Galaxy groups up to z = 2.5 in deep infrared surveys

Detection and quenched fractions

Florian Sarron in collaboration with Chris Conselice

The University of Manchester

GCF2021 June 14th 2021

Group detection : DETECTIF_z algorithm

Quenched fraction in groups and field at 0.12 < z < 2.32

DATA

Data

Three of the deepest near infrared surveys

- K band selected photometric sample from Mundy+17
- 10 to 30 photometric bands from UV to IR

```
\rightarrow \text{UKIDSS-UDS } 0.63 \text{ deg}^2
K < 24.3
\sigma_z \sim 0.045 \times (1 + z)
\rightarrow \text{COSMOS/UltraVISTA } 1.45 \text{ deg}^2
K_s < 23.4
\sigma_z \sim 0.01 \times (1 + z)
\rightarrow \text{VIDEO/CFHTLS-D1 } 1 \text{ deg}^2
K_s < 22.5
\sigma_z \sim 0.035 \times (1 + z)
```

REFINE project

- Homogeneously reduced data
- ~ 3 deg² at 0.1 < z < 3.5.

Data products : probabilistic approach

- Mundy+17 : Photometric redshifts with EAZY (Brammer+08)
- This work : Physical parameters with SMPY (Duncan+19)

2D joint distributions PDF(X, z)

Concept

In this work

- Use the information contained is these PDFs
 - \rightarrow account for correlated uncertainties
 - \rightarrow deal with degeneracies

GROUP DETECTION

6

DETECTIFz : DElaunay TEsselation ClusTer identiFication with photo-z

Basic idea is classical

 \rightarrow Photometric redshifts : $\sigma_z \gg$ group size in z

What makes its specificity

Monte Carlo sampling

Density estimation

Similar to VMC algorithm (Cucciatti+18, Hung+20)

Outputs

• Group catalogue with $PDF_{group}(z)$ and R_{200}

• Group members catalogue with probability memberships $P_{\rm mem}$

Overview : DETECTIF_z performances

Mock data

Henriques+15 lightcones

with $\text{PDF}(M_{\star}, z)$ for each galaxy

+ empirical photometric noise

 \rightarrow DETECTIF*z* applied to mocks

Purity and completeness of the catalogues

Overview : DETECTIFz performances

Mock data

Henriques+15 lightcones

+ empirical photometric noise

with $\text{PDF}(M_{\star}, z)$ for each galaxy

 \rightarrow DETECTIF*z* applied to mocks

Properties of groups

11

14

 $\log M_{200}/M_{\odot}$

15

Overview : DETECTIF*z* catalogues

DETECTIFz catalogues on **REFINE** data

- $\rightarrow 90\%$ pure sample : 448 candidates groups at $0.12 \le z \le 2.32$
 - \rightarrow 186 newly detected
 - \rightarrow 53 groups at z > 1.5

Sample for quenched fractions (total stellar mass selected) :

```
\rightarrow \log \mu_{\star} > 11.25
```

 \rightarrow 407 candidates groups at $0.12 \le z \le 2.32$

QUENCHED FRACTIONS

Using PDF(X, z) to study galaxy populations in groups

Quenched vs star-forming from PDF(sSFR, z) $\rightarrow P^{q}(z)$ quenched \equiv sSFR < 10⁻¹¹ yr⁻¹

12

Number counts from PDF(M_{\star}, z) $\rightarrow N(M_{\star}, z)$ (Lopez-Sanjuan+17) + PDF_{group}(z) $\rightarrow N_{group}(M_{\star})$ - group galaxy numbers counts 12

Take away :

- New formalism to study group galaxies from PDF(X, z)
- Using PDF(X, z) : better treatment of correlated uncertainties and degeneracies

Quenched fraction in REFINE

Quenched fractions

Stellar mass limits : $10.25 < \log M_{\star}/M_{\odot} < 11$

- $\rightarrow f_{\text{groups}}^q$ in $0.5 \times R_{200}$
- $\rightarrow f_{\rm field}^q$ outside $2 \times R_{200}$ of detected groups

Quenched fraction in REFINE

Quenched fractions

Stellar mass limits : $10.25 < \log M_{\star}/M_{\odot} < 11$

 $\rightarrow f_{\text{groups}}^q$ in $0.5 \times R_{200}$

 $\rightarrow f_{\text{field}}^q$ outside $2 \times R_{200}$ of detected groups

Hierarchical Bayesian model

Adapted from $f_{\text{group}}^q(z) = \text{ilogit} [f_1 + \alpha_z \times (z - 1)]$ linear redshift evolution Raichoor+12 \rightarrow linear model provides a good fit $\rightarrow f_{\text{group}}^q > f_{\text{field}}^q$ with confidence > 1σ up to z = 2.23

