

Magnetic fields in Herbig Ae/Be stars

by Silva Järvinen

In collaboration with

Swetlana Hubrig, Thorsten Carroll, Markus Schöller, and Ilya Ilyin

First measurements

Astron. Astrophys. 278, 187-198 (1993)

ASTRONOMY AND **ASTROPHYSICS**

AB Aur Fa II 5018.43

Circular polarization and variability in the spectra of Herbig Ae/Be stars

I. The Fe II 5018 \AA and He I 5876 \AA lines of AB Aurigae*

C. Catala¹, T. Böhm², J.-F. Donati¹, and M. Semel³

3.6 m Canada-France-Hawaii Telescope (CFHT) with the Coudé spectrograph

© Jean-Charles Cuillandre (CFHT)

First measurements

Mon. Not. R. Astron. Soc. 291, 658-682 (1997).

Spectropolarimetric observations of active stars

- J.-F. Donati, $1\star$ M. Semel, $2\star$ B. D. Carter, $3\star$ D. E. Rees^{4 \star} and A. C. Cameron^{5 \star}
- **Anglo-Australian Telescope (AAT) with the high-res UCL Echelle Spectrograph (UCLES) HD 100546**
- **HD 104237**
	- **• Marginal detection**

© AAT

LSD profiles of HD 104237, 1993 Dec. 29

First measurements

Glagolevski & Chountonov 2001, ASPC, 248, 535

No detections

[1] Catala et al. (1993); [2] Borra, Landstreet, & Thompson (1983); [3] Donati et al. (1997)

Table 1. Magnetic field measurements in Herbig Ae/Be stars.

First low-resolution study

A&A 428, L1-L4 (2004) EOI: 10.1051/0004-6361:200400091 @ ESO 2004

Astronomy **Astrophysics**

Magnetic fields in Herbig Ae stars*

S. Hubrig¹, M. Schöller¹, and R.V. Yudin^{2,3}

FORS 1 (FOcal Reducer low dispersion Spectrograph) at the VLT

© ESO/B. Tafreshi

First low-resolution study

Table 1. Basic data of the studied Herbig Ae stars.

(1) Meeus et al. (1998); (2) Grady et al. (1994).

Fig. 1. Regression detection of $a - 450 \pm 93$ G magnetic field in HD 139614 and non-detections in HD 144432 and HD 144668.

the mean longitudinal magnetic field ⟨**Bz**⟩ **is diagnosed from the slope of a linear regression**

Bagnulo et al. 2002, A&A, 389, 191; Hubrig et al. 2004, A&A, 415, 661

Subsequent studies

A&A 442, L31-L34 (2005) DOI: 10.1051/0004-6361:200500184 C ESO 2005

Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars?*

G. A. Wade¹, D. Drouin¹, S. Bagnulo², J. D. Landstreet³, E. Mason², J. Silvester^{1,4}, E. Alecian⁵, T. Böhm⁶, J.-C. Bouret⁷, C. Catala⁵, and J.-F. Donati⁶

the first results from two independent surveys

- **• ESO-VLT and the FORS1 spectropolarimeter**
- **• ESPaDOnS spectropolarimeter at the CFHT**

Subsequent studies

Fig. 1. Magnetic field diagnoses of: left frame - HD 101412 (FORS1 Balmer-line regression) Centre frame - V380 Ori (ESPaDOnS LSD Stokes I and V profiles Right frame - V380 Ori (O 1 777 nm profiles). The Stokes V signatures detected in the spectrum of V380 Ori correspond to an approximately dipolar surface magnetic field of intensity \sim 1.5 kG.

Wade et al., 2005, A&A, 442, L31

Why the detections are so rare?

Why the detections are so rare?

The stars are faint and getting sufficient S/N is not trivial

The magnetic fields are weak; the Zeeman split lines have been detected only in one case (HD101412)

To increase S/N, we have to use techniques like LSD and SVD

LSD: Donati et al. 1997, MNRAS 291, 658

SVD: Carroll et al. 2012, A&A 548, A95

LSD

Least Squares Deconvolution (LSD)

Donati et al. 1997, MNRAS 291, 658

- **• a cross-correlation technique for computing average Stokes profiles from tens or hundreds of spectral lines simultaneously**
- **• is based on the assumption that all spectral lines have the same profile and that they can be added linearly**

SVD

Singular Value Decomposition (SVD)

Carroll et al. 2012, A&A 548, A95

- **• is similar to the Principle Component Analysis approach**
- **• the similarity of the individual Stokes** *V* **profiles allows one to describe the most coherent and systematic features present in all spectral line profiles as a projection onto a small number of eigenprofiles**

Why the detections are so rare?

The complex interaction between the stellar magnetic field, the accretion disk, and the stellar wind makes detecting weak magnetic field difficult

Schöller et al. 2016, A&A 592, A50

Why the detections are so rare?

