks that are 
potentially harmful (physically, mentally, ethically, 
etc.) to operators or users, even if this would be more 
expensive (see (High-Level Expert Group on AI 2019 
Recommendation 3.2); the consultation of workers 
during the design and development of robotic or 
autonomous systems (see (High-Level Expert Group  
on AI 2019 Recommendation 3.3)); and ensuring that 
data collection or monitoring by the system does not 
become surveillance of the operators, users, or any 
responsible person.

•	 Ethical issues are potential sources of hazards, so a 
hazard assessment should include the assessment 
of ethical issues. Such an assessment needs to be a 
specific part of the system’s requirements and design. 
(See, for example, the BSI guide to ethical design 
and application of robots and robotic systems (British 
Standards Institution 2016).)

•	 Autonomous components that make high risk decisions 
should be designed and implemented in a way that 
enables strong Verification & Validation of their choices, 
for example through the use of Formal Methods. This 
is particularly necessary to mitigate the difficulty 
(and safety implications) of checking the autonomous 
decisions via extensively testing robotic system.

•	 The physical (robotic) part of the system should be 
developed and assured using appropriate standards or 
guidelines. Additionally, the choice of materials used in 
the robot need to be suitable for the potential hazards 
(e.g radiation) in the environment.

•	 The software architecture of the system should be 
arranged so that components that are unpredictable  
or difficult to analyse are not able to directly influence 
the system’s decisions; their output should be checked 
by more reliable or analysable components. For 
example, a statistical data-driven machine learning 
classifier should not be directly connected to actuation, 
without having the classifications checked by a more 
analysable ‘governor’.

1 Introduction
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•	 The overall design of a robotic or autonomous system 
should aim to maximise the system’s effectiveness while 
also minimising safety risks, risks of failure, operation 
and maintenance risks, etc. This includes all aspects 
of the design, such as its mechanical arrangement, 
hardware and software selection, etc.

•	 Task and safety requirements need to be clearly 
traceable in the design, the development processes, and 
through to the system

This final point is considered to be of crucial importance 
to those organisations developing autonomous systems 
and justifying their use.

What is an Autonomous 
System?
At its most basic, an autonomous system is one that 
has the capability to make decisions free from human 
intervention. This is subtly different to automatic 
systems or adaptive systems, which can react to changes 
in their environment without human intervention but 
doesn’t make decisions. For example, a thermostat can 
automatically toggle a switch or adapt the heating/cooling 
in reaction to sensed temperature changes, but we do not 
consider it to have made a decision. These three concepts 
can be described as follows.

•	 Automatic systems are pre-programmed to react to 
input and are unlikely to have internal models if their 
environment. They are useful for more predictable 
situations where the system is required to perform a 
small number of tasks repeatedly.

•	 Adaptive systems are tightly linked to (and often driven 
by) the system’s operating environment using feedback 
controllers described using differential equations. Such 
approaches are useful where the system is performing 
monitoring tasks where the object is to maintain some 
state that can be described using calculus.

•	 Autonomous systems are able to make decisions that 
require intelligence and situational understanding. 
These decisions will will take the environment into 
account, but the system decides what to do based on 
its internal priorities and goals. They are useful in open 
environments where there is a large range of possible 
decisions to be made, often based on uncertain input.

Broadly, autonomous robotic systems can be 
described as:

•	 semi-autonomous, where the “robot and a human 
operator plan and conduct the task, requiring various 
levels of human interaction” (Standing Committee 
for Standards Activities of the IEEE Robotics and 
Automation Society 2015), or;

•	 fully-autonomous, where the robot performs a task 
“without human intervention, while adapting to 
operations and environmental conditions” (Standing 
Committee for Standards Activities of the IEEE Robotics 
and Automation Society 2015).

A newly deployed robotic system might be designed to be 
fully-autonomous, but often a human-controlled system 
will be adapted to become (semi or fully) autonomous. As 
a simple example of an autonomous system, consider a 
robot vacuum cleaner. An automatic cleaner will follow 
exactly the same path around a room, regardless of the 
different environmental conditions. An adaptive cleaner 
could be programmed to spend longer on the dirtiest area. 
Whereas, an autonomous cleaner could choose either of 
the above, but could also choose not to do any cleaning, 
perhaps because it knows that someone in the house is 
sleeping and it has decided that the cleaning noise will 
wake them or because waiting until tomorrow to clean 
(when no one is in the house) will provide better efficiency.

There are various frameworks describing the different 
levels of autonomy that a system might have, with no 
single framework being universally adopted. They can 
be useful for describing a system’s capabilities, but it 
important to be clear which levels of autonomy you are 
referring to.

1 Introduction
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The original levels of autonomy were defined for undersea 
teleoperation systems (Sheridan and Verplank 1978), 
though they are worded rather neutrally so may have wider 
applicability, and were revised in (Endsley 1999). The levels 
of autonomy developed by SAE International for driverless 
cars (On-Road Automated Driving (ORAD) committee, 
SAE International 2018) are often adapted to suit the 
deployment context of the autonomous system, but this is 
by no means ideal. There have been other efforts to create 
frameworks that are specific to particular deployment 
contexts, for example spacecraft (Proud, Hart, and 
Mrozinski 2003); or to be generic and applicable to all 
autonomous systems, for example (Huang et al. 2005; 
Beer, Fisk, and Rogers 2014). A detailed review of different 
frameworks for levels of autonomy can be found in (Beer, 
Fisk, and Rogers 2014, Sect. 3).

Whichever ‘level’ of autonomy a system has, it is important 
to note that autonomy can be achieved in different ways 
and that the chosen approach has implications for the 
Verification & Validation techniques that can be applied 
to the system’s decision-making. For safety-critical 
deployments, autonomy should be achieved by means 
that enable strong Verification & Validation methods. We 
discuss this in more detail in Section 2.3.

