

## Magnetic fields in Herbig Ae/Be stars

by Silva Järvinen

In collaboration with

Swetlana Hubrig, Thorsten Carroll, Markus Schöller, and Ilya Ilyin

#### **First measurements**

Astron. Astrophys. 278, 187-198 (1993)

#### Circular polarization and variability in the spectra of Herbig Ae/Be stars

I. The Fe II 5018 Å and He I 5876 Å lines of AB Aurigae\*

C. Catala<sup>1</sup>, T. Böhm<sup>2</sup>, J.-F. Donati<sup>1</sup>, and M. Semel<sup>3</sup>

#### 3.6 m Canada-France-Hawaii Telescope (CFHT) with the Coudé spectrograph



© Jean-Charles Cuillandre (CFHT)





AB Aur Fe II 5018.43

## **First measurements**

Mon. Not. R. Astron. Soc. 291, 658--682 (1997)

#### Spectropolarimetric observations of active stars

- J.-F. Donati,<sup>1\*</sup> M. Semel,<sup>2\*</sup> B. D. Carter,<sup>3\*</sup> D. E. Rees<sup>4\*</sup> and A. C. Cameron<sup>5\*</sup>
- Anglo-Australian Telescope (AAT) with the high-res UCL Echelle Spectrograph (UCLES)
- HD 100546
- HD 104237
  - Marginal detection



LSD profiles of HD 104237, 1993 Dec. 29

© AAT



#### First measurements

Glagolevski & Chountonov 2001, ASPC, 248, 535



**No detections** 

|              |        |                |               |                | Number of |             |
|--------------|--------|----------------|---------------|----------------|-----------|-------------|
| Star         | $B_s$  | $\sigma$       | Sp            | v sin <i>i</i> | spectral  | Remarks     |
|              | (G)    | $(\mathbf{G})$ | -             | (km/s)         | lines     |             |
| AB Aur       | < 1000 | -              | AOV           | 75             | -         | [1]         |
| HD31648      | -50    | 200            | A2/3 p        | 80             | 20        |             |
| 31648        | 130    | 150            | A2/3 p        | 96             | 11        |             |
| 36112        | 86     | 400            | A3            | 70             | 36        |             |
| 37022        | -630   | 400            | O6p           | 120            | 9         | Post Ae/Be  |
| 37129        | -250   | 200            | B2p           | 70             | 20        | Post Ae/Be  |
| KX Ori       | 340    | 250            | B3V           | 30             | 4         | Post Ae/Be  |
| V359 Ori     | 220    | 350            | B3V           | 25             | 4         | Post Ae/Be  |
| 45677        | -530   | 500            | B0IV p        | 95             | 6         | He+Mg       |
|              | 15     | 300            | B01V p        | 95             | 6         | [2]         |
| 53367        | 350    | 400            | B0III/IV      | 30             | 26        | He+Me lines |
|              | -330   | 200            | B0III/IV      | 30             | 22        | He+Me lines |
| 100546       | < 100  | -              | B9V           | -              | 65        | [3]         |
| 104237       | < 100  |                | A4V           | 12             | ,         | [3]         |
| 144432       | -800   | 600            | A7V           | 80             | 26        |             |
| 179218       | -230   | 150            | B9/A0IV/V     | 60             | 10        |             |
|              | 350    | 300            | B9/A0IV/V     | 60             | 67        |             |
| 190073       | -120   | 100            | A0IV $p$      | 10             | 13        |             |
| 200775       | 60     | 300            | B2/3          | 60             | 10        |             |
| 203024       | 95     | 600            | А             | 75             | 18        | Comp. prof  |
| 208063       | 730    | 500            | -             | 35             | 4         |             |
| 250550       | -520   | 300            | $\mathbf{B9}$ | 85             | 37        | He+Mg+Si    |
| $\gamma$ Equ | -1100  | 100            | F0p           |                | 21        | Mag. star   |

 Catala et al. (1993); [2] Borra, Landstreet, & Thompson (1983); [3] Donati et al. (1997)

Table 1. Magnetic field measurements in Herbig Ae/Be stars.

