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ABSTRACT: Microplastics are defined as microscopic plastic particles in the range from few µm and up to 5 mm. These small 
particles are classified as primary microplastic when they are manufactured in this size range, whereas secondary microplastics arise 
from the fragmentation of larger objects. Microplastics are a widespread emerging pollutant and investigations are underway to 
determine potential harmfulness to biota and human health. However, progress is hindered by the lack of suitable analytical methods 
for rapid, routine and unbiased measurements. This work aims to develop an automated analytical method for the characterization of 
small microplastic (< 100 µm) using micro Fourier Transform Infrared (µ-FTIR) hyperspectral imaging and machine learning tools. 
Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were 
evaluated, applying different data pre-processing strategies for classification of nine of the most common polymers produced 
worldwide. The hyperspectral images were also analyzed to quantify particle abundance and size automatically. PLS-DA presented 
a better analytical performance in comparison with SIMCA models with higher sensitivity, sensibility and lower misclassification 
error. PLS-DA was less sensitive to edge effects on spectra and poorly focused regions of particles. The approach was tested on a 
seabed sediment sample (Roskilde Fjord, Denmark) to demonstrate the method efficiency. The proposed method offers an efficient 
automated approach for microplastic polymer characterization, abundance numeration and size distribution with substantial benefits 
for methods standardization.

Plastic represents a wide range of organic polymeric material 
that is used in a wide variety of applications in modern society. 
In 2018, the world plastic production reached 359 million tons 
reflecting its widespread use and continual demand.1 The ever-
growing uses and production of this material entail an increase 
in the loss of plastic litter into terrestrial and aquatic 
ecosystems. As a result of their low degradation rate (up to 
hundreds of years), plastics can persist and accumulate in the 
environment and are now widely recognized as an emergent 
environmental contaminant worldwide.2,3 These synthetic 
polymers can fragment into smaller pieces under different 
degradation factors or purposefully manufactured in a small 
size range being categorized as microplastic when they achieve 
a size < 5 mm.4  Although pollution from large plastic debris is 
the most visible and publicized, the distribution of microscopic 
plastic fragments is more widespread reaching far from point 
sources. 

Microplastics have been widely reported in different 
environments worldwide in an ever-expanding range. The 
concerns about these plastic particles have gained a new 
dimension due to the potential harm they can cause to biota that 
ingests them and also potential human health effects.5,6 
Although this emerging pollutant needs to be addressed, the 
field is still relatively young and robust standardized analytical 
approaches for sampling, treatment and analysis are still in 

development. To some extent, this also hinders process in 
identifying relevant sources and assessing the occurrence, 
composition, fate and impacts of microplastics. Sampling and 
isolation of microplastics from the initial environmental 
matrices (water, soil, sediments, biota or air) are cumbersome 
operations; mainly due to their microscopic size and their low 
concentrations in comparison with others interferences such as 
naturally occurring inorganic and organic matter.7 

However, significant advances have been made in 
harmonizing sampling and sample preparation, where some 
recommendations and protocols have already been 
published.4,8,9 Polymer identification is complex and involves 
the use of different analytical methods or measurement modes 
depending on particle size fractions. Moreover, microplastic 
characterization is often carried out in a very labor-intensive 
manner, where the samples are initially analyzed first by visual 
inspection (optical microscopy) followed, in general, by 
spectroscopic measurement on selected particles and often with 
a focus on microplastic particles with sizes above 100 µm or 
even 500 µm.4,9 Therefore, more systematic, holistic and 
automated analytical approaches focusing mainly in small 
microplastic would be beneficial. 

Several analytical methods have been described in the 
literature for microplastic characterization such as vibrational 
spectroscopy 10, thermogravimetric analysis (TGA) and 
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pyrolysis-gas chromatography-mass spectroscopy (py-GC-
MS).11 Fourier-Transformed infrared (FTIR) is, arguably, one 
of the most common techniques used for microplastic 
identification12–14, providing fast and non-destructive 
measurements, as well as a spectral profile with defined and 
characteristic peaks for each polymer.14 Infrared instruments 
can also be coupled with microscopes (µ-FTIR) for 
hyperspectral image acquisitions for sample mapping with high 
precision and spatial resolution.15 This type of analysis has the 
advantage of collecting chemical (spectral) and spatial 
information of several particles at the same time by automated 
mapping of a sample, allowing the analysis of small 
microplastic without manual sorting and the estimation of 
particle features such as their area and diameters.13 Thus, several 
types of information can be simultaneously extracted from 
hyperspectral images in an automated manner.16 