Document Structure
The rest of this white paper is arranged as follows. Section 
2 discusses principles that we consider to be prerequisite 
to those discussed in later sections, but are are beyond 
the scope this document to describe in detail. Section 3 
describes general principles for robotic systems intended 
for use in hazardous environments. Section 4 describes 
principles to consider when developing and deploying 
a human-controlled system, and Section 5 describes 
principles for autonomous systems.

Sections 3, 4, and 5 each build on the previous section. 
For example, when developing an autonomous system, 
the principles in Section 5 should be considered alongside 
those in Sections 3 and 4.

1 Introduction
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2	Prerequisite 
Concepts

The scope of this document is the 
development and assurance of 
autonomous systems. However there 
are principles that we consider to be 
prerequisite to the development and the 
deployment of an autonomous system. 
These principles are also very complex, 
so this section aims to introduce them 
and guide the reader to more detailed 
information.

2.1 Ethical Impact
All technologies have ethical impacts as they are 
introduced into society. The integration of complex 
computational and robotic systems into workplaces are 
raising a number of ethical issues which, even where 
these do not translate directly into hazards, have impacts 
on user trust and societal acceptability. The analysis 
and assessment of the ethical impact and risks posed 
by the introduction of autonomous systems is a fast 
moving area. While standards for the ethical development 
and deployment of AI and autonomous systems are in 
development by organisations such as the IEEE, most of 
these have yet to be published. However, BS 8611 ethical 
design and application of robots and robotic systems (British 
Standards Institution 2016), published in 2016, provides 
a standards-based framework for ensuring that ethical 
impacts are understood and accounted for when proposing 
the introduction of an autonomous robotic system. The 
development of similar standards is already underway.

BS 8611 uses the terminology of ethical hazards: a 
potential source of ethical harm, which is anything 
likely to compromise psychological and/or societal and 
environmental well-being. These ethical hazards describe 
a number of recognised ethical impacts that can arise 
from the development and deployment of robotic systems. 
We adopt this terminology of ethical hazard here but this 
should not be interpreted as implying an insistence that 
systems adhere to BS 8611 specifically.

Any hazard assessment should include the assessment of 
ethical hazards. Like other hazards (such as safety hazards) 
it is important that ethical hazards are identified early and 
designed out of the final system. Ethical hazards that make 
it into the final system become more difficult to correct, 
they are ‘baked in’. For example, hidden bias in a data set 
used to train a machine learning component can become 
an integral part of the system’s decision-making process, 
thereby producing systemically biased decision-making.

Ignoring ethical hazards, or leaving them to be discovered 
or dealt with after the system has been deployed is 
likely to be costly and less effective. The harms these 
hazards can cause can directly impact the system safety, 
particularly where they effect the way that the operators 
or users interact with the system. Ethical hazards 
that make it into the final system can also cause huge 
reputational damage to the system’s developing and/or 
operating organisation. Finally, not addressing ethical 
hazards is, by definition, un-ethical.

The ethical hazards will change for different systems and 
different people, so a comprehensive assessment of the 
ethical hazards of the specific system with its operators 
and users should be performed. Defining the principles 
and process for this assessment is outside the scope of 
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this document; this sub-section presents suggestions for 
both principles and process, but leaves the developer the 
flexibility to choose the most suitable route.

Before development, the impact of introducing a robotic 
or autonomous system needs to be analysed, to ensure 
that it would be to the benefit of the operators or users 
of the (current or proposed) system. For example, 
priority should be given to automating (with a robotic or 
autonomous system) tasks that are potentially harmful 
(physically, mentally, ethically, etc.) to operators or users, 
even if this would be more expensive (High-Level Expert 
Group on AI 2019 Recommendation 3.2). To ensure that 
the system would benefit the operators or users, they 
should be meaningfully consulted during the design and 
development of the system (High-Level Expert Group on AI 
2019 Recommendation 3.3).

The standard BS 8611 ethical design and application of 
robots and robotic systems (British Standards Institution 
2016) outlines a process of identifying the potential ethical 
hazard and then determining the ethical risks1 (British 
Standards Institution 2016 Sect. 4).

A first step in understanding the potential ethical 
hazard posed by a system is identifying the relevant 
ethical principles to which the system should adhere. 
Listing the ethical principles to use in the assessment 
of every possible robotic or autonomous system would 
not be useful. BS 8611 recommends that the relevant 
ethical principles should be “identified and defined by 
engaging with end users, specific stakeholders and 
the public”. Nevertheless numerous sets of suggested 
principles exist that can be used as starting points. A 
recent survey of standards and guidelines on ethics for 
artificial intelligence found that they had converged on 
the principles of transparency, justice and fairness, non-
maleficence, responsibility, and privacy (Jobin, Ienca, 
and Vayena 2019). The same survey found a further six 
principles that were present in some of the existing ethics 
guidelines: beneficence, freedom and autonomy, trust, 
sustainability, dignity, and solidarity.

BS 8611 itself describes some general ethical principles 
that can be used in addition to a bespoke assessment 

(British Standards Institution 2016 Sect. 5). They are 
divided into four ethical issues, each comprising several 
ethical hazard. First are societal issues: loss of trust in 
the system, deception, anthropomorphisation, privacy 
and confidentiality, lack of respect for cultural diversity 
and pluralism, robot addiction, and employment. 
Next are application issues: misuse, unsuitable use, 
dehumanisation of users and operators, inappropriate 
“trust” of a human by the robot, and self-learning systems 
exceeding their remit. Then, commercial or financial 
issues: approbation of legal responsibility and authority, 
employment, equality of access, learning by autonomous 
robots, informed consent, and informed command. 
Finally, environmental issues: environmental awareness 
for both the robot and appliances, and the operations and 
applications.

