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Abstract. We describe the use of Linguistic Linked Open Data (LLOD) to sup-
port a cross-lingual transfer framework for concept detection in online health com-
munities. Our goal is to develop multilingual text analytics as an enabler for ana-
lyzing health-related quality of life (HRQoL) from self-reported patient narratives.
The framework capitalizes on supervised cross-lingual projection methods, so that
labeled training data for a source language are sufficient and are not needed for
target languages. Cross-lingual supervision is provided by LLOD lexical resources
to learn bilingual word embeddings that are simultaneously tuned to represent an
inventory of HRQoL concepts based on the World Health Organization’s quality
of life surveys (WHOQOL). We demonstrate that lexicon induction from LLOD
resources is a powerful method that yields rich and informative lexical resources
for the cross-lingual concept detection task which can outperform existing domain-
specific lexica. Furthermore, in a comparative evaluation we find that our mod-
els based on bilingual word embeddings exhibit a high degree of complementarity
with an approach that integrates machine translation and rule-based extraction al-
gorithms. In a combined configuration, our models rival the performance of state-
of-the-art cross-lingual transformers, despite being of considerably lower model
complexity.

Keywords. Multilingual Text Analytics, Linguistic Linked Open Data, Bilingual
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1. Introduction

Increasingly, multilingual language resources are available as Linguistic Linked Open
Data (LLOD) [1] which model relations between resources and include rich metadata
with standardized, non-proprietary technologies – a trend which promises to lead to im-
proved multilingual NLP systems. However, how to effectively utilize these resources is

1This author contributed to the results presented in this paper during an internship at Semalytix.
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not self-evident, in particular for specialized domains. One example of such a domain
are posts from online health communities, i.e., web fora and similar systems focused on
health topics used by patients, caregivers and/or professionals in a wide range of lan-
guages. Online health communities are a relevant data source for a range of emerging
application areas, such as public health monitoring or evidence generation for regulatory
drug approval [2], which entail analysing patients’ experiences beyond clinical trials. A
central aspect of these so-called patient-reported outcomes is health-related quality of
life (HRQoL) [3].

In this paper, we focus on classifying posts into categories derived from facets of
HRQoL as described in the World Health Organization’s quality of life surveys (WHO-
QOL) [4], e.g., pain and discomfort, work capacity, financial resources. We approach
the problem of predicting HRQoL facets across languages via a multitude of individ-
ual binary classifiers trained using a cross-lingual transfer learning framework based on
bilingual lexica available as multilingual LLOD. The combination of LLOD and trans-
fer learning is motivated by the flexibility required to predict a large number of HRQoL
facets (we consider a total of 19 facets) in a multilingual setting: Transfer learning allows
us to train classifiers for different languages based on training data in a single source
language, without the need of additional annotated data for each target language. LLOD
enables us to leverage a breadth of existing multilingual resources and infer lexica for
additional language pairs using implicit links between resources. We demonstrate in the
reported experiments that this not only a benefit in terms of flexibility, but also leads to
improved performance for our cross-lingual transfer learning approach in comparison to
a medical lexicon directly applicable to the evaluated language pair.

In more technical detail, our approach is based on word embeddings and cross-
lingual supervision via token-level lexica (supervised bilingual word embeddings). Thus,
the training procedure and resulting models are considerably less complex than state-
of-the-art cross-lingual zero-shot models, which are based on contextualized represen-
tations learnt via pre-training transformer-based language models on massive multilin-
gual corpora. Consequently, we present evaluation results comparing our approach to
a language-model-based classifier for the case of transfer from English to French for
detection of HRQoL facets in posts from online health communities. We find that our
models, when combined with a baseline approach that integrates machine translation and
rule-based extraction algorithms, are strong contestants to cross-lingual transformers.