Simon et al.17 described a method for quantification of 
microplastic mass and their removal rates at wastewater 
treatment plants using µ-FTIR hyperspectral imaging. The 
authors analyzed microplastic in different size range (10-500 
µm) and used library searching to characterize the 
particle/spectra. Renner et al.18 optimized a library search 
approach with automatic peak detection to assign better the 
FTIR imaging spectra of microplastics in environmental 
samples. A series of studies by Primpke et al. 19–21 went one step 
further and developed analytical methods for automated 
microplastic and microfiber identifications using µ-FTIR 
imaging and spectra correlation methods. With these strategies, 
the sample spectra are compared with a reference library for 
matching and assign the spectra when the similarity surpasses a 
given threshold. This approach has been applied worldwide for 
microplastic characterization, such as by Liu et al.22 that 
identified plastic particles in storm water treatment ponds in 
Denmark. The spectra similarity are determined by the hit 
quality index (HQI). The results often rely only on this number 
that is a potential source of error due to its dependence on the 
spectral library and the arbitrary threshold applied. Moreover, 
it is time-consuming since all spectra need to be compared with 
the whole reference library. Alternatively, multivariate data 
analysis applying machine learning strategies is well suited and 
can easily be applied to develop a fully automated process with 
little or no dependence on a spectral library. Multivariate 
characterization techniques use both concepts of spectral 
similarity and dissimilarity which is applied to a database of 
representative particles. In addition, the models are validated 
and a statistical evaluation is performed to reduce bias. 
Furthermore, multivariate models are faster than library 
searching with results obtained in few minutes once the models 
have been developed.

Wander et al. 23 performed an exploratory analysis of µ-FTIR 
imaging applying Principal Component Analysis (PCA) and 
Uniform Manifold Approximation and Projection (UMAP) to 
reduce the data dimensionality and visualize particle similarity. 
This strategy reduces significantly the analyzed data removing 
the background information from the images, but further 
analysis must be performed for spectra characterization.  On the 
other hand, Hufnagl et al. 24 developed a method applying a 
multivariate model (Radon Forest Classifier) for identification 
of microplastic in environmental samples using hyperspectral 
images. The authors developed the model for four plastic types 
and applied spectral descriptors determined by spectroscopy 
experts for polymer characterization. Thus, it is appropriate to 
explore more multivariate models for fully automated analysis 

by applying data pre-processing strategies, exploratory analysis 
and multiclass models that embrace the reality of plastics that 
are more found on the environment.  

This work aims to develop an analytical method for small 
microplastic (< 100 µm) characterization using µ-FTIR 
imaging and multivariate classification tools. Different types of 
plastic were applied and some morphological features about the 
particles were also extracted. We propose that with the correct 
data pretreatment and appropriate selection of hyperspectral 
data analysis approaches, we can fuel the development of a 
method to automate the quantification and identification of 
microplastic from an environmental sample. The proposed 
method can speed up data analyses, improve quality and 
reproducibility in polymer assignments and, subsequently, also 
provide benefits for method standardization. 

MACHINE LEARNING BACKGROUND
A brief theoretical background about the different machine 

learning multivariate models used in this work is presented here 
using spectroscopy as an example. A more detailed explanation 
about the multivariate models can be accessed through the 
references provided.25

Principal Component Analysis (PCA). PCA is, by far the 
most common and well-known multivariate machine learning 
tool.26,27 It is well suited for exploratory analysis (unsupervised 
model) and aims to extract underlying features in a multivariate 
dataset (in this case, spectral data). This technique reduces the 
data dimensionality by creating a new space with orthogonal 
variables describing in order the maximum variance of the 
original dataset. The new variables are called Principal 
Components (PCs) it is a linear combination of the originals 
variables.26,28,29 The samples projections in the PCs space are 
called scores, and it indicates the differences or similarities in 
composition among the samples. In general, samples with 
similar chemical composition will group in the score plots. On 
the other hand, the contribution of the original variables in the 
new orthogonal axes are called loadings, and they describe the 
influence of the originals variables to a given PC.26,28,29 The 
model for PCA decomposition is shown in Eq. (1):

     (1)𝐗 = 𝐓𝐏𝐓 + 𝐄

where X is the measured spectral data (sample by 
wavenumber), T is the score matrix (sample by component), PT 
is the loading matrix (component by wavenumber), and E is the 
residuals (unexplained data, sample by wavenumber).