BS 8611 highlights methods of mitigating, validating 
and verifying (the absence of) these types of hazards. 
Mitigation methods include things like including a 
particular principle in the system’s design, or providing a 
particular type of information to an operators or users. 
Validation and verification includes well known techniques 
like user validation, compliance testing, and software 
verification; as well as techniques requiring wider 
expertise, such as structured assessments of economic, 
social, and legal impacts.

We reiterate that these are suggested starting points 
for the identification and mitigation of ethical hazards. 
A thorough analysis is needed for each system in its final 
context, which should be repeated if the context (mission, 
users, operators, software, hardware, etc) changes.

2.2 Materials Suitability
To affect the real world, an autonomous system is usually 
embedded in a robotic system. This gives it a physical 
presence and the ability to interact with its surroundings, 
but leaves the system vulnerable to hazards in its 
environment. So, the materials used in the robot need to 
be assessed for their suitability to the hazards presenting 
in the deployment environment. It is important to note 
that this covers both the materials used to build the 

1. An ethical risk is the probability of ethical harm from occurring from the frequency and severity of exposure to a hazard.

2 Prerequisite Concepts
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robot’s structure and casing, as well as the materials used 
in its internal, electrical, and mechanical components.

For example, deployment in a radioactive environment 
will influence choices of materials used in a robot. 
Different types of radiation will have different effects 
on different materials. This can impact a wide range 
of components, from the metals used to construct the 
robot, to the plastics used for electrical insulation, and 
even the lubricants used for moving parts. There is also 
the potential for radiation to affect the state of a robotic 
system’s electronic components, so the likelihood and 
impact of this should also be analysed.

In this example deployment, the types of radiation that are 
expected in the robot’s environment should be analysed to 
identify how they will impact the materials used in every 
part of the robotic system. This analysis should be used, 
alongside an agreed Mission Definition (detailing mission 
duration, forecast dose rate, operational requirements, 
etc.), to determine which materials are suitable for the 
deployment environment. A detailed description of how 
long each part of the robotic system can be expected to 
last under particular radioactive conditions should be 
compiled. This can be used by runtime monitors (see 
Sections 3.3, 4.3 and 5.3) to provide ‘health’ information to 
a user, operator, and/or autonomous system.

2.3 Verification and 
Validation of Autonomous 
and Robotic Software
There are a range of techniques for checking that 
a software system functions correctly. Much of 
an autonomous software system (in particular an 
autonomous robotic system) may use well-understood 
software and algorithms. As such, it is expected that 
relevant, current good practice is observed during 
the system’s development. This may include current 
guidelines, standards, or regulator advice that is 
applicable to the system and its intended use. Examples 
of software verification techniques already in use for 
robotic systems include: standardised or restricted 

middleware architectures, software or physical testing 
and simulations, domain specific languages for specifying 
checkable constraints, graphical notations for designs, 
and generating code using model-driven engineering 
approaches (Luckcuck et al. 2019, Sect. 2). However, 
systematic testing of autonomous robotic systems can be 
challenging.

2.3.1 Verification & Validation Challenges from 
Autonomous and Robotic Systems

Physical tests with a robotic system can be dangerous 
in early phases of development, and are often difficult 
or time-consuming to set-up or run. As such, greater 
reliance on approaches based on simulation and code 
analysis may be necessary even though these may lack 
the fidelity of the actual operating environment. Even so, 
there is some evidence that even a low-fidelity simulation 
of a robot’s environment can reproduce bugs that were 
found during field tests of the same robot; Sotiropoulos et 
al. (2017) found that of the 33 bugs that occurred during a 
field test of a robot, only one could not be reproduced in 
their low-fidelity simulation.

Autonomous systems are often designed to be used 
in (partially) unknown situations, where the autonomy 
enables the system to operate when plans cannot be made 
beforehand. Some techniques for implementing autonomy 
create artefacts that are opaque, difficult to analyse, 
which may find solutions that are surprising to humans. 
In many situations this very ability to behave flexibly in 
unexpected ways is a requirement of the software and 
the reason for its development, but it clearly presents 
challenges to the analysis of the risks of deploying the 
system.

For many autonomous systems it may be possible to 
limit the number of components that are difficult to 
analyse. This reduces the amount of mitigation, related 
to these components, required to argue that the system 
is adequately safe. It may also be possible to pair a 
component that is difficult to analyse with a monitor that 
checks that component’s outputs against its expected 
behaviour or range of behaviours. If the component’s 
behaviour differs from the expectation, then the monitor 

2 Prerequisite Concepts
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can take some mitigating action, for example: logging, 
alerting a useror operator, or some automatic remedial 
behaviour. In the case of a monitor triggering remedial 
behaviour, this could be considered runtime enforcement. 
The system’s expected behaviour could be described in 
a formal specification or as a more traditional software 
artefact. The key features of a monitor is that is should 
be simpler and more analysable than the component it 
is monitoring. Also, it may be appropriate for a monitor 
to run on hardware that is separate from the component 
it is monitoring, to safeguard against a hardware error 
effecting both the component and the monitor. These 
software engineering and architecture techniques are to 
be encouraged where they can help improve analysability 
or overall safety.

Aside from the challenges that autonomous software 
presents, it also provides the opportunity to examine 
a system’s decision-making mechanisms. Especially 
where an autonomous component is taking over from 
a previously human-made decision, this can play a 
key role in maintaining or improving system safety in a 
demonstrable way. Ignoring the chance to interrogate the 
decisions an autonomous system is making would be a 
waste of this opportunity.

