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H1gh-z void galax1e§, whose eyolutmn has beep driven almost complete.ly free from galaxy Mergers, are 1de.al target.s to provide yaluable 1ns1gh.ts Relative coordinates 2 2 [ 3 2 [ — 22561
into the role of environment in galaxy evolution. However, a very wide galaxy survey with spectroscopic redshifts are required to find void (RA, Dec, g — )X350 X QQ 1 X ‘ i X s { MLP |- Probability
regions, and there have been no studies beyond z > 3. In this work, we develop a new deep learning method to select z ~ 4 void galaxies from the ﬁi;‘;:ly 0~1)
g-dropout catalog produced by the HSC-SSP survey; called VoidNet. The VoidNet uses the sky distribution of galaxies and their (g — ) colors as —>| MLP }— —( MLP |}
a proxy for redshift despite of large uncertainty to characterize the three-dimensional spatial distribution of galaxies. We train the VoidNet by emree o PO weron,  Max Pooling
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using Millennium simulation, and when setting a conservative threshold (recall = 0.1%), the VoidNet achieves 90% precision, which 1s about 20% Shuljn]g Smlr‘mlg
better .than 2D selection ig detecting void ge}laxies. This result shows that deep learning can.prov.ide b.etter est.imate of the large-scale structur.e of il e %
the universe even when using the photometric data. We are applying the same method to the identification of high-z protoclusters as well as voids. (g —r)x350 5
Figure 1. VoidNet architecture.
The VoidNet takes relative coordinates, (RA, Dec, g — 1), centered on the target galaxy for
the 350 galaxies as input at the first layer. At the middle layer, galaxies information, (g — 7),
is inputted. Note that (g — r) on this second input is an absolute value, not a relative one.
The output is the probability of the target galaxy being a void galaxy. MLP in the figure
denotes Multi-Layer Perceptron and the numbers over each layers are layer channel sizes.
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* Cosmic voids are low-density environments: galaxies in voids  Defined as 6 = pZT%m’ where p is the galaxy number density and R R N e 3.70 0.8
are 1solated from othe.r galaxies. | (p) is ensemble average of the density. e S B K Py N & 3.65 0.8 A .
* These .galaX1es expe.rlenced almost no gglaxy mergers, and .thelr . 5®3 denotes the 3D underdensity and 6@ denotes the 2D 1 A . 3.60 o 0.6
evolution may be different from those in high-density regions, underdensity. e o |, | [ - -é . | | | '
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* Some void finders (Pan et al. 2012, Sutter et al. 2012, Sanchez Void galaxy: ) | | ke —whe 3.50 i |
et al. 2017, Krolewski et al. 2018) were developed to reveal the * Defined as a galaxy with 6*7 < 0 in a sphere of radius 4 pMpc. . < [ 3.45 A
void features at relatively low redshift. PointNet (Q1 et al. 2017) _10 g ‘ I 340 0.4 4
* It 1s important to observe at high redshift because the higher * It was developed to handle 3D point cloud data and to solve 3D 4,4—5 0 —— T S
redshift, the more purely the role of environment in galaxy shape classification and segmentation. (’?]1}] 5 » . 0 5 10 -—
evolution can be studied.  Two main features: “ -10 " Dec (min) ——— VoidNet (areca = 0.41)
* In this stufiy, we developed a new .deep. learning method, 1. Output 1s invariable regardless of the order of input Figure 2. 3D distribution of galaxies surrounding a void galaxy —— Baseline (area = 0.37)
VoidNet (F1gure 1), to detect galax1es in voids at z ~ 4 from a 7. The effect of rotation 1S eliminated by q predicted affine The red star shows the position of a void galaxy, and the blue points show 0.0 1 1 1 ] |
_ : that of other galaxies in the simulation data. The units of RA and Dec are 0.0 0.2 0.4 0.6 0.8 1.0
g dI’Op out Catalog ' transformat.lon. . . . . minutes. The void galaxy is isolated form other galaxies and settles in the
* We call a modified PointNet for void galaxy detection as VoidNet large-scale void structure. Recall
(Figure 1). Fioure 3. Precision-Recall
P 4 1ZUre 5. rrecision-necall curve.
VoidNet Illpllt \"\" 1( 1()- \\' I D E 1 2 H The blue line shows a curve of the baseline model, and
L. . . ¢ the red line shows a VoidNet curve. The VoidNet i
* First input layer: the relative sky coordinates and (g — ) color, 0.0 (). 2 ()4 0.0 .8 COZZfamlf;ebthgihin the baseline model over the whole
DATA which is a rough proxy for redshift, for the 350 galaxies - 3 B , 10.4 range. Especially, at an ultimate low recall, the VoidNet
Surrounding the target ga]axy 1 " 4 “.' s - ?l overwhelms the baseline model by about 20%.
Simulation data (Figure 2, for training and evaluation) » Middle input layer: the absolute color (g — 1) v <
* N-body Simulation (Millennium Simulation: Springel et al. 2005) : — | 03 O
. . VoidNet Output D | | RO
+light-cone model (Henriques et al. 2012) . Probabilitv of be: 1 oal 5o () | =
+semi-analytic model (Guo et al. 2011) TODADIILY O1 DEING @ VOIT Salaxy =, | ; () 9 =
—g-dropout catalog(3.25 < z < 4.6)(Toshikawa et al. 2016) Baseline model (for comparison) = |-
* Magnitude limit: 23.00 < i < 26.07 » It determines whether a void galaxy or not using only 6§ without — 1 3 T Figure 4. Distribution of 6 void galaxy candidates
° : R 1 1 1 — : (A The yellow star shows the position of 6 void galaxy
Redshift ranse of target galaXICS- A<z <37 \any nformation of the LOS distances. / ’ O' 1 <] candidates and the red circle shows the positions of the
. . protocluster candidates (Toshikawa et al. 2018). The
Observation data (TOShlkaWEl et al. 201 8) ‘ N ’ b AT backgr:)lund map (cited from Toshil\llwa et al. 2018 Fig.2) is
. g_dropout Ca‘[alog from HSC-SSP Wide survey S16A ' : : ., () () underdensity contours, which lower-density regions are
* Region: W-WIDE12H (area: 17deg?) 18] 179 Wl § . dtestedby Bluercotors
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* g dropout criterion:

” 10 Evaluation
! —1.0.<f"g l_z 0 « Over the whole range of recall, the VoidNet keeps higher / CONCLUSION \

_ precision than the baseline model (figure 3).
I>(r=i)<g-r-08 * At a conservative threshold (recall = 0.1%), the VoidNet . , , | . o
» Target galaxies (10521 galaxies): archives 90% precision, which corresponds to an We showed VoidNet 1s effective to sel.ect void galaxy from the g-.dro.pout catalog, wh1c.h.has large uncertainties
» Mask occupies less than 10% of a circle of radius 10¢ of the improvement of about 20% compared to the Baseline model. in the.LOS, aqd sqcceeded to gelect \.101d galgxy cagd@ates. We Wlll Improve more precision and mqke a catalog
target galaxy Selection from observation data of void galaxies in z ~ 4 to investigate with statistical analysis. In the future, we will further improve the
« 1< g—r < 1.5 (To match redshift range with simulation) + We succeeded to predict 6 galaxies as void galaxies with high accuracy of the prediction, create a catalog of void galaxies at z~4 to perform statistical analysis. Follow-up

\ / \ probability, P > 70% (Figure 4). / Qaectroscopic observation will confirm the existence and clarify the properties of void galaxies. J