Comparison to other works

Quenched fractions

Stellar mass limits : $10.25 < \log M_{\star}/M_{\odot} < 11$

 $\rightarrow f_{\text{groups}}^q$ in $0.5 \times R_{200}$

 $\rightarrow f_{\text{field}}^q$ outside $2 \times R_{200}$ of detected groups

*z*FOURGE: Papovich+18 ORELSE: Lemaux+19

Planck clusters : van der Burg+18 GOGREEN : van der Burg+20

- \rightarrow competitive constraints on f_{group}^q at z > 1
- \rightarrow Good agreement with ZFOURGE, ORELSE
- \rightarrow Lower f^q than Planck clusters, GOGREEN

Lower mass groups have lower f^q than massive clusters at 0.5 < z < 1.4 ???

Conclusions

What you can re-use

- DETECTIFz algorithm
- Group sample at z < 2.5
- Probabilistic framework to study galaxy properties in groups

Main result

• Quenched fraction is higher in groups than in the field at z < 2

Perspective

- Galaxy stellar-mass function + Radial distributions
- How do our high z groups trace proto-clusters ?

DETECTIFz workflow

More on DETECTIF_z selection function

in UDS

20

REFINE group catalogue

Quenched fractions in individual survey regions 22

Quenched fractions f^q : groups and field

Bayesian model from D'Agostini+04, Andreon+06

Similar behaviour : we can study the joint REFINE sample !

Quenched fraction excess in REFINE

Quenched fractions

Stellar mass limits : $10.25 < \log M_{\star}/M_{\odot} < 11$

 $\rightarrow f_{\text{groups}}^q$ in $0.5 \times R_{200}$

 $\rightarrow f_{\text{field}}^q$ outside $2 \times R_{200}$ of detected groups

$$QFE = \frac{f_{\text{group}}^q - f_{\text{field}}^q}{1 - f_{\text{field}}^q} \longrightarrow$$

Fraction of galaxies quenched in the groups that would have been star-forming in the field environment

- $\rightarrow QFE > 0$ up to z = 2.03 (95 % confidence)
- $\rightarrow QFE$ increases with decreasing redshift

Interpretation is not straightforward

- Group $\langle \mu_{\star} \rangle$ and $\langle \delta_{M_{\star}} \rangle$ are constant with z
 - \rightarrow High z groups are not progenitors of low z ones
 - \rightarrow Cannot disentangle for pre-processing

Heriarchical Bayesian model

Adapted from Raichoor+12

$$\begin{split} &\text{obs} N_{\text{field}} \sim \text{Poisson}(\text{true} N_{\text{field}}) \\ &\text{obs} N_{\text{tot}} \sim \text{Poisson}(\text{true} N_{\text{field}} \times \frac{\Omega_{\text{group}}}{\Omega_{\text{field}}} + \text{true} N_{\text{group}}) \\ &\text{obs} N_{\text{field}}^{q} \sim \text{Binomial}(f_{\text{field}}^{q}, \text{obs} N_{\text{field}}) \\ &\text{obs} N_{\text{tot}}^{q} \sim \text{Binomial}(f_{\text{tot}}^{q}, \text{obs} N_{\text{tot}}) \\ &f_{\text{tot}}^{q} = \frac{f_{\text{field}}^{q} \times \text{true} N_{\text{field}} \times \frac{\Omega_{\text{group}}}{\Omega_{\text{field}}} + f_{\text{group}}^{q} \times \text{true} N_{\text{group}}}{\text{true} N_{\text{field}} \times \frac{\Omega_{\text{group}}}{\Omega_{\text{field}}} + \text{true} N_{\text{group}}}, \end{split}$$

$$\begin{split} f_{\text{group}}^{q} &= \texttt{ilogit} \left[f_{1} + \alpha_{z} (z_{\text{group}}^{\text{true}} - 1) \right], \\ z_{\text{group}}^{\text{obs}} &= \mathcal{N}(\mu = z_{\text{group}}^{\text{true}}, \sigma = \sigma_{\text{PDF}_{\text{group}}(z)}^{68}) \end{split}$$