The choice of technique to implement autonomy impacts 
the kinds of Verification & Validation techniques that can 
be applied to it – as mentioned in Section 1. Autonomous 
software is often implemented in a different programming 
paradigm to procedural or object-orientated programs. 
For example, agent-based autonomy is often a collection 
of guarded actions that the system chooses from at 
runtime, based on what is perceived in the environment. 
Machine learning techniques may enable a system to 
derive and exploit complex statistical relationships 
between inputs, sequences of actions, and results. 
Sometimes these relationships, once learned, can be 
expressed as clear rules which can then be analysed in 
traditional ways, but in some cases these relationships 
are too complex to be meaningfully expressed in this way. 
Clearly uses of machine learning that produce analysable 
results are preferable in terms of assurance, but where 
this is not possible consideration must be given to how 

incorrect derivations can be detected and mitigated.

Adaptive autonomous systems are often implemented 
using feedback control approaches, which usually 
use differential equations to model the system being 
controlled when the feedback controller is being tuned. 
Three key properties that should be checked for these 
approaches are: (1) that the model is validated against 
the real world, and that it is based on valid data; (2) that 
any abstractions in the implementation of the feedback 
controller are valid, and; (3) that the feedback controller is 
robust against variations in the systems performance, and 
can cope with any differences between its model and the 
real system.

Many autonomous robotic systems have their perception 
units and/or control units implemented with Deep Neural 
Networks (DNNs). Techniques are being developed for 
the verification and testing of deep learning (a survey of 
the current state of the art can be found in (Huang et al. 
2020)). A key property that should be considered when 
making a case for the correctness of a DNN is whether two 
inputs to the classifier that appear identical to a human 
observer can be classified differently by the classifier - 
clear definitions that attempt to capture this property 
exist as do approaches to verifying (either formally or via 
testing) that they hold. Therefore any safety case for an 
autonomous system that includes such a classifier should 
include evidence that the classifier conforms to one of 
these definitions.

2.3.2 Formal Methods

The most rigorous Verification & Validation techniques 
are referred to as formal methods: mathematical and 
logical techniques for defining desired system properties, 
and the analysis of specifications, designs and even 
source code using mathematical proof-based techniques. 
Formal methods can also be used to generate provably 
correct source code from specifications and designs. 
These techniques can be strategically applied to minimise 
the likelihood of introducing faults during software 
development.

2 Prerequisite Concepts
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There are many examples of formal specification and 
verification applied to robotic and autonomous systems 
in the research literature (Luckcuck et al. 2019), but there 
are notable examples of their application in industry as 
well (Woodcock et al. 2009). One potential use for formal 
methods is to provide an unambiguous specification 
of the system’s requirements. This enables the 
verification of a design against its requirements. Formal 
specifications are often built by examining a natural-
language specification and corresponding with domain 
experts, to fill in the gaps. Formalising requirements 
was found to be the most often used technique in the 
industrial projects surveyed in (Woodcock et al. 2009). 
Clear and unambiguous specifications, linked to designs, 
can also help show where opaque and difficult to analyse 
parts of the system can be eliminated, and where they are 
truly necessary.

Formal methods can also be used to perform rigorous 
static and dynamic analysis. The static analysis technique 
most often used it the research literature is model 
checking (Luckcuck et al. 2019), which is an automatic 
process that exhaustively checks if a property holds in 
every state of a formal system specification. Some model-
checkers accept timed or probabilistic specifications, and 
program model-checkers can check a program against 
a formal specification. There are also statistical model-
checkers that, in similar way to statistical testing, take 
samples of the available paths through a specification. 
This can enable the checking of very large specifications.

Statistical AI approaches, such as deep neural networks, 
can also be analysed by statistical model-checking, 
which can be useful even where absolute guarantees 
of behaviour can’t be given. Such techniques can help 
identify worst-case boundaries of the output, and analyse 
the stability of the system in the face of small changes 
in input (e.g., whether altering a few pixels in an image 
might cause a drastic change in the resulting analysis – for 
instance interpreting a red traffic light as a green one).

For dynamic analysis of a system, runtime verification can 
be used: this is the style of monitoring described above; 
where the system’s behaviour is compared to a formal 
specification. If the system’s behaviour differs from the 

specification, then the monitor can log the failure, alert 
the user, or trigger mitigating actions. An extension 
of this idea is predictive runtime verification, where a 
formal description of the system is used to predict the 
satisfaction or violation of a property. If the property will 
continue to be satisfied, then the monitor can be removed 
to save system resources; if the property will be violated, 
then action can be taken to prevent it.

In general, runtime verification bridges the reality 
gap (between a model and the real world) by checking 
formal properties and assumptions at runtime. runtime 
verification has the potential to mitigate the risks involved 
in incorporating unpredictable or statistical techniques 
into autonomous software, by providing guarantees 
that a component’s behaviour will remain within some 
guaranteed safe envelope, while enabling the creativity 
of the statistical technique to find solutions within that 
envelope. As previously mentioned, a runtime monitor 
might be extended to trigger runtime enforcement of 
safety properties.

Using formal methods are not always possible or 
practicable, but they are a useful part of the toolkit for 
verifying autonomous systems. There are also a range of 
less formal but still rigorous approaches to the analysis 
and testing of software that help identify and eliminate 
bugs in order to provide high degrees of assurance of 
system behaviour.

2.3.3 Verification & Validation Tools

The development of software for autonomous systems 
relies upon effective use of appropriate Verification & 
Validation tools, such as debuggers, test frameworks, 
simulators, and formal methods tools, as part of a well-
structured rigorous modern process that follows a defined 
software engineering lifecycle. These are software tools 
that do not make it into the final software but are used 
during development to support testing and assurance 
activities to demonstrate that the system’s software 
is correct. A key concern is being able to establish the 
suitability of Verification & Validation tools that are used 
and to show that they cannot unintentionally undermine 
the assurance they are being used to provide.