2. Related Work

Given our focus on exploring the factors of effectively applying LLOD resources to
cross-lingual transfer learning for text classification, we build on supervised approaches
for learning bilingual word representations which are able to incorporate existing seed
lexica (cf. [5]), but do not require additional supervision or resources, e.g. parallel or
aligned corpora as in early work on cross-lingual transfer [6]. In particular, we adopt
workflows for using LLOD in cross-lingual transfer learning based on task-informed,
bilingual word embeddings (adopted from bilingual sentiment embeddings [7]) presented
in [8] and apply them to a different target language (Spanish vs. French), a much more
varied task (HRQoL aspect detection vs. sentiment analysis) and different text genre
(online health community posts vs. medical experts’ interview transcripts).
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As our research questions imply the availability of applicable lexica, unsupervised
or weakly supervised approaches for inducing bilingual word embeddings [9,10,11] are
only indirectly relevant to our work. However, we plan to compare against them in future
work, especially given that claims of comparable or even superior performance of unsu-
pervised methods (e.g., [12]) have been called into question [13,14], in particular when
evaluated on actual downstream tasks instead of bilingual lexicon induction [15].

Since the introduction of the Transformer neural architecture and pre-training via
language modelling objectives on massive corpora, cross-lingual representations derived
from these models, e.g. multilingual versions of BERT [16] or XLM-R [17], became
state-of-the-art on a large number of multilingual problems. This comes, however, with
a noticeable added cost in comparison to bilingual word embeddings in terms of model
complexity and computational resources, especially during training (cf. [18]). We explore
this performance-complexity trade-off by comparing our models based on bilingual word
embeddings against a zero-shot cross-lingual classifier based on XLM-R.

Using indirect connections between translation lexica to automatically construct a
bilingual lexicon via a pivot language goes at least back to [19]. Lexicon induction tech-
niques using LLOD, and Apertium RDF in particular, were explored in [20,21].

3. Language- and Task-informed Cross-lingual Transfer Learning

Our approach to language- and task-informed transfer learning (LTTL) relies on the
framework described in our previous work [8]. Using this architecture based on bilingual
word embeddings [7], task-informed bilingual embedding spaces can be learned for any
task which can be framed as text classification. Following this idea, we apply LTTL to
HRQoL concept detection in this paper.

For training a task-specific model LTTL requires 1) monolingual word embeddings
in both the source and target language, 2) ground-truth annotations in the source lan-
guage, and 3) a bilingual dictionary that maps tokens from the source language to their
translations in the target language (see Section 4). Annotations in the target language are
required for evaluation only.

During training (Figure 1), word embeddings are looked up for the tokens in each
document in the source-language annotated corpus and averaged in order to yield docu-
ment representations aS. A projection matrix MS is trained to map aS to a task-specific
vector zs, which is then passed to a softmax layer to derive the predicted label. By min-
imizing the cross-entropy loss between the predicted and the annotated labels, MS and
the parameters of the softmax layer are learnt to produce better task-specific predictions.
Simultaneously, for every pair in the bilingual dictionary, we look up their word embed-
dings in the respective monolingual embedding space and project them using MS and MT
(a corresponding matrix in the target language), respectively. Both matrices are jointly
optimized to minimize the Euclidean distance between the projected embeddings in a
shared bilingual embedding space, so that the projections from the target language are
as close as possible to the projections from the source language for which monolingual
task-specific supervision is available.

When using a trained LTTL model to classify a target-language document (Figure 2),
we apply the same steps as during training based on target-language embeddings (embed-
ding lookup, averaging, projection, prediction using the softmax layer). The projection
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Figure 1. Training LTTL on a source-language (SL) annotated corpus and a source-language to target-lan-
guage (TL) bilingual lexicon using TL and SL word embeddings to represent individual tokens

Figure 2. Predictions with LTTL on target-language (TL) text using TL word embeddings to represent indi-
vidual tokens

step, however, is calculated using the matrix MT which was optimized to project target-
language embeddings close to the projections from the task-informed, source-language
projection matrix MS.

4. Language Resources

In this section we describe the relevant lexical resources used in LTTL. A detailed de-
scription of the LLOD pipeline used to generate these resources and the individual pro-
cessing steps involved is presented in [8]. While our focus is on Apertium RDF as a
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bilingual lexicon in this paper, these workflows have the potential of growing the LLOD
cloud over time both in terms of data volume and richness of available resources.