We usually measure circular polarization → the longitudinal magnetic field, which shows a strong dependence on the viewing angle of the observer

Repeat observations several times

Some examples

Järvinen et al. 2019, MNRAS, 489, 886

See also Alecian et al. 2013, MNRAS, 429, 1001

→ for example, HD 35929 has DD in 1 case out of 5

Magnetic phase curves

Why phase curves are important?

Is the field dominantly dipolar?

Gives the rotation period

→with other parameters can be used to estimate magnetic obliquity

→**the topology of channeled accretion depends on the tilt angle between rotation axis and the magnetic field axis**

Romanova et al. 2003, ApJ 595, 1009

The only Herbig star for which the magnetic phase curve presenting the dependence of the mean longitudinal magnetic field strength on the rotation phase has been obtained

Hubrig et al. 2011, A&A 525, L4

The only Herbig star with magnetically split lines

V380 Ori

Mon. Not. R. Astron. Scc. 400, 354-368 (2009).

doi:10.1111/j.1365-2966.2009.15460.x

Magnetism and binarity of the Herbig Ae star V380 Ori \star ⁺

E. Alecian, $1,2$ ^{\uparrow} G. A. Wade, ¹ C. Catala, ² S. Bagnulo, ³ T. Böhm, ⁴ J.-C. Bouret, ⁵ J.-F. Donati,⁴ C. P. Folsom,³ J. Grunhut¹ and J. D. Landstreet⁶

V380 Ori

No periodicity in emission hydrogen, helium, calcium and oxygen lines

the chemically peculiar component not a Herbig star

Herbig status based on the appearance of emission in those lines belonging to the T Tauri component

Hubrig et al. 2019, ASPC, 518, 18; Shultz et al. 2021, MNRAS, accepted, arXiv:2103.09670

Other similar cases, like HD 72106 →the magnetic primary is a typical chemically peculiar young Bp star Folsom et al. 2008, MNRAS, 391, 901

A&A 549, L8 (2013) DOI: 10.1051/0004-6361/201220796 C ESO 2013

LETTER TO THE EDITOR

The dramatic change of the fossil magnetic field of HD 190073: evidence of the birth of the convective core in a Herbig star?*

E. Alecian¹, C. Neiner¹, S. Mathis^{2,1}, C. Catala¹, O. Kochukhov³, J. Landstreet^{4,5}, and the MiMeS Collaboration

 $\mathbf{v}_\mathbf{z}$ 0_n Järvinen et al. 2015, A&A, 584, 15

Herbig stars in binaries

Importance of Herbig stars in binaries

About 70% of the Herbig Ae/Be stars appear in binary/ multiple systems

e.g. Baines et al. 2006, MNRAS, 367, 737

Only very few close spectroscopic binaries with orbital periods below 20d are known among Herbig Ae stars

Duchêne 2015, Ap&SS, 355, 291

The search for magnetic fields and the determination of their geometries in close binary systems plays an important role for understanding the mechanisms that can be responsible for the magnetic field generation

Importance of Herbig stars in binaries

Recent observations of magnetic Ap/Bp stars support magnetic field origin scenario requiring a merger event Mathys 2017, A&A, 601, A14

Ferrario et al. 2009, MNRAS, 400, L71 **If at least one of the merging stars is on the Henyey part of the pre-main-sequence track towards the end of its contraction to the main sequence, it is possible that the outcome becomes observable as a Herbig Ae/Be star**

If this scenario is valid, there should be almost no magnetic star in close Herbig Ae/Be and Ap/Bp binaries

Z CMa

A&A 509, L7 (2010) DOI: 10.1051/0004-6361/200913704 @ESO 2010

LETTER TO THE EDITOR

The nature of the recent extreme outburst of the Herbig Be/FU Orionis binary Z Canis Majoris*,**

The strongest longitudinal magnetic field measured so far (-1231±164 G)

Not clear whether the magnetic field was detected for the Herbig Be NW component or for FU Ori -type component

AK Sco (HD152404)

The first abundance analysis of both components

http://wwwuser.oats.inaf.it/castelli/

```
Herbig F5 IVe star- Spectroscopic binary. A and B are the primary and the secondary stars.
A: Star parameters: Teff=6500 K, log g=4.5, vturb=1 km/sec (from spectrum)
                    vsini=18 km/sec from several lines in the spectrum.
B: Star parameters: Teff=6500 K, log g=4.5, vturb=2 km/sec (from spectrum)
                    vsini=21 km/sec from several lines in the spectrum.
```
- **Identified elements typical for spectral type F 5 IV-V**
- **Presence of Li I at 6707 Å and He I at 5875.61 Å related with the Herbig nature**
- **Overabundances in both stars for Y, Ba, and La**
- **Abundance pattern similar to that of Herbig stars displaying weak Ap/Bp peculiarities**