In this work, PCA was applied to select the Region of Interest 
(ROI) in the hyperspectral images before proceeding with an 
additional model. The ROI is realized on the hyperspectral 
image to remove any pixel information not related to the plastic 
particles (i.e. to automatically discard background data from the 
disk where the sample is placed on). The ROI was selected 
using the score frequency histogram obtained from a PCA 
where there is a separation between background and particles 
driven by the differing spectral properties.30

Partial Least Squares – Discriminant Analysis (PLS-DA). 
PLS-DA is a multivariate classification technique (supervised 
model) based on the PLS regression model. This widespread 
classification model correlates the independent matrix (X 
matrix, spectral data) mathematically with the parameters of 
interest (Y matrix, class membership). In this technique, the 
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model is built by reducing the data dimensionality like PCA 
(explaining the data as a linear combination of underlying 
"components"). However, the new variables in PLS models are 
called Latent Variables (LV), and the direction is determined by 
the maximum covariance between X and Y matrices, i.e. both 
matrices are used to describe the new space. The parameter of 
interest is a dummy binary matrix indicating  the assignment of 
a given sample to a class, i.e., each row of Y matrix is a vector 
describing information about the class membership of a given 
sample, whereas each column encoding information for a 
specific class.31–33 

One common strategy to perform PLS models is by using a 
variation of the NIPALS algorithm, in such a way that X and Y 
matrices are decomposed as shown in Eq. (2) and (3) by 
maximizing the correlation between the scores T and U:

     (2)𝐗 = 𝐓𝐏𝐓 + 𝐄

     (3)𝐘 = 𝐔𝐐𝐓 + 𝐅

where T and U are the score matrices, PT and QT are the loadings 
matrices, and E and F are residual matrices. 

Class assignment of unknown samples is derived from the Y 
model estimation (Y ̂) for each pixel and class using the model's 
regression coefficient (b) expressed in Eq. (4):

    (4)𝒀 = 𝑻𝑸𝑻 + 𝑮 = 𝑿𝑾(𝑷𝑻𝑾) ―𝟏𝑸𝑻 +𝑮 = 𝑿𝒃 + 𝑮

where W is the weight matrix calculated for each LV and it 
takes account the contribution of the original variables to 
explain the Y matrix; G is the residual matrix. 

 The PLS-DA model estimates are then used to calculate the 
probability of a sample belonging to a class. As a discriminant 
method, PLS is univocal, and the samples have to be assigned 
to only one class using the highest probability as a classification 
rule. This limits the approach to having to assign each sample 
to one of the existing classes in the model.34 In the case of 
plastic polymers, a considerable variety of types may make this 
inappropriate or at least rely on comprehensive coverage of 
polymer types in the training data. Alternatively, PLS-DA 
applies a softer classification rule employing a threshold-based 
prediction on probability theory which can be adjusted as a 
classification rule instead. Therefore, the highest probability 
information is used and just the pixels above a determined value 
are assigned in the class estimated by the model. On the other 
hand, samples below a determined threshold will be unsigned, 
and if these samples belong to a plastic class not predefined in 
the model, it can be updated, and new plastic class included. 

Soft Independent Modeling of Class Analogies (SIMCA). 
SIMCA is focused on the analogies among samples from a 
specific class (category).32 SIMCA is a PCA-based model and 
it also follows the Eq. (1). Basically, a PCA model is developed 
for each nominated class and the boundaries that define the 
variability of the samples is determined within the multivariate 
space. In the end, SIMCA presents a collection of PCA models 
and the distance of unknown samples projected into the PCA 
models are the base for samples acceptance or rejection in a 
given category.32,35 As SIMCA models are developed 
individually for each class, and several criteria can be followed 
in order to assign the belonging of one sample to different 
classes. The most common criteria involve the calculation of 
the distance of the sample to the center of each SIMCA model 
developed (class modelling criteria). The distance is calculated 

using the Hotelling's T-Squared and Q residual obtained from 
PCA as described by Eq. (5):