4.1. Bilingual Translation Dictionaries

The bilingual lexica used in our experiments contain word-level translation pairs from a
source to a target language. Lexica vary in terms of vocabulary size, the type of knowl-
edge provided, origin, and purpose. In our experiments, we selected lexica according to
the criteria of domain- and task specificity. Accordingly, broad-coverage, open-domain
and medical lexica were used as described below. We deduplicated entries in all lexica
during pre-processing.

Apertium lexica2 are very comprehensive open-domain, broad-coverage lexica.
Originally, this resource was generated for an open-source machine translation platform
[22]. Apertium lexica used in our work were converted into RDF using the FINTAN plat-
form [23] and published as linked data. These lexica contain entries annotated as nouns,
proper nouns, verbs, adjectives and adverbs.

MeSpEn Glossaries3 are lexica specific to the biomedical domain. A total of 46
bilingual medical glossaries for various language pairs are available. The lexica were
generated based on hand-crafted glossaries made by professional translators [24].

4.2. Cross-lingual Lexicon Induction

In some cases, bilingual lexica of interest for a given task or domain may not be available
for a language pair of interest. In this case, translation pairs can be inferred via triangu-
lation [19]. This approach consists of leveraging available lexical resources in the source
language and a pivot language, i.e., a language which has correspondences to the source
and target languages, as a means to create a mapping between both. More specifically,
we generated a bilingual dictionary for the language pair English-French based on Aper-
tium RDF using Spanish as pivot language as follows: For each entry that links a source
language term tS to its translation tP in the pivot language, if there is an entry linking tP to
a target language term tT , a translation from tS to tT can be inferred and stored in a newly
created source-target lexicon. Subsequently, (i) all duplicate entries and (ii) entries with
divergent part-of-speech categories4 in tS and tT are removed from the resulting lexicon.
This induction procedure yields an induced open-domain EN–FR lexicon comprising
15,703 entries; for comparison, the existing MeSpEn Glossary resource comprises 6,571
domain-specific EN–FR entries.

4.3. Monolingual Word Embeddings

In addition to the bilingual lexical resources described above, LTTL also requires mono-
lingual word embeddings. In our experiments, we use publicly available word embed-

2https://github.com/acoli-repo/acoli-dicts/tree/master/stable/apertium/

apertium-rdf-2020-03-18
3https://doi.org/10.5281/zenodo.2205690
4This procedure relies on the PoS information that is integrated into Apertium 2.0 via mapping lexical entries

to the LexInfo ontology [8].

https://github.com/acoli-repo/acoli-dicts/tree/master/stable/apertium/apertium-rdf-2020-03-18
https://github.com/acoli-repo/acoli-dicts/tree/master/stable/apertium/apertium-rdf-2020-03-18
https://doi.org/10.5281/zenodo.2205690
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Embeddings Language Type Vocabulary Size Vector Dimensions

google-news English open-domain 55,627 300
fr-wiki French open-domain 2,500,733 300

Table 1. Overview of monolingual embeddings used in our current experiments with the LTTL framework.

dings5 pre-trained on different corpora. Table 1 describes the language, domain, vocab-
ulary size and dimensionality of the used embeddings.

5. Data Sets

We use an English–French comparable corpus made up of anonymized posts from sev-
eral openly accessible medical and health-related online fora to generate and/or anno-
tate training and evaluation data sets for different HRQoL facets. The corpus contains
extremely varied, uncontrolled language as the texts are mostly authored by patients and
their relatives. This can be observed below for three representative examples from diverse
QoL facets, with (a) denoting the original French texts and (b) their English machine-
generated translations.

(1) Sleep and rest (SR)

(a) Cetrizirine c’est quoi les filles ? Depuis un certain temps je suis insomniaque
...tisane...chronodorm... mélisse...rien n’y fait

(b) What’s Cetrizirine girls? I’ve been having insomnia for some time... herbal
tea... chronodorm... lemon balm... nothing helps...

(2) Activities of daily living (DL)

(a) Actuellement en arrêt maladie du a mon cancer j’ai de la chimiothérapie a
l’hôpital. Les écoles de ma commune ferme je suis incapable de m’occuper de
mes enfants.

(b) Currently on hold disease from my cancer I have chemotherapy in the
hospital. The schools in my commune are closed I am unable to take care of
my children.