2 Prerequisite Concepts



15CONTENTS<

In assessing the suitability of a Verification & Validation 
tool, consider how it might fail and the consequences of a 
failure. The types of failures are likely to be dependant on 
the type of tool. The following non-exhaustive examples 
demonstrate some of the types of failure that could occur:

•	 a software testing framework might be vulnerable to 
similar programming errors as the language it is testing, 
like confusing “=” and “==”;

•	 a simulator might not accurately account for certain 
physical measurements, such as friction; or,

•	 the state space of a specification might be too big for 
the model checker (or rather the hardware running the 
model checker) to cope with.

If the consequences of Verification & Validation tool failing 
only have a small impact on the system’s safety assurance, 
then a fairly untested tool might be acceptable. If, as is 
more likely, the consequences could have a high impact on 
the assurance for safety of the system or component, then 
prevention or mitigation measures should be considered. 
The categorisation of the impact of a Verification & 
Validation tool failing, and of the appropriate prevention 
or mitigation measures, will depend on things like the 
system’s deployment environment, mission, and applicable 
regulatory regime. For example, the part of the tool that is 
known to fail to identify errors could be avoided, or if there 
are types of known error that a tool fails to identify these 
could be detected by an independent tool or technique, 
or for higher levels of assurance use of more than one 
third-party accredited Verification & Validation tool with 
comparison of types of errors detected.

2.4 Mixed-Criticality 
Systems
Real-Time and embedded systems are increasingly 
often composed of components with different levels of 
criticality on the same hardware platform, hence mixed-
criticality systems. Here, criticality means the level of 
assurance against failure that a given system component 
needs. Different definitions of these criticality levels 
exist, and they may be named, for example, Automotive 

Safety and Integrity Levels, Design Assurance Levels 
(or Development Assurance Levels), or Safety Integrity 
Levels. The use of mixed-criticality systems is often 
driven by strict non-functional requirements, such as 
weight, heat generation, or power consumption. For 
a comprehensive review of mixed-criticality systems 
research see (Burns and Davis 2018).

In Sections 3, 4, and 5 we recommend analysis of the 
criticality of system components to enable to the 
strongest Verification & Validation methods (such 
as Formal Methods) to be used on the most critical 
components. This suggestion aims to ensure that the 
most critical components are assured against failure, 
without requiring the entire system to be (for example) 
formally verified.

To avoid confusion with nuclear criticality, in the rest 
of this document we refer to the criticality of system 
components as their ‘importance to the system’s safety’. 
This can still be thought of in terms of Automotive 
Safety and Integrity Levels, Design Assurance Levels (or 
Development Assurance Level), or Safety Integrity Levels.

2 Prerequisite Concepts
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3	General 
Principles 
for Safety-
Critical Robotic 
Systems

This section introduces general 
principles to consider for robotic 
systems that are deployed in hazardous 
environments. These principles focus 
on the physical aspects and deployment 
context of the system. They should be 
considered alongside those in Sections 4 
and 5, as appropriate to the system.

3.1 Design
1.	 Identify the importance to safety2 of each software and 

hardware component, then use the most robust design 
methods for the most important.

This can produce a design that can have its safety 
assured, while focussing robust methods on the 
components that are key to the system’s safety.  
(See 3.2 (1), 3.3(1) and 4.2 (1)).

2.	 Design of the facility may need to be physically 
extended to accommodate the robotic system. This 
may include considering the storage and maintenance 
of the robot and how it is transported between these 
areas and its deployment environment.

3.	 If the design of the system requires that it, its 
components, or any debris may be removed from the 
deployment environment, this needs to be assessed 
for potential contamination.

4.	 The design needs to describe the decommissioning 
approach for the system. It may be that parts of the 
system can be decontaminated and removed, or 
the system may need to be disposed of ‘whole’. This 
element of the design needs to take into account 
the environmental impacts of the decommissioning 
strategy.

2. See Section 2.4.
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3.2 Verification  
and Validation
1.	 Use strong Verification & Validation techniques, such 

as Formal Methods, at early stages of the system’s 
lifecycle. These can be used to prototype for a task or 
a software component that is highly important to the 
system’s safety, while ensuring (if Formal Methods are 
used) that the specification of the task or component 
is rigorous.

2.	 Introduce simulation-based testing to check the 
system’s integration and to find statistically unlikely 
states that cause a failure. It is crucial that the 
simulation’s limitations are well understood and that 
the differences between it and the actual system are 
adequately managed. Simulations will, ideally, include 
high fidelity controls that enable the assessment of 
how a user’s or operator’s actions impact the system’s 
behaviour.

3.	 Demonstrate by several methods – which should 
include physical testing – that the system operates 
as specified, in the absence of potential hazards. It is 
important to note that physical or software testing will 
struggle to be exhaustive, which is why it needs to be 
combined with or preceded by Verification & Validation 
techniques that can be exhaustive (such as Formal 
Methods). An example of using different Verification & 
Validation techniques to corroborate each other can be 
found in (Webster et al. 2020).

3.3 Operation
1.	 Verifiably correct runtime monitors could be used to 

perform ‘online requirements checking’, comparing the 
system’s operational behaviour to its requirements. 
The behaviour of the whole system could be 
monitored, or the monitoring could be focussed on the 
components most important to the system’s safety3 as 
described in 3.1 (1). If the requirements are no longer 
being met, then the system could: move to a safe state 
until the problem is resolved (see. 3.3 (2)), report the 
failure to a responsible person, or log the failure.

2.	 For components that are important to the system’s 
safety3 runtime monitors could be extended to provide 
runtime enforcement. For example, if the monitor 
find that the system is no longer meeting its safety 
requirements, then it could trigger a safe state until 
the problem is resolved (see 4.1).This could include 
enforcing limits on the speed of movement or force 
applied by the system, even when a userattempts to 
exceed these limits.