Castelli et al. 2020, MNRAS, 491, 2010

AK Sco

Close SB2 system (Porb = 13.6d) with approximately equal components surrounded by a circumbinary disk

The primary is classified as a class II Herbig Ae/Be

Menu et al. 2015, A&A, 581, A107

The study based on ESPaDOnS spectra reported a nondetection

Alecian et al. 2013, MNRAS, 429, 1001

AK Sco

Alencar et al. 2003, A&A, 409, 1037

AK Sco

AK Sco

secondary component

$-B_7$ = -83 \pm 31 G

Järvinen et al. 2018, ApJL, 858, 18

AK Sco

- **Components are expected to be tidally synchronized** Alencar et al. 2003, A&A, 409, 1037
	- →**the phase where we detect the magnetic field, we observe the region of the stellar surface facing permanently the primary component**
		- **• the magnetic field geometry in the secondary component could be possibly closely related to the position of the primary component**
	- **→no detection in the primary, but only a fraction of the orbital cycle is covered**

Järvinen et al. 2018, ApJL, 858, 18

HD104237 (DX Cha)

Herbig Ae + T Tau

(Cowley et al. 2003, MNRAS, 431, 3485)

- **Abundance analysis** Cowley et al. 2013, MNRAS, 431, 3485 **See also http://wwwuser.oats.inaf.it/castelli/**
- **Possible presence of a magnetic field of the order of 50 G was announced over 20 years ago**

Donati et al. 1997, MNRAS, 291, 658

Both detections and non-detections reported

Wade et al. 2007, MNRAS, 376, 1145; 2011, ASPC, 449, 262; Hubrig et al. 2013, AN, 334, 1093

EWLSD Prot = 4.7 d (113 h)

Prot (Paγ)= 4.85 d (116 h) 21 ISAAC + X-shooter spectra

88 spectra in ESO archive

based on orbital parameters by Böhm et al. 2004, A&A, 427, 907

Most of the original data have S/N in the range of 59 - 100

<Bz>=129±12 G

Järvinen et al. 2015, A&A 584, A15

29.04.2021 / OBA2021

Fairlamb et al. 2015, MNRAS, 453, 976

Spectro-astrometric observations indicate that HD 95881 is a possible sub-arcsecond binary

Baines et al. 2006, MNRAS, 367, 737

The first low-resolution FORS1 (at the VLT) polarimetric spectra yielded ⟨**Bz**⟩ **= −20±42 G**

Wade et al. 2007, MNRAS, 376, 1145

What have we learned?

- **Yet the small number of magnetic HerbigAe/Be stars can be due to the weakness of their magnetic fields and/or the large measurement errors**
- **A single snapshot is not sufficient to judge whether a Herbig Ae/Be star is magnetic or not due to a strong dependence on the viewing angle**
- **One has to consider contamination by circumstellar matter when interpreting the line profiles**

Correlations and what do they mean

Mass accretion rate

Derived from the measured luminosity of Brγ emission line

Garcia Lopez et al. 2006, A&A, 459, 837; Muzerolle et al. 1998, AJ, 116, 2965; Calvet et al. 2004, AJ, 128, 1294

Magnetospheric accretion models

$$
B_* = 3.43 \left(\frac{\epsilon}{0.35}\right)^{7/6} \left(\frac{\beta}{0.5}\right)^{-7/4} \left(\frac{M_*}{M_\odot}\right)^{5/6}
$$

$$
\times \left(\frac{\dot{M}}{10^{-7} M_\odot \text{ yr}^{-1}}\right)^{1/2} \left(\frac{R_*}{R_\odot}\right)^{-3} \left(\frac{P_*}{1 \text{ day}}\right)^{7/6}
$$

Johns-Krull et al. 1999, ApJ, 516, 900

based on Koenigl 1991, ApJL, 370, L39

Equation is for (dipolar) surface field whereas usually longitudinal component is measured

Magnetic field origin

500 **Hint for increase of Bz** 400 **with level of X-ray** $|\langle B \rangle|$ $|G|$ 300 **emission →dynamo** 200 **mechanism responsible for the** 100 **coronal activity?** $\boldsymbol{0}$ 27 30 31 26 28 29

Hubrig et al. 2009, A&A, 502, 283

 $log L_x [erg/s]$

Magnetic field origin

Stronger field in younger stars →dynamo mechanism that decays with age

Detected fields just leftovers of those generated by dynamos during convective phases

Hubrig et al. 2015, MNRAS, 449, L118

Future work

We need to get rotation periods and magnetic field configuration for a larger sample of Herbig stars

We need to get rotation periods and magnetic field configuration for a larger sample of Herbig stars

We need to get a better orbital coverage and a larger sample of close SB2 systems with a magnetic Herbig Ae/Be primary