#### First low-resolution study

A&A 428, L1–L4 (2004) DOI: 10.1051/0004-6361:200400091 © ES0 2004 Astronomy Astrophysics

#### Magnetic fields in Herbig Ae stars\*

S. Hubrig1, M. Schöller1, and R. V. Yudin2,3

#### FORS 1 (FOcal Reducer low dispersion Spectrograph) at the VLT





#### **First low-resolution study**

Table 1. Basic data of the studied Herbig Ae stars.

| HD     | Other       | V   | Sp. type | $T_{\rm eff}$ | log G   | v sin <i>i</i> | Ref. | $(V - L)_{obs}$    | Р         | $\langle B_t \rangle$ |
|--------|-------------|-----|----------|---------------|---------|----------------|------|--------------------|-----------|-----------------------|
| 139614 | CD-27 10778 | 8.2 | A7Ve     | \$250         | 4.5     | 13             | (1)  | ~2.º0              | ~0.1–0.5% | -450 ± 93 G           |
| 144432 | CD-42 10650 | 8.2 | A9Ve     | 7750          | 4.5     | 54             | (1)  | ~2. <sup>m</sup> 0 | ~0.1-0.5% | -94 ± 60 G            |
| 144668 | HR 5999     | 7.0 | A7IVe    | 7800          | 3.5-4.0 | 180            | (2)  | 3.º0-3.º5          | ~0.5-1.3% | $-118 \pm 48$ G       |

(1) Meeus et al. (1998); (2) Grady et al. (1994).



Fig.1. Regression detection of a -450 ± 93 G magnetic field in HD 139614 and non-detections in HD 144432 and HD 144668.

# the mean longitudinal magnetic field (Bz) is diagnosed from the slope of a linear regression

Bagnulo et al. 2002, A&A, 389, 191; Hubrig et al. 2004, A&A, 415, 661

#### Subsequent studies

A&A 442, L31–L34 (2005) DOI: 10.1051/0004-6361:200500184 © ESO 2005



#### Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars?\*

G. A. Wade<sup>1</sup>, D. Drouin<sup>1</sup>, S. Bagnulo<sup>2</sup>, J. D. Landstreet<sup>3</sup>, E. Mason<sup>2</sup>, J. Silvester<sup>1,4</sup>, E. Alecian<sup>5</sup>, T. Böhm<sup>6</sup>, J.-C. Bouret<sup>7</sup>, C. Catala<sup>5</sup>, and J.-F. Donati<sup>6</sup>

• the first results from two independent surveys

- ESO-VLT and the FORS1 spectropolarimeter
- ESPaDOnS spectropolarimeter at the CFHT

## Subsequent studies



Fig. 1. Magnetic field diagnoses of: *left frame* – HD 101412 (FORS1 Balmer-line regression) *Centre frame* – V380 Ori (ESPaDOnS LSD Stokes *I* and *V* profiles *Right frame* – V380 Ori (O 1 777 nm profiles). The Stokes *V* signatures detected in the spectrum of V380 Ori correspond to an approximately dipolar surface magnetic field of intensity ~1.5 kG.

Wade et al., 2005, A&A, 442, L31

## Why the detections are so rare?

#### Why the detections are so rare?

The stars are faint and getting sufficient S/N is not trivial

The magnetic fields are weak; the Zeeman split lines have been detected only in one case (HD101412)



To increase S/N, we have to use techniques like LSD and SVD

LSD: Donati et al. 1997, MNRAS 291, 658

SVD: Carroll et al. 2012, A&A 548, A95

## LSD

#### Least Squares Deconvolution (LSD)

Donati et al. 1997, MNRAS 291, 658

- a cross-correlation technique for computing average Stokes profiles from tens or hundreds of spectral lines simultaneously
- is based on the assumption that all spectral lines have the same profile and that they can be added linearly

#### SVD

#### Singular Value Decomposition (SVD)

Carroll et al. 2012, A&A 548, A95

- is similar to the Principle Component Analysis approach
- the similarity of the individual Stokes V profiles allows one to describe the most coherent and systematic features present in all spectral line profiles as a projection onto a small number of eigenprofiles

## Why the detections are so rare?

The complex interaction between the stellar magnetic field, the accretion disk, and the stellar wind makes detecting weak magnetic field difficult



Schöller et al. 2016, A&A 592, A50

## Why the detections are so rare?

■ We usually measure circular polarization → the longitudinal magnetic field, which shows a strong dependence on the viewing angle of the observer



**Repeat observations several times** 

#### Some examples



Järvinen et al. 2019, MNRAS, 489, 886

#### See also Alecian et al. 2013, MNRAS, 429, 1001

 $\rightarrow$  for example, HD 35929 has DD in 1 case out of 5

## Magnetic phase curves

## Why phase curves are important?

Is the field dominantly dipolar?