(3) Body image and appearance (BA)

(a) je ne veux pas forcément que ça se sache que je suis malade et avec perruque
et maquillage je veux passer incognito lol ... car je suis qlq un qui manque bcp
de confiance en soi.

(b) But I don’t want him to shout it from the roof-tops at school or anything else
because I don’t necessarily want it to be known that I’m sick and with wigs
and make-up I want to go incognito lol ... because I’m one who lacks a lot of
self-confidence.

5Available from https://drive.google.com/open?id=1GpyF2h0j8K5TKT7y7Aj0OyPgpFc8pMNS

and https://wikipedia2vec.github.io/wikipedia2vec/pretrained/, respectively.

https://drive.google.com/open?id= 1GpyF2h0j8K5TKT7y7Aj0OyPgpFc8pMNS
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
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Quality of life dimensions Facets within dimensions Size of training set

positive negative

Physical health
Energy and Fatigue (EF) 3000 3000
Pain and discomfort (PD) 3000 3000
Sleep and rest (SR) 707 689

Psychological health

Body image and appearance (BA) 1164 1139
Negative feelings (NF) 1464 1428
Positive feelings (PF) 3000 3000
Thinking, learning, memory
and concentration (TM)

380 379

Level of independence
Mobility (MB) 2112 2006
Activities of daily living (DA) 842 830
Work capacity (WO) 606 590

Social relations
Personal relationships (PR) 3000 3000
Sexual activity (SA) 44 44
Social support (SO) 834 813

Environment

Financial resources (FR 1488 1446
Health and social care (HC) 1625 1577
Home environment (HE) 751 745
Participation in and opportunities
for recreation and leisure (RL)

3000 3000

Physical environment (PE) 3000 3000
Transport (TR) 1567 1518

Table 2. Overview of QoL dimensions and contained facets with their training data size in terms of number of
posts (facets in boldface are part of the manually annotated gold standard)

5.1. English training data

We generate annotation labels for the English data using a rule-based pattern matching
engine from the in-house Semalytix technology stack. These rules, in addition to plain
text matching, include regular expressions to capture morphological variation, part-of-
speech tagging, dependency syntax or knowledge graph type constraints. This rule-based
system allows for rapid generation of labeled training data for 19 HRQoL concepts that
are in scope in this paper. Data set sizes vary per HRQoL concept depending on the
available number of matches produced by the monolingual rules and are capped at 3,000
positive and negative examples per concept (6,000 in total). The resulting English data
sets are randomly split into a training and development set (80/20). Table 2 provides an
overview of all concepts and their respective data volume.
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Figure 3. Label propagation from labeled source language (EN) to unlabeled target language (FR) documents.

5.2. French evaluation data (Silver Standard)

In light of the multitude of HRQoL concepts under investigation in this study, we rely on
a heuristic label propagation procedure in order to create a large-scale evaluation corpus
for validation purposes in the target language. To make use of the described monolin-
gual rule system for texts that are not written in English, the target language texts are
algorithmically translated into English via DeepL6. Thus, the rule engine can be run on
the translated texts in the same way as on originally English ones. The resulting concept
labels are then propagated back to the target-language documents. An illustration of this
process is depicted in Figure 3.

However, it needs to be emphasized that the resulting target language labels were
not manually checked for correctness. Hence, even though the underlying rule-based
classifiers available for English are optimized for precision, the test collection resulting
from this procedure must be considered a silver standard. Again, data set sizes vary
depending on the available number of matches. They are capped at 100 positive and
100 negative examples per facet. The French target data sets are used for evaluation
exclusively and thus are divided into a development and test set (50/50).

5.3. French evaluation data (Gold Standard)

In the interest of a thorough evaluation of concept detection performance in the target
language for at least a subset of concepts, we selected one concept from each QoL do-
main (highlighted in bold face in Table 2) to create a hand-curated gold standard. These
gold standard data sets consist of 100 positive and 100 negative texts samples per HRQoL
facet which each were verified to be correct by manual annotation. As the French silver
standard data, these data sets are also exclusively used for evaluation and evenly divided
into a development and test set (50/50).