3.	 In addition to any physical barriers used to contain 
the system, its software can be used to create 
logical barriers (this is related to 3.3 (2). For example, 
monitoring a robot’s position and preventing it from 
moving forward once it enters a ‘buffer’ zone around 
the physical barrier. This has the advantage of reducing 
the likelihood of a robot becoming stuck at a physical 
barrier, which would require manual intervention to 
remedy. Validating the logical barriers is important and 
highly context dependent. One example of validating 
logical barriers could involve analysing the reaction and 
braking time of the robot at its maximum speed and 
ensuring that the logical barrier is far enough away that 
it wont hit the physical barrier.

3. See Section 2.4.

3 General Principles for Safety-Critical Robotic Systems
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3.4 Maintainance, Recovery 
and Decommissioning
1.	 To enable for maintenance, recovery, and 

decommissioning; ensure either safe human access 
to, or safe removal of, the robotic system from its 
hazardous environment.

This could include access to the system’s deployment 
environment (while powered down) or the ability to 
remove the physical system from the deployment 
environment (if needed or possible). It needs to be 
demonstrable that this is possible even in the event 
of some or all of the system failing. This is likely to 
need multiple techniques, for example the analysis of 
the system and deployment environment, simulation, 
formal analysis of the control algorithm, physical 
testing, etc.

2.	 If the system, its components, or any debris may be 
removed from the deployment environment, this 
needs to be assessed for potential contamination. This 
requires that the potential for this to happen has been 
considered, as mentioned in 3.1 (3) and 3.1 (4).

3.	 The decommissioning strategy (which should be 
considered during the design phase, 3.1 (4)) should 
take into account the environmental impacts of 
decommissioning the system.

4.	 Modifications to the software or hardware (which 
may include upgrade, reconfigurations, etc) need 
to be assessed against the system’s original design 
and verification artefacts, to ensure that the safety 
properties (of both the modified component and the 
whole system) are preserved. Additional monitors, or 
modifications to existing monitors, may be required.

5.	 Components should be added to the system to allow 
it to monitor its own ‘health’. This can be used to track 
its current capability and suitability for the task, and 
to predict future (hardware or software) failures. 
This is useful for issues like hardware wear and tear, 
augmenting the human ability to consider replacing a 
component when it ‘feels like its about to break’ with 
data- or model-based prognostics.

It needs to be provable that the data collection and 
monitoring does not become surveillance of any 
human interacting with the system.

3 General Principles for Safety-Critical Robotic Systems
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4	Principles 
for Human-
Controlled 
Robotic 
Systems

In addition the principles in Section 3, 
this section outlines the principles to 
consider for robotic systems where there 
is significant human-in-the-loop control. 
This can range from remote-control, where a “human 
operator controls the robot on a continuous basis, from a 
location off the robot, via only [their] direct observation” 
(Standing Committee for Standards Activities of the IEEE 
Robotics and Automation Society 2015); to telecontrol, 
where a “human operator, using sensory feedback, either 
directly controls the actuators or assigns incremental 
goals on a continuous basis, from a location off the robot” 
(Standing Committee for Standards Activities of the IEEE 
Robotics and Automation Society 2015)4.

The principles below are organised into three sections: 
Design, Sect. 4.1; Verification & Validation, Sect, 4.2; and 
Operation, Sect.4.3. The principles are numbered for 
identification not to indicate ordering.

4.1 Design
1.	 Design of the robotic system’s working environment 

should contain similar safety constraints to a 
conventional (non-robotic) deployment environment, 
to mitigate the foreseeable hazards caused by the task 
itself. This includes re-design of an existing working 
environment to accommodate a robotic system. Where 
an existing human working environment is being re-
designed to accommodate human-controlled robotic 
systems, attention should be paid to the potential 
difference in speed, range of movement and strength 
of the robotic system in comparison to humans.

4. The key difference between remote-control and teleoperation is 
whether the operator is directly observing the robot, with their eyes; 
or indirectly observing the robot, via sensors.
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2.	 Designing the task(s) that the robotic system will 
perform may involve simply replicating how a human 
worker does it, but the task may need re-designing to, 
for example: accommodate the differences between 
robots and humans, or to improve efficiency.

The robotic system should perform a task 
demonstrably as safely a trained useroroperator. 
Additional safety considerations (e.g. failsafe states 
and/or passive measures) are likely to be necessary.

3.	 Multiple, parallel, safety systems could be designed, to 
provide the required level of assurance (e.g. through 
defence-in-depth). These could be a combination of 
physical, hardware systems, and software systems.

4.2 Verification & Validation
1.	 Use the most robust Verification & Validation 

methods for the most critical hardware and software 
components. This requires the identification of those 
components most important to the system’s safety5, as 
described in 3.1 (1). For example, if the system’s design 
has identified the need for components that limit the 
robot’s speed of movement or potential to apply force, 
then these components should be candidates for 
robust Verification & Validation.

This approach enables system safety assurance, 
whilst prioritising the components that are key to the 
system’s safety when chooisng where to apply robust 
Verification & Validation. (Also see 3.3 (1)).

2.	 Demonstrate (via human factors assessments and/
or user evaluation studies) both user competence and 
user confidence in the new remote-controlled system.

3.	 If a robotic system that is replacing an existing system 
(robotic or otherwise), then the safety boundaries and 
constraints of the new system should be assessed to 
ensure that no additional safety concerns have been 
introduced and that existing safety mitigations remain 
valid. This should be done before deployment of the 
new system.

4.	 users and operators should only be in physical 
proximity to the robot after it has been demonstrated 
that the robot cannot harm them under any 
circumstance, including failures.

4.3 Operation
1.	 Information about the use of a robotic system could 

be logged to, for example, help model how a task is 
performed safely or highlight areas where new safety 
features could be useful. This information could 
also be used to validate how an autonomous system 
performs the task. However, his data collection needs 
to be transparent to the humans involved and only be 
collected with informed consent (see 4.3 (2)).