Gives the rotation period

 $\rightarrow$  with other parameters can be used to estimate magnetic obliquity

 $\rightarrow$  the topology of channeled accretion depends on the tilt angle between rotation axis and the magnetic field axis

Romanova et al. 2003, ApJ 595, 1009



The only Herbig star for which the magnetic phase curve presenting the dependence of the mean longitudinal magnetic field strength on the rotation phase has been obtained

Hubrig et al. 2011, A&A 525, L4



#### The only Herbig star with magnetically split lines



#### V380 Ori

Mon. Not. R. Astron. Soc. 400, 354-368 (2009)

doi:10.1111/j.1365-2966.2009.15460.x

#### Magnetism and binarity of the Herbig Ae star V380 Ori\*†

E. Alecian,<sup>1,2</sup><sup>‡</sup> G. A. Wade,<sup>1</sup> C. Catala,<sup>2</sup> S. Bagnulo,<sup>3</sup> T. Böhm,<sup>4</sup> J.-C. Bouret,<sup>5</sup> J.-F. Donati,<sup>4</sup> C. P. Folsom,<sup>3</sup> J. Grunhut<sup>1</sup> and J. D. Landstreet<sup>6</sup>



## V380 Ori

No periodicity in emission hydrogen, helium, calcium and oxygen lines



the chemically peculiar component not a Herbig star

#### Herbig status based on the appearance of emission in those lines belonging to the T Tauri component

Hubrig et al. 2019, ASPC, 518, 18; Shultz et al. 2021, MNRAS, accepted, arXiv:2103.09670

Other similar cases, like HD 72106 — the magnetic primary is a typical chemically peculiar young Bp star Folsom et al. 2008, MNRAS, 391, 901

A&A 549, L8 (2013) DOI: 10.1051/0004-6361/201220796 © ESO 2013



LETTER TO THE EDITOR

## The dramatic change of the fossil magnetic field of HD 190073: evidence of the birth of the convective core in a Herbig star?\*

E. Alecian<sup>1</sup>, C. Neiner<sup>1</sup>, S. Mathis<sup>2,1</sup>, C. Catala<sup>1</sup>, O. Kochukhov<sup>3</sup>, J. Landstreet<sup>4,5</sup>, and the MiMeS Collaboration





Järvinen et al. 2015, A&A, 584, 15



## Herbig stars in binaries

#### Importance of Herbig stars in binaries

About 70% of the Herbig Ae/Be stars appear in binary/ multiple systems

e.g. Baines et al. 2006, MNRAS, 367, 737

Only very few close spectroscopic binaries with orbital periods below 20d are known among Herbig Ae stars

Duchêne 2015, Ap&SS, 355, 291

The search for magnetic fields and the determination of their geometries in close binary systems plays an important role for understanding the mechanisms that can be responsible for the magnetic field generation

## Importance of Herbig stars in binaries

Recent observations of magnetic Ap/Bp stars support magnetic field origin scenario requiring a merger event Mathys 2017, A&A, 601, A14

If at least one of the merging stars is on the Henyey part of the pre-main-sequence track towards the end of its contraction to the main sequence, it is possible that the outcome becomes observable as a Herbig Ae/Be star Ferrario et al. 2009, MNRAS, 400, L71



If this scenario is valid, there should be almost no magnetic star in close Herbig Ae/Be and Ap/Bp binaries

Z CMa

A&A 509, L7 (2010) DOI: 10.1051/0004-6361/200913704 © ESO 2010



LETTER TO THE EDITOR

The nature of the recent extreme outburst of the Herbig Be/FU Orionis binary Z Canis Majoris\*,\*\*

The strongest longitudinal magnetic field measured so far (-1231±164 G)

Not clear whether the magnetic field was detected for the Herbig Be NW component or for FU Ori -type component

## AK Sco (HD152404)

#### The first abundance analysis of both components

http://wwwuser.oats.inaf.it/castelli/

Herbig F5 IVe star- Spectroscopic binary. A and B are the primary and the secondary stars.
A: Star parameters: Teff=6500 K, log g=4.5, vturb=1 km/sec (from spectrum) vsini=18 km/sec from several lines in the spectrum.
B: Star parameters: Teff=6500 K, log g=4.5, vturb=2 km/sec (from spectrum) vsini=21 km/sec from several lines in the spectrum.