6https://www.deepl.com/pro?cta=header-pro/

https://www.deepl.com/pro?cta=header-pro/
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Figure 4. Illustration of translation procedure for Baseline 1.

Figure 5. Illustration of translation procedure for Baseline 2.

6. Baseline Models based on Machine Translation and Rules

As comparison to our LTTL model, we generate two baseline models based on machine
translation in combination with the previously described rule engine (cf. Section 5.1).
As illustrated in Figure 4, our approach for Baseline 1 (BL1) is to first extract all rules
used in the monolingual rule engine for English for each required concept in the source
language (SL). These are then directly translated into the target language (TL) using the
DeepL translation API7. The resulting TL rule sets can subsequently be used as rule-
based extractors on the TL test set such that matching documents are classified as positive
instances of the respective concept, others as negative ones.

Baseline 2 (BL2) is following a slightly different approach (cf. Figure 5). First the
original monolingual rules for each concept are applied to the English training data.
Then, all English phrases that match those patterns are extracted and translated into the
target language. Subsequently, those extractions (which in comparison to Baseline 1 do
not usually contain any regular expressions or other formal constraints) are then used as
target language extraction rules and run on the TL test set, analogously to Baseline 1.

7. Evaluation

The experiments reported in this section address the problem of HRQoL concept detec-
tion from French online health communities. We simulate a real-world setting in which

7This includes a shallow post-processing step to remove broken rule syntax.
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no labeled training examples are available in the target language. Therefore, we approach
the task in a cross-lingual manner, transferring knowledge that is available in existing
models or resources for English to French as target language. Our primary interest is in
answering the following research questions:

1. How does cross-lingual concept detection performance via LTTL compare to
state-of-the-art cross-lingual transformer architectures?

2. Focusing on the specific lexical resource needs of LTTL, what is the impact of
a large, open-domain lexicon induced from Apertium RDF [25] via a pivot lan-
guage vs. a smaller, biomedical, directly applicable lexicon [26]?

3. How does LTTL concept detection performance differ across HRQoL concepts,
i.e., can our approach effectively be applied to a large number of different con-
cepts?

7.1. Experiment 1: Gold Standard Evaluation

7.1.1. Settings.

In a first experiment, we evaluate LTTL against the gold standard described in Section
5.3. For comparison, we obtained results for both baselines BL1 and BL2 introduced in
Section 6. Additionally, we explore the setting of combining the LTTL model with each
baseline in a sequential way. This was done by first executing LTTL and subsequently
feeding all data points (from both the positive and the negative samples) that had been
classified as negative by the model into the respective baseline.

Furthermore, we challenge LTTL in another comparison against the state-of-the art
cross-lingual XLM-R model [17]. It is a transformer-based multilingual masked neural
language model that is pre-trained for cross-lingual NLP tasks. In our use case, the model
is fine-tuned on the English task-specific data and then tested on French evaluation data
where it performs zero-shot cross-lingual classification.

7.1.2. Results and Discussion.

Results for this experiment are shown in Table 3 in terms of precision, recall and F1
measure for the positive class. We observe that, for four among the five concepts under
investigation, LTTL outperforms both baselines based on machine translation (BL1 and
BL2). While both baselines show divergent patterns across concepts (favoring precision
on some concepts, recall on others), they are largely complementary with LTTL: With
Positive Feelings as an exception, the sequential combinations of LTTL with one of BL1
or BL2 yield a boost in classification performance over LTTL in isolation. Apparently,
this blend of cross-lingual word embeddings with cross-lingual rule engineering consti-
tutes an effective approach to the HRQoL concept detection problem. To some extent,
this still holds in view of the performance of the neural state-of-the-art XLM-R model,
which outperforms LTTL+BL1/2 in three out of five cases, but obtains lower results for
Recreation and Leisure and Positive Feelings.