2.	 It should be demonstrable that any data collection 
or monitoring does not become surveillance of any 
operator, user, or any other human interacting with 
the system. Any monitoring by or of the system needs 
to be transparent to the humans involved and only be 
collected with informed consent.

5. See Section 2.4 for a discussion of this concept.

4 Principles for Human-Controlled Robotic Systems
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5	Principles for 
Autonomous 
Robotic 
Systems

In addition to the principles in Sections 3 
and 4, this section outlines the principles 
to consider for systems ranging 
from semi-autonomous up to fully-
autonomous. 
In a semi-autonomous robotic system the “robot and a 
human operator plan and conduct the task, requiring 
various levels of human interaction” (Standing Committee 
for Standards Activities of the IEEE Robotics and 
Automation Society 2015). This works best where 
well-defined tasks are delegated by the operator 
to the autonomous system. In a fully-autonomous 
robotic system, the robot performs a task “without 
human intervention, while adapting to operations and 
environmental conditions” (Standing Committee for 
Standards Activities of the IEEE Robotics and Automation 
Society 2015).

A common route for the introduction of an autonomous 
robotic system is to begin with a remote-controlled 
system, where a human operator is still making the key 
decisions, and steadily delegate tasks or decisions to 

autonomous components of the system. This staged 
approach has the advantage of only automating small sets 
of tasks or decisions at a time, which can aid Verification 
& Validation and monitoring efforts, as well as slowly 
building the confidence of users and operators in the 
system’s safety. As previously mentioned, priority should 
be given to automating tasks that are potentially harmful 
(physically, mentally, ethically, etc.) to operators or users, 
even if this would be more expensive (High-Level Expert 
Group on AI 2019 Recommendation 3.2). To ensure that 
the system would benefit the operators or users, they 
should be meaningfully consulted during the design and 
development of the system (High-Level Expert Group 
on AI 2019 Recommendation 3.3). Staged introduction 
of a robotic or autonomous system is likely to involve 
data collection and monitoring, to check the system is 
operating correctly and safely, but this should not become 
surveillance of the operators, users, or any responsible 
person.

The principles below are organised into three sections: 
Design, Sect. 5.1; Verification & Validation, Sect. 5.2; and 
Operation, Sect. 5.3. The principles are numbered for 
identification not to indicate ordering.



22CONTENTS<

5.1 Design
1.	 The guiding principles of an autonomous system’s 

design should be that it improves the well-being 
and safety of front-line workers, by complementing 
their skills; and be demonstrably trustworthy and 
adequately safe in the eyes of those workers. This will 
involve ongoing consultation with front-line workers 
about which task(s) would most usefully (for them) be 
delegated to an autonomous system.

This is in addition to ensuring that the system’s 
required level of safety can be demonstrated to the 
regulators.

2.	 If an autonomous system is being introduced to control 
a robotic system, then it should (initially) make use 
of existing physical barriers to contain the robot, to 
provide a final line of defence if the software and 
hardware safety systems fail.

3.	 The introduction and implementation of autonomy, or 
autonomous components, should focus on the system’s 
transparency and amenability to strong verification (for 
example, Formal Methods, formally specified runtime 
monitors, etc). Opaque statistical AI techniques (e.g. 
data-driven machine learning) should only be used 
where they are necessary.

4.	 An autonomous system should maintain the remote-
control option as a backup, so that the system can be 
operated or made safe if the autonomous software 
fails. This implies that the remote-control link is part 
of the system and should also be demonstrated to be 
adequately safe.

5.	 Clearly identify and fully define the task(s) that the 
autonomous system will perform. This should include, 
for example: its context and inputs (and any other 
preconditions), how it performs the task, the expected 
outputs (and any other postconditions), what might 
cause the task to fail and how the system should 
recover, etc. The intent of these task definitions is to 
make it clear to both the development team and the 
end users what the system can and cannot do.

6.	 If the autonomous system is being delegated a task 
from a human, then the task design process should 
begin with a clear analysis of how the human operator 
currently does the job safely. Safety enhancements, 
that are enabled by an autonomous robotic system 
with higher capabilities than a human operator, can be 
included after the system copying the human operator 
can be shown to be acceptably safe.

This has several benefits. First, it involves current 
front-line workers in the design process, which 
improves the likelihood that actual safe practice is 
captured (and not just the documented safe practice). 
Second, it provides the system’s requirements, which 
are essential for meaningful Verification & Validation 
(see Section 5.2). Third, the system’s actions are more 
understandable, which can improve front-line worker’s 
trust and the ability to identify failures in performing 
the task.

7.	 For each task, design high-level pre-and post-
condition (or assume-guarantee) properties to 
describe what things the task assumes to be true 
before it starts and after it executes and a low-level 
procedural description of the task (e.g. a flowchart or 
state machine).

The design should consider the potential for a task to 
fail during its operation, and define a fallback task (or 
tasks) to safely recover from the failure or transition to 
a failsafe state (for example, see Viard, Ciarletta, and 
Moreau 2019).

8.	 When designing an autonomous system to take-over 
tasks with a high importance to safety6, a decision 
support system can be used as a prototype for the 
full system, to validate the task model and decision 
processes. This could also improve user trust in the 
autonomous system’s decisions, in a way that does not 
give the software physical control of the task(s).

9.	 If an unpredictable component (such as a machine 
learning or evolutionary systems) is used, ensure 
that the goal of the system and its ethical and safety 
properties (things it must avoid doing or choosing) are 
well defined beforehand (see 5.3 (2)).