- Identified elements typical for spectral type F 5 IV-V
- Presence of Li I at 6707 Å and He I at 5875.61 Å related with the Herbig nature
- Overabundances in both stars for Y, Ba, and La
- Abundance pattern similar to that of Herbig stars displaying weak Ap/Bp peculiarities

Castelli et al. 2020, MNRAS, 491, 2010

Close SB2 system (Porb = 13.6d) with approximately equal components surrounded by a circumbinary disk

#### The primary is classified as a class II Herbig Ae/Be

Menu et al. 2015, A&A, 581, A107

#### The study based on ESPaDOnS spectra reported a nondetection

Alecian et al. 2013, MNRAS, 429, 1001



Alencar et al. 2003, A&A, 409, 1037









#### secondary component

#### <B<sub>Z</sub>>=-83±31 G



Järvinen et al. 2018, ApJL, 858, 18

AK Sco

- Components are expected to be tidally synchronized Alencar et al. 2003, A&A, 409, 1037
  - $\rightarrow$  the phase where we detect the magnetic field, we observe the region of the stellar surface facing permanently the primary component
    - the magnetic field geometry in the secondary component could be possibly closely related to the position of the primary component
  - $\rightarrow$ no detection in the primary, but only a fraction of the orbital cycle is covered

Järvinen et al. 2018, ApJL, 858, 18

## HD104237 (DX Cha)

#### Herbig Ae + T Tau



|           | $T_{\rm eff}~{ m K}$ | $\log(g)$      | ξ turb      |  |
|-----------|----------------------|----------------|-------------|--|
| Primary   | $8250\pm200$         | $4.2 \pm 0.25$ | $2.5 \pm 1$ |  |
| Secondary | $4800\pm200$         | $3.5-\leq 3.7$ | $1.0 \pm 1$ |  |

(Cowley et al. 2003, MNRAS, 431, 3485)

| Physical quantity                             | Value           | Reference                  |
|-----------------------------------------------|-----------------|----------------------------|
| $m_1 (M_{\odot})$                             | $2.2 \pm 0.2$   | Böhm et al. 2004           |
| $m_2 (M_{\odot})$                             | $1.4 \pm 0.3$   | Assumed                    |
| a (AU)                                        | $0.22 \pm 0.06$ | Derived                    |
| a (mas)                                       | $1.9 \pm 0.6$   | Idem                       |
| i (°)                                         | $17^{+12}_{-9}$ | Idem                       |
| $T_{\rm eff, 1}$ (K)                          | $8500 \pm 150$  | Fumel & Böhm 2012          |
| $L_{\star,1}(L_{\odot})$                      | $35^{+5}_{-4}$  | van den Ancker et al. 1998 |
| $R_{\star,1}$ (R <sub>O</sub> )               | $2.7 \pm 0.2$   | Derived                    |
| $v_{\rm rot, 1} \sin i$ (km s <sup>-1</sup> ) | $12 \pm 2$      | Donati et al. 1997         |
| $P_{\text{rot},1}$ (d)                        | $3.4 \pm 2.0$   | Derived                    |

Garcia et al. 2013, MNRAS, 430, 1839

- Abundance analysis Cowley et al. 2013, MNRAS, 431, 3485
  See also http://wwwuser.oats.inaf.it/castelli/
- Possible presence of a magnetic field of the order of 50 G was announced over 20 years ago

Donati et al. 1997, MNRAS, 291, 658

#### Both detections and non-detections reported

Wade et al. 2007, MNRAS, 376, 1145; 2011, ASPC, 449, 262; Hubrig et al. 2013, AN, 334, 1093

- EWLSD Prot = 4.7 d (113 h)
- P<sub>rot</sub> (Paγ)= 4.85 d (116 h)
   21 ISAAC + X-shooter spectra