The excellent generalization properties of XLM-R notwithstanding, these results
suggest that cross-lingual HRQoL concept detection does not necessarily require the
heavy machinery of cross-lingual transformer models in all facets of interest. We argue
that, given the much higher model complexity of cross-lingual transformers, architec-
tures based on bilingual word embeddings such as LTTL may pose a practical compro-
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Model Lexicon
WO SA SR RL PF

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

LTTL
ES PoS 0.60 0.74 0.66 0.53 0.92 0.67 0.63 0.92 0.75 0.71 0.78 0.74 0.65 0.74 0.69

MedGl 0.59 0.78 0.67 0.49 0.81 0.61 0.70 0.84 0.76 0.73 0.44 0.55 0.75 0.12 0.21

LTTL
+BL1

ES PoS 0.64 0.82 0.72 0.56 0.99 0.71 0.64 0.94 0.76 0.50 1.00 0.67 0.51 0.81 0.63

MedGl 0.59 0.81 0.68 0.53 0.95 0.68 0.69 0.90 0.78 0.50 1.00 0.67 0.50 0.79 0.62

LTTL
+BL2

ES PoS 0.65 0.84 0.73 0.56 0.99 0.71 0.64 0.95 0.76 0.71 0.87 0.78 0.68 0.23 0.34

MedGl 0.60 0.83 0.70 0.53 0.93 0.67 0.69 0.91 0.78 0.73 0.69 0.71 0.69 0.20 0.31

Baseline 1 1.00 0.08 0.15 1.00 0.84 0.92 0.97 0.37 0.54 0.50 0.98 0.66 0.50 0.79 0.62

Baseline 2 1.00 0.15 0.26 1.00 0.82 0.90 0.96 0.63 0.76 0.89 0.41 0.56 0.69 0.20 0.31

XLM-R 0.97 0.68 0.80 0.76 0.92 0.83 0.98 0.80 0.88 0.80 0.74 0.77 0.74 0.58 0.65

Table 3. Results for EN-FR concept transfer via both baseline models and LTTL, separately and in sequential
combination for all 5 gold standard data sets. Lexicons refer to the ES single pivot version including PoS
information (ES PoS) and the MeSpEn medical glossary (MedGl). Results are reported in terms of precision,
recall and F1 measure for the positive class. Best F1 performance per concept is highlighted in bold. Concept
abbreviations are in line with Table 2.

mise in many application scenarios. Moreover, we noted in additional experiments not
reported here that when using smaller data sets (comparable to the one available for Sex-
ual Activity), the margin between LTTL and XLM-R results becomes much narrower,
which might suggest that LLOD-based bilingual word embeddings can cope better with
smaller sets of training data. This conjecture requires deeper investigation in future work.

7.2. Experiment 2: Evaluation against Large-scale Silver Standard

7.2.1. Settings.

In a second experiment, we investigate cross-lingual classification performance for all
19 HRQoL concepts summarized in Table 2. We run individual text classification mod-
els that are instantiated from LTTL on each of these concepts and evaluate them against
the silver standard presented in Section 5.3. Besides enabling a large-scale comparison
across this multitude of concepts, this experiment is mainly designed to explore the re-
source requirements of LLOD-based cross-lingual transfer learning: Given that Aper-
tium RDF does not include English–French translations, we induced a bilingual lexicon
via the pivot language Spanish. Here, we want to assess the prospects of LLOD-based
lexicon induction relative to a readily existing English-French bilingual medical lexicon
MeSpEn Glossaries.

7.2.2. Results and Discussion.

Table 4 shows the results of this experiment in terms of F1 measure for the positive class.
While LTTL surpasses both baselines for a substantially large number of concepts, only
in a minority of cases (4 out of 19) it is conversely outperformed by one of them, with
BL1 and BL2 not showing a clear trend to one outperforming the other in the majority
of cases. Being designed as precision-oriented extraction rules for English documents,
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Facet BL 1 BL 2
LTTL

