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1 Analysis details

1.1 Data generation

We used an early in-house version of the PrIME-genphylodata tools, Sjöstrand
et al., 2013 to generate 100 synthetic data sets, each from the ABCA and
AGP data sets, using parameters sampled from a PrIME-DLRS analysis of
the biological ABCA and AGP data sets (Supplementary Table S3). Each
generated data set comprised a triplet comprising a gene tree a reconciliation
and sequence alignment from biological data sets. In all cases, we used the
JTT substitution model for generation of sequence data (no correction for
rate variation across sites were used).
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1.2 MCMC analyses

We used uninformative, uniform, priors for the gene tree G and parameters
θ in all MCMC analyses. Similar MCMC settings were used for all pro-
grams (DLRSOrthology, PrIME-GEM and MrBAYES-MPR) for both the
fixed-tree and the variable-tree MCMC analyses. For the synthetic data, the
MCMC analyses were run for 1 500 000 iterations, while for the biological
data, they were run for 2 000 000 iterations. In both cases, every 100th it-
eration state were recorded, and the 25% initial iterations were discarded as
burnin. The posterior means of the parameters in θ = (λ, µ,m, ν) are shown
in Table S3 (the posterior distribution of gene trees are discussed in the main
text).

2 Description of the DLR-ROC and DLRS-

ROC procedures

We here describe the comparison techniques and thresholding procedures in
detail.

2.1 DLR-ROC

Let D be the biological data. In this paper, DLR-ROC is used for the sake
of comparing DLRSOrthology and PrIME-GEM, but the procedure can be
applied to compare any two orthology methods that take as input a gene tree
– with or without lengths – and a species tree.

1. Until the required number of samples has been obtained, repeat the
following:

(a) Sample parameters θi from P [θ|D,S] according to the DLRS model.

(b) Generate a synthetic gene tree Gi, with lengths li, and a reconcil-
iation γi using the DLR process with parameters θi and S.

(c) For each v ∈ V (Gi), compute the speciation probability using
method 1 (here, DLRSOrthology using Main Text Equation 4)
for all pairs of leaves.

(d) For each v ∈ V (Gi), compute the speciation probability using
method 2 (here, PrIME-GEM) for all pairs of leaves.
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(e) For each gene pair (u, v) ∈ Gi and each of the two methods, do
the following: Given a set of threshold values Ω ∈ [0, 1], for each
threshold ωi ∈ Ω, compute the sensitivity/specificity values based
on whether the LCA is a true speciation in γi and whether the
orthology probability estimate is greater than ωi.

2. Compute ROC plots based on the sensitivity/specificity data for the
two methods.

2.2 DLRS-ROC

Similarly to above, in this paper, we apply DLRS-ROC in order to compare
DLRSOrthology and MrBayesMPR, but the procedure can be used to
compare any two orthology methods that take as input gene sequences and
a species tree.

1. Until the required number of samples has been obtained, repeat the
following:

(a) Sample parameters θi from P [θ|D,S ′] according to the DLRS
model.

(b) Generate a synthetic gene tree Gi, its reconciliation γi, and syn-
thetic sequences Di using the DLRS model. Let ΥDi

be set of all
gene pairs in Di.

(c) Generate samples from P [Gm1, lm1, θm1|Di, S
′] according to MCMC

framework of method 1 (here, DLRS). Let CM1 = {Gm1
i , lm1

i , θm1}ni=1

be the generated samples. For each gene pair (u, v) ∈ ΥDi
, com-

pute its speciation probability across all gene trees in CM1 using
method 1 (here, DLRSOrthology using Main Text Equation 2)

(d) Generate samples from P [Gm2, lm2, θm2|Di] according to MCMC
framework of method M2 (here, MrBayes). Let CM2 = {Gm2

i , lm2
i , θm2}ni=1

be the generated samples. For each gene pair (u, v) ∈ ΥDi
, com-

pute its speciation probability across all gene trees in CM2 using
method 2 (here, MrBayesMPR using Main Text Equation 5).

(e) For each gene pair (u, v) ∈ ΥDi
, do the following. Given a set of

threshold values Ω ∈ [0, 1], for each threshold ωi ∈ Ω, compute the
sensitivity/specificity values based on whether the LCA is a true
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speciation in γi and whether the orthology probability estimate is
greater than ωi for each of the two methods.