#### 88 spectra in ESO archive



based on orbital parameters by Böhm et al. 2004, A&A, 427, 907

|                                                                                              | **<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>** | 64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                     |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| 43<br>49<br>49<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 |                                                                            |                                                          |                                                                                        |  |
| 45<br>46<br>46<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                    | 93<br>93<br>94<br>95<br>95<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96 |  |
|                                                                                              | 43<br>43<br>43<br>43<br>44<br>44<br>44<br>44<br>44<br>44                   |                                                          | 23<br>44<br>45<br>46<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47       |  |

| ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>** | WWW<br>WWW | ***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>** | MMM<br>MMM | 02<br>09<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04 | ~~~~<br>1~~~~ |
|-------------------------------------------------------------------|------------|-------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------|---------------|
| 58[6                                                              | IV         |                                                                   | · · ·      | 88                                                                                     | <u></u>       |

#### Most of the original data have S/N in the range of 59 - 100



<B<sub>z</sub>>=129±12 G



Järvinen et al. 2015, A&A 584, A15





| Name     | T <sub>eff</sub> | $\log(g)$              | $log(L_*)$             | <i>M</i> ★          | <i>R</i> ★           | A <sub>V</sub>         | Age                    | Distance                                   |
|----------|------------------|------------------------|------------------------|---------------------|----------------------|------------------------|------------------------|--------------------------------------------|
|          | (K)              | (cm s <sup>-2</sup> ]  | (L_O)                  | (M <sub>☉</sub> )   | (R⊙)                 | (mag)                  | (Myr)                  | (pc)                                       |
| HD 95881 | $10000\pm250$    | $3.20^{+0.10}_{-0.10}$ | $2.98^{+0.15}_{-0.15}$ | $6.2^{+0.8}_{-0.7}$ | $10.3^{+0.7}_{-0.6}$ | $0.00^{+0.05}_{-0.00}$ | $0.21^{+0.10}_{-0.07}$ | 1 <b>290</b> <sup>+90</sup> <sub>-78</sub> |

Fairlamb et al. 2015, MNRAS, 453, 976

#### Spectro-astrometric observations indicate that HD 95881 is a possible sub-arcsecond binary

Baines et al. 2006, MNRAS, 367, 737



# ■ The first low-resolution FORS1 (at the VLT) polarimetric spectra yielded (Bz) = -20±42 G

Wade et al. 2007, MNRAS, 376, 1145



## What have we learned?

- Yet the small number of magnetic HerbigAe/Be stars can be due to the weakness of their magnetic fields and/or the large measurement errors
- A single snapshot is not sufficient to judge whether a Herbig Ae/Be star is magnetic or not due to a strong dependence on the viewing angle
- One has to consider contamination by circumstellar matter when interpreting the line profiles

#### Correlations and what do they mean

#### Mass accretion rate

#### Our Derived from the measured luminosity of Brγ emission line

Garcia Lopez et al. 2006, A&A, 459, 837; Muzerolle et al. 1998, AJ, 116, 2965; Calvet et al. 2004, AJ, 128, 1294



#### Magnetospheric accretion models

$$B_* = 3.43 \left(\frac{\epsilon}{0.35}\right)^{7/6} \left(\frac{\beta}{0.5}\right)^{-7/4} \left(\frac{M_*}{M_{\odot}}\right)^{5/6} \\ \times \left(\frac{\dot{M}}{10^{-7} M_{\odot} \text{ yr}^{-1}}\right)^{1/2} \left(\frac{R_*}{R_{\odot}}\right)^{-3} \left(\frac{P_*}{1 \text{ day}}\right)^{7/6}$$

Johns-Krull et al. 1999, ApJ, 516, 900

based on Koenigl 1991, ApJL, 370, L39

Equation is for (dipolar) surface field whereas usually longitudinal component is measured



## Magnetic field origin

 ● Hint for increase of B<sub>z</sub> with level of X-ray emission
 →dynamo mechanism responsible for the coronal activity?



## Magnetic field origin

 Stronger field in younger stars
 →dynamo mechanism that decays with age

 Detected fields just leftovers of those generated by dynamos during convective phases

Hubrig et al. 2015, MNRAS, 449, L118



## Future work

## We need to get rotation periods and magnetic field configuration for a larger sample of Herbig stars

# We need to get rotation periods and magnetic field configuration for a larger sample of Herbig stars

We need to get a better orbital coverage and a larger sample of close SB2 systems with a magnetic Herbig Ae/Be primary