6. See Section 2.4 for a discussion of this concept.

5 Principles for Autonomous Robotic Systems
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10.	 If an AI Planning system is used to plan the 
movement (or other actions) from a user supplied 
world model, then experts in the operational context 
should be involved in the design of this world model 
because the correctness of the resulting plans 
depends upon the accuracy of the world model. Formal 
techniques can be used to analyse the model for 
consistency and detect ambiguities.

5.2 Verification & Validation
1.	 For each task, verify that its implementation respects 

both the high-level (pre- and post-condition) and low-
level design (see 5.1 (7)).

2.	 users and operators should only be in physical 
proximity to the robot after it has been demonstrated 
that the robot cannot harm them under any 
circumstance, including failures.

3.	 If statistical techniques (such as deep neural networks) 
are used, then they should be analysed, to the extent 
possible, to identify worst-case mis-classification 
ratio and their robustness to small changes in input. 
For example, it should be demonstrated that if a human 
observer (or other oracle) would classify two inputs 
(that the neural network has been trained on) as the 
same (or the same type), then they are also classified 
as the same (or the same type) by the neural network.

4.	 Online learning: that is systems that will continue to 
use observations of the outcomes of their actions 
within the environment to modify their operation 
after deployment should be avoided unless absolutely 
necessary.

5.	 If feedback controllers are used, then it should be 
demonstrated that (1) the model of the system  
(which is likely to be a collection of differential 
equations) is validated against the real world, and  
that it is based on valid data; (2) that any abstractions 
in the implementation of the feedback controller are 
valid, and; (3) that the feedback controller is robust 
against variations in the systems performance, and  
can cope with any differences between its model  
and the real system.

5.3 Operation
1.	 The system should monitor its hardware for signs 

of degradation, this could include excess noise or 
vibration etc. This monitoring enables prediction of 
when components need replacing and could feed 
into the system’s planning software. This is especially 
important where an autonomous system will work 
more intensively than a human, as degradation rates 
are likely to increase and may be less easy to predict.

It needs to be provable that the data collection and 
monitoring does not become surveillance of any 
human interacting with the system.

2.	 If unpredictable software components (such as 
machine learning, or evolutionary systems) are used 
(see 5.1 (9)), then verifiably correct (for example, by 
using Formal Methods) runtime monitors should be 
used to enforce the goal, ethical, and safety properties 
that have been defined in the design. This ensures 
that the system remains in an acceptable behavioural 
envelope. This envelope should be transparent and 
understood by human operators, users, and the 
responsible person. This enables human detection of 
deviations from the behavioural envelope at runtime. 
(See (Mallozzi, Pelliccione, and Menghi 2018) for an 
example of this approach.)

3.	 Autonomous systems often use internal models of the 
real world to plan behaviour and interact with their 
environment, such as a pre-built map of the system’s 
environment for navigation and planning. These 
models are abstractions of the real world, but if the 
abstractions are wrong or the real world changes, then 
the model becomes less correct. The system should 
monitor its environment to ensure that its internal 
models remain correct. If a change is detected, then 
the system could attempt to update its model or alert 
an operator or responsible person if it is unable to.

5 Principles for Autonomous Robotic Systems
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Glossary
ASIL Automotive Safety and Integrity Level. 

Assurance Justified confidence in a property. 

Criticality The level of assurance against failure needed 
for a system component. 

DAL Design Assurance Levels or Development Assurance 
Level. 

Deployment Environment The environment in which the 
robotic or autonomous system has been designed to work. 

Ethical Risk The probability of ethical harm occurring 
from the frequency and severity of exposure of a hazard. 
See BS 8611:2016 (British Standards Institution. 2016). 

Ethical Hazard A potential source of ethical harm. See BS 
8611:2016 (British Standards Institution. 2016). 

Ethical Harm Anything likely to compromise psychological 
and/or societal and environmental well-being. See BS 
8611:2016 (British Standards Institution. 2016). 

Formal Methods Mathematical approaches to software 
and system development that support the rigorous 
specification, design, and verification of computer 
systems. 

Fully-Autonomous Robotic System A system where the 
robot performs a task “without human intervention, while 
adapting to operations and environmental conditions” 
(Standing Committee for Standards Activities of the IEEE 
Robotics and Automation Society. 2015). 

MCS Mixed-Criticality System. 

Mission-Critical A mission-critical system is one where 
a failure may lead to large data- and financial-losses. 
Examples include deep-sea submersibles, automatic 
exploration vehicles (for example, the Mars rovers), and 
other scientific monitoring systems. 

7. The majority of Matt Luckcuck’s work on this white paper was done while he was employed by the Universities of Liverpool and Manchester. 
https://orcid.org/0000-0002-6444-9312

8. Michael Fisher https://web.cs.manchester.ac.uk/~michael
9. Louise Dennis: https://personalpages.manchester.ac.uk/staff/louise.dennis
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Operator A human providing a robotic system with 
instructions or direction. 

Predictive Runtime Verification An extension of Runtime 
Verification, where a formal specification of the system 
is used to try to predict satisfaction or violation of a 
property. 

Responsible Person A human who has the legal 
responsibility for a robotic system, see (Principles of 
robotics – EPSRC website, Rule 5).

Runtime Verification An approach where the system is 
monitored, and its behaviour is compared to a formal 
specification. Action can be taken if the behaviour differs 
from the specification. 

Safety-Critical A safety-critical system is one where a 
failure may lead to ecological or financial disaster, serious 
injury, or death. Examples include medical equipment, 
cars, aeroplanes, and power plants. 

Semi-Autonomous Robotic System A system where the 
“robot and a human operator plan and conduct the task, 
requiring various levels of human interaction” (Standing 
Committee for Standards Activities of the IEEE Robotics 
and Automation Society. 2015). 

SIL Safety Integrity Level. 

User A human interacting with a robotic system, who may 
or may not be an employee. 

V&V Verification and Validation. 
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