2. Compute ROC plots based on sensitivity/specificity data for the two
methods.

In our comparison between DLRSOrthology and MrBayes, we used iden-
tical values for MCMC parameters common to DLRS and MrBayes (e.g.,
number of iterations and thinning). We also used the same model of sequence
evolution.

It is worth noting that while comparing DLRSOrthology and PrIME-
GEM with respect to DLR-ROC, we only take MPR speciation vertices into
account. This is because, by definition, MPR selects the reconciliation with
the minimum number of duplications, so any vertex classified as duplication
by MPR cannot be a speciation. On the other hand, while comparing DLR-
SOrthology and MrBayesMPR with respect to DLRS-ROC, we take all
gene pairs into account since, in that case, different gene tree are considered.
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Åkerborg, O., B. Sennblad, and J. Lagergren. 2008. Birth-death prior on
phylogeny and speed dating. BMC Evolutionary Biology 8:77.

Hedges, S. B., J. Dudley, and S. Kumar. 2006. TimeTree: a public knowledge-
base of divergence times among organisms. Bioinformatics 22:2971–2972.
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Table S1: Species, accession numbers and abbreviations for investigated
genes of the AGP data

Species Ensembl/OPTICS accession number Abbreviation
Canis familiaris ENSCAFG00000003331 Cfa agp1
Gallus gallus ENSGALG00000023820 Gga agp1
Homo sapiens ENSG00000187681 Hsa agp1
Homo sapiens ENSG00000204154 Hsa agp2
Monodelhis domestica ENSMODG00000003862 Mdo agp1
Mus musculus ENSMUSG00000028359 Mmu agp1
Mus musculus ENSMUSG00000039196 Mmu agp2
Mus musculus ENSMUSG00000061540 Mmu agp3
Ornitorhynchus anatinus ENSOANG00000013663 Oan agp1
Taeniopygia guttata ENSTGUG00000003499 Tgu agp1

Table S2: Estimated maxmin DLRSOrthology thresholds for the investigated
biological data sets.

Analysis ABCA AGP AGP\HS
Fixed-tree analysis 0.93 0.91 0.96

Variable-tree analysis 0.93 0.75 0.55

Table S3: Posterior mean (standard deviation) of parameters θ, (i.e, dupli-
cation λ, and loss µ rates, and substitution rate model mean m and variance
ν) for the biological data sets.

Data set λ
(103Myrs)−1

µ
(103Myrs)−1

m
(103Myrs)−1

ν
(103Myrs)−1

ABCA 1.963 (0.5220) 2.27 (0.6086) 0.8880 (0.05597) 0.1165 (0.03237)
AGP1 6.033 (4.189) 6.555 (5.339) 2.8556 (0.5022) 0.3699 (0.4197)
AGP\HS1 5.164 (4.432) 5.663 (5.851) 2.924 (0.7513) 0.6139 (1.048)

1NB! The divergence times for the AGP species tree were estimated using
MapDP (Åkerborg et al., 2008), which estimates relative divergence times with
the divergence time of the root being set to 1.0; to enhance comparison, we have here
calibrated the rate estimates for AGP and AGP\HS using a species tree root divergence
time of 301.7 Myrs, taken from TimeTree (Hedges et al., 2006, http://www.timetree.org).
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Figure S1: Illustrates the computation of the above probability a(z, v), for
z ∈ V (S ′) and v ∈ V (G), via a dynamic programming paradigm. Triangles in
G refer to collapsed subtrees for clarity. a(z, v) holds the probability density
of all discretized realizations of G\(Gv\v), given that v occurs on z. Let w be
the sibling of v, and let u be the parent of v. a(z, v) is recursively computed
by – summing over each valid placement x ∈ V (S ′) for u – the product of
the below probability b(e(x), w), and the above probability of a(x, u). The
illustration highlights parts of G corresponding to a(z, v) in black, b(e(x), w)
in purple, a(x, u) in orange, and o(z, v) in red, respectively, albeit for a single
x. For a speciation vertex x in S, we have P [v is a speciation|x,G, l, θ, S ′] =
o(x, v)a(x, v)/P [G]. Tree layout as in Main Text Figure 1
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