LTTL
+BL1

LTTL
+BL2

LTTL
LTTL
+BL1

LTTL
+BL2

ES PoS MedGl

DA 0.56 0.56 0.69 0.75 0.73 0.62 0.73 0.72

BA 0.67 0.58 0.68 0.68 0.68 0.70 0.70 0.70

EF 0.65 0.83 0.35 0.68 0.83 0.60 0.68 0.77

FR 0.56 0.67 0.67 0.67 0.66 0.73 0.75 0.67

HC 0.55 0.23 0.67 0.67 0.67 0.71 0.70 0.70

HE 0.52 0.34 0.71 0.74 0.71 0.20 0.55 0.43

MB 0.55 0.49 0.66 0.74 0.71 0.67 0.67 0.67

NF 0.20 0.29 0.52 0.56 0.60 0.67 0.66 0.68

PD 0.49 0.49 0.57 0.74 0.74 0.65 0.66 0.66

PR 0.24 0.82 0.67 0.67 0.67 0.63 0.67 0.77

PE 0.50 0.52 0.71 0.73 0.73 0.43 0.71 0.72

PF 0.65 0.43 0.49 0.67 0.67 0.00 0.65 0.43

RL 0.66 0.56 0.73 0.67 0.74 0.67 0.66 0.69

SA 0.86 0.83 0.45 0.83 0.81 0.62 0.77 0.76

SR 0.43 0.71 0.72 0.72 0.79 0.63 0.69 0.75

SO 0.04 0.67 0.78 0.77 0.67 0.58 0.52 0.67

TM 0.41 0.36 0.58 0.65 0.63 0.69 0.68 0.68

TR 0.52 0.48 0.73 0.71 0.71 0.36 0.57 0.54

WO 0.17 0.31 0.67 0.69 0.70 0.77 0.76 0.76

Table 4. Results for EN–FR concept transfer evaluated on 19 silver standard QoL facets for both baseline
models and LTTL separately and in sequential combination, denoted by F1-measure for the positive class.
Abbreviations stem from Table 2. Lexicons refer to the ES single pivot version including PoS information (ES
PoS) and the MeSpEn medical glossary (MedGl). Bold results highlight best performance for a given concept.

most of the baselines still favour precision after being transferred to French: For roughly
90% of the concepts at least one of the baselines shows a noticeably better precision than
LTTL. However, apart from a small number of cases, LTTL benefits from a much higher
recall, which results in a better overall performance in terms of F1.

Therefore, the strong degree of complementarity between LTTL and BL1/2 observed
in Experiment 1 is confirmed in this large-scale setting as well: For the majority of con-
cepts the performance of the LTTL+Baselines combination exceeds LTTL and is among
the best configurations. This is the case for about 70% of the tasks, while in 90-95%
of them LTTL+BL1/2 performs better or at least equally well as LTTL. Winning results
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are obtained by the combined models by a sometimes considerable margin compared to
LTTL.

Regarding the different lexicon configurations employed, it becomes evident that
the automatically created open-domain lexicon which was induced leveraging LLOD
information from Apertium RDF (denoted as ES-PoS in the table) performs better than
the directly available medical domain-specific lexicon (denoted as MedGl in the table)
in 12 out of 19 concepts. This shows that LLOD-based lexicon induction is a useful
flexible process that could potentially be refined further in future work in order to boost
performance even more.

8. Summary and Conclusions

We presented LTTL as a language- and task-informed framework for cross-lingual trans-
fer learning. LTTL can be flexibly used in order to induce bilingual task-specific word
embeddings as lexical representations for NLP models that are needed for multilingual
text classification tasks. Being embedded into an LLOD exploitation pipeline, LTTL is
flexibly applicable to different languages and for various tasks, which we demonstrated
in this paper for the task of detecting HRQoL concepts from French online health com-
munities.

In the experiments reported, we showed that it can be employed even when a bilin-
gual lexicon for a particular language pair is not readily available, thanks to LLOD-
driven lexicon induction via one or more pivot languages. Furthermore, the LTTL model
can effectively be combined sequentially with rule-based concepts detectors, resulting in
a noticeable increase of classification performance, all while making use of openly avail-
able LLOD resources. Comparing LTTL against the state-of-the-art cross-lingual neural
language model XLM-R, we find that the HRQoL concept detection task does not neces-
sarily lean itself against the high complexity of transformer-based architectures. In fact,
our results suggest that architectures based on bilingual word embeddings such as LTTL
may pose a practical compromise for the task at hand in many real-world application con-
texts. In future work, we plan to exploit the richness of Apertium RDF and other exist-
ing LLOD lexical resources in large-scale experiments on lexicon induction. Our goal is
to further enhance bilingual dictionaries via multiple pivot languages, with the potential
goal of bringing the performance of LTTL even closer to cross-lingual transformers.
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