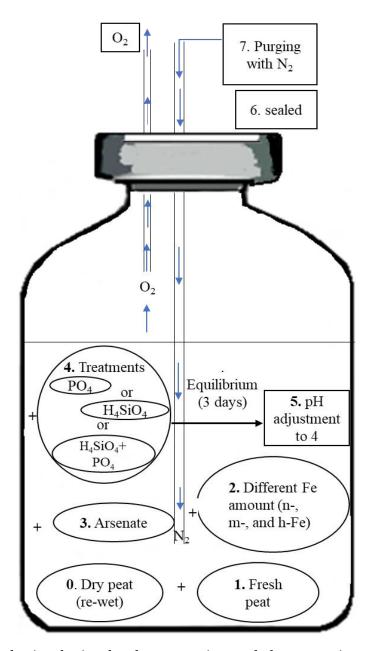

- Sketch of treatments for arsenic mobilization from goethite and analysis
- of gaseous samples


3 Supplementary Material 1 (S1)

- 5 Figure 1.i) Photograph of incubation bottles; ii) sketch of treatments and Fe addition in the form
- of goethite: Fe; no Fe: nFe; medium Fe (4.4 mg g-1, the weight of Fe): mFe; high Fe (44.6 mg g-1,
- 7 the weight of Fe): hFe; addition of phosphate is indicated by PO₄; addition of silicic acid by H₄SiO₄.

- 8 Note: Red boxes mark the controls for each grouped treatment.
- 9 Green box and arrows show the grouped the control for other treatment groups (PO₄, H₄SiO₄ and
- 10 PO₄+ H₄SiO₄) with different levels of Fe. All batch experiments were as triplicate (n=3).

13

Figure 2. Schematic of the incubation batch preparation and the respective treatments with phosphate: PO₄; silicic acid: H₄SiO₄; goethite: Fe; no goethite: nFe; medium goethite: mFe; high goethite: hFe.

Supplementary Material (S2)

Methods: analysis of gaseous samples

The potential of CO₂ and CH₄ productions rates were measured to quantify microbial respiratory activity during the course of the experiment. The concentrations of CO₂ and CH₄ in the incubation bottles were measured over time using a gas chromatograph (SRI Instrument 8610C, Torrance, USA) equipped with a flame ionization detector (FID) and methanizer to simultaneously measure CO₂ and CH₄. Before each sampling, the pressure inside the incubation bottles was measured with a pressure sensor (GMH 3110, Greisinger, Regenstauf, Germany). The headspace of incubation bottles was sampled using syringes, and samples were injected into the GC directly. Concentrations were obtained by analyzing the headspace at the beginning (to:24 h) and after 72, 168 and 336 h (t₁-t₃). The measured concentrations (in ppmV) were corrected for pressure and converted using the ideal gas law:

30
$$n=(p^*V)/(R^*T)$$
 (1)

- where n is the amount of substance in mol, p is the partial pressure in atm, V is the headspace volume in L, R is the ideal gas constant (0.082 L atm mol⁻¹ K⁻¹) and T is the laboratory temperature in K.
- Total concentration of CO₂ and CH₄ in gas and water phase in the incubation bottles were calculated using the ideal gas with constants corrected for 20 °C (K_H , CO₂= 3.8×10^{-2} mol L^{-1} atm⁻¹ and K_H , CH₄= 3.8×10^{-2} mol L^{-1} atm⁻¹, from Sander. R [1].

Results and discussion:

*Redox conditions and production of CO₂ and CH*⁴

Under oxic conditions, microbial respiration is dominated by the reduction of molecular O₂ due to its abundance and thermodynamic favorability as an electron acceptor, while anaerobic respiration pathways using alternative terminal electron acceptors (TEAs) such as Fe(III), sulfate or organic matter (OM) are suppressed until depletion of O₂. Thereafter, respiration using other TEAs sets in, according to their thermodynamic energy yields [2]. The reduction of O₂ or alternative TEAs through microbial respiration can be quantified by monitoring CO₂ production from oxidation of labile OM [3]. Upon depletion of TEAs, reduction of CO₂ via hydrogenotrophic methanogenesis or cleavage of acetate via acetoclastic methanogenesis leads to an equal production of CH₄ and CO₂ under strictly methanogenic conditions [4].

As shown in the Figure 3 S2 below, under anoxic conditions as established in our incubations, high rates of anaerobic CO₂ production were indicative of active microbial respiration and the onset of increasingly reducing conditions over a timescale of hours (Figure 3, a-c). The availability of other TEAs, in our incubations mainly Fe(III) but presumably also OM [5], leads to the retardation of CH₄ production. Accordingly, in the system with the higher Fe content (hFe), the production of CH₄ is retarded longer and overall lower than in the nFe and mFe systems (Figure 3, d-f). Thus, the production of CO₂ and onset of CH₄ production served as a good indicator for redox conditions.

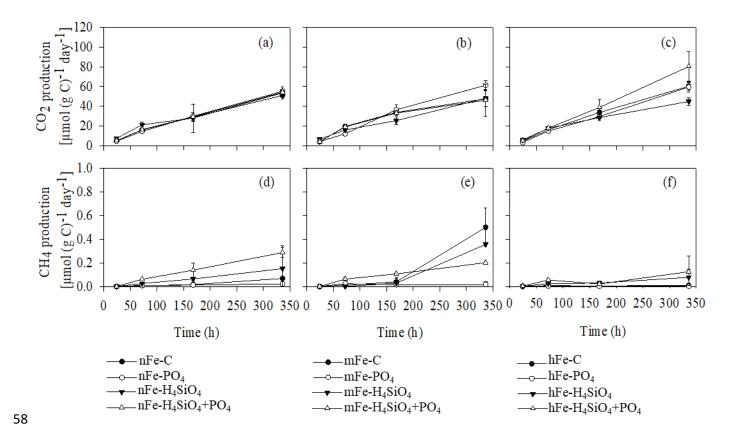


Figure 3. The rate of CO₂ (a–c) and CH₄ production (d–f) versus time during incubation under anoxic conditions. Data represent the mean; whiskers represent the standard deviation (n=3). Addition of goethite is indicated by Fe, where no Fe: nFe; medium Fe (4.4 mg g⁻¹): mFe; high Fe (44.6 mg g-1): hFe; addition of phosphate is indicated by PO₄; addition of silicic acid indicated by H₄SiO₄.

Table 1 Arsenite (As(III)) release rate (in % of total As in the system) during the course of the experiment. See methods section for analytical methods.

Treatments	Time (h)			
Fe Conc	24	72	168	336
treatments				
nFe-C	21.5	80.0	68.0	51.0
nFe-PO ₄	6.0	33.0	63.0	35.0
nFe- H ₄ SiO ₄	11.0	60.0	55.0	61.0
nFe-H ₄ SiO ₄ +PO ₄	15.2	46.4	52.0	61.3
mFe-C	28.0	80.0	73.0	67.0
mFe-PO ₄	12.2	62.0	65.0	56.0
mFe- H ₄ SiO ₄	8.0	39.0	62.0	81.0
mFe- H ₄ SiO ₄ +PO ₄	15.6	59.0	64.0	71.0
hFe-C	47.0	77.0	65.0	50.0
hFe-PO ₄	7.0	34.0	65.0	22.0
hFe- H ₄ SiO ₄	23.0	75.0	70.0	71.0
hFe-H ₄ SiO ₄ +PO ₄	11.5	66.0	76.0	53.0

Fe concentrations: Fe Conc.; no Fe: nFe; medium Fe: mFe; High Fe: hFe; control: C; phosphate: PO4; silicic acid: H4SiO4.

Table 2 The significant effects of different treatments on arsenate (As(V)) mobilization in each sampling time, showing the significant effects of different treatments on arsenate release in the soil solution.

69

70

Treatments	Time (h)			
-	24	72	168	336
nFe-C	abc	abc	abc	abc
nFe-PO ₄	b*	b*	abc	bc*
nFe- H ₄ SiO ₄	bc*; **	bc*, **	b*	abc
nFe- H ₄ SiO ₄ +PO ₄	abc	abc	cb**	abc
mFe-C	abc	abc	abc	abc
mFe-PO ₄	abc	abc	abc	abc
mFe- H ₄ SiO ₄	abc	abc	abc	abc
mFe- H ₄ SiO ₄ +PO ₄	abc	abc	abc	abc
hFe-C	a*	a*	a*; **	a*; **
hFe-PO ₄	abc	abc	abc	bc**
hFe- H ₄ SiO ₄	ac**	ac**	abc	abc
hFe-H ₄ SiO ₄ +PO ₄	abc	abc	abc	abc

⁷¹ Treatments followed by the same letter are not significantly different (p<0.05). Control: C;

phosphate: PO4; silicic acid: H4SiO4. The significant difference between treatments at each

⁷³ sampling time is distinguished by the same star and color.

Table 3 The significant effects of different treatments on arsenite (As(III)) mobilization in each sampling time, showing the significant effects of different treatments on arsenite release in the soil solution.

Treatments	Time (h)				
	24	72	168	336	
nFe-C	bd*, **	a*	a*	ab	
nFe-PO ₄	ab <mark>**</mark>	ab	ab	ab	
nFe- H ₄ SiO ₄	abc	ab	ab	ab	
nFe- H ₄ SiO ₄ +PO ₄	abc	ab	ab	ab	
mFe-C	cd*	a*	a*	ab	
mFe-PO ₄	a*	ab	a	ab	
mFe- H ₄ SiO ₄	abc	ab	ab	b*	
mFe- H ₄ SiO ₄ +PO ₄	abc	ab	ab	ab	
hFe-C	abc	b*	b*	a*	
hFe-PO ₄	ab**	b*	ab	a*	
hFe- H ₄ SiO ₄	abc	ab	ab	ab	
hFe-H ₄ SiO ₄ +PO ₄	abc	ab	ab	ab	

Treatments followed by the same letter are not significantly different (p<0.05). Control: C; phosphate: PO₄; silicic acid: H₄SiO₄. The significant difference between treatments at each sampling time is distinguished by the same star and color.

- 81 References
- 82 1. Sander. R. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential
- 83 Importance in Environmental Chemistry. Max-Planck Institute of Chemistry, 1999
- 84 2. Achtnich, C.; Bak, F. & Conrad, R. Competition for electron-donors among nitrate reducers,
- 85 ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils,
- **1995**, 19, 65-72.
- 87 3. Mladenov, N.; Zheng, Y.; Miller, M. P.; Nemergut, D. R.; Legg, T.; Simone, B.; Hageman, C.;
- 88 Rahman, M. M.; Ahmed, K. M. and McKnight, D. M. Dissolved organic matter sources and
- 89 consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ. Sci. Technol.
- 90 **2010**, 44, 123–128.
- 91 4. Conrad, R. Contribution of hydrogen to methane production and control of hydrogen
- 92 concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999 28, 193-202.
- 93 5. Gao, C.; Sander, M.; Agethen, S. & Knorr, K-H. Electron accepting capacity of dissolved and
- particulate organic matter control CO2 and CH4 formation in peat soils. *Geochim. Cosmochim.*
- 95 Acta. **2019**, 245, 266-277.