     (5)𝑑𝑖,𝑔 = (𝑇2
𝑖,𝑔)2 +  (𝑄𝑖,𝑔)2

where ith indicates the samples and gth the class. In this manner, 
each sample can be individually tested to belong to one, to more 
than one or to zero classes, depending on a certain threshold 
imposed of the value d. This might promote that some 
overlapped boundaries can occur and samples can belong to 
different categories at the same time. On the other hand, 
SIMCA model can reject samples with long distance from the 
model center and, commonly, not classify them in one of the 
classes predefined.32,36,37 Finally, the calculated distance is used 
to estimate the probability of a sample belonging to the classes 
and a threshold is set as a classification rule.31,37 

One of the SIMCA model advantages is the natural 
recognition of samples statistically uncorrelated with any of the 
classes and, therefore, updates on the developed models can be 
performed. Besides, SIMCA models only observe information 
within the class, which makes it less sensitive to detect 
differences between classes.

MATERIAL AND METHODS
Samples. The polymers used in this study are highlighted in 

Table 1. They were obtained from an internal reference library 
at Aarhus University (Denmark) of various plastic materials 
with polymer composition identified from various sources such 
as food packaging and construction materials. This material is 
kept as a reference to aid with the identification of plastic taken 
from the environment. The listed plastics were selected based 
on the majority of the standard plastic that is produced 
throughout the world1. They are also currently recommended as 
the primary polymers to focus on in marine monitoring of 
microplastic in the Northeast Atlantic.38 

Table 1. List of polymers used in this work.
Plastic Material Abbreviation
Polyamide PA
Polycarbonate PC
Polyethylene PE
Polyethylene Terephthalate PET
Polymethyl Methacrylate PMMA
Polypropylene PP
Polystyrene PS
Polyurethane PU
Polyvinyl Chloride PVC

The polymers were ground into tiny pieces using sandpaper 
and density separated with ZnCl2 solution (1.6 g/cm3). Density 
separation is commonly used in microplastic research to 
separate the polymers from denser particles, making extraction 
and identification of the microplastic easier.17 In order to use the 
plastic size from 100 to 10 µm, each plastic was sieved using 
stainless steel filters and stored in an ethanol solution. An 
aliquot of each microplastic solution was pipetted on to an 
aluminum oxide filter (Anodisc 25 mm diameter, Whatman) 
with 0.2 µm of pore size and vacuum filtered. Therefore, one 
membrane for each plastic type was produced. These filters 
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were selected to allow a sample to be filtered through the 
membrane directly on it.14 

Two additional membranes with mixtures of all plastic types 
used in this work were produced to increase the complexity of 
the samples. One of these membranes was spiked with sediment 
from Roskilde fjord (Denmark) that was previously cleaned and 
fractioned to obtain a similar size fraction to the plastics. The 
spiked sediment was cleaned to represent remaining sediment 
particles that could be not removed on the sample purification.

A seabed sediment sample from Roskilde Fjord (Denmark) 
was also analyzed to evaluate the method in an environmental 
sample. The ~2 cm top surface layer of the sediment sample was 
collected using a Van Veen grab sampler, and 100 mg of 
sediment were analyzed. Sample purification was carried out 
according to Strand et al. 39, and the particles were fractioned 
similarly to the reference plastics in order to obtain the same 
size fraction. The analyzed muddy sediment sample was 
characterized by 36% dry weight content, 46% of fine silt and 
clay particles determined as the < 63 µm fraction and a content 
of total organic carbon (TOC) of 4%. 

All µ-FTIR measurements were collected directly on the 
membrane filter.

µ-FTIR images acquisition. µ-FTIR hyperspectral images 
were collected using a Cary 620 FTIR microscope coupled with 
a Cary 670 FTIR spectrometer from Agilent Technologies. The 
microscope is equipped with a Focal Plane Array (FPA) 
detector with 128 x 128 pixels. The analyses were carried out 
with a 15x Cassegrain objective in transmission mode with a 
pixel size of 5.5 µm. Samples were measured in the spectral 
range of 3,800 – 1,300 cm-1 with spectra resolution of 8 cm-1 
applying 32 scans. Clean membrane was used as background 
applying 128 scans throughout the spectral acquisition process.

For this instrument set up the final images were a square 
collection of 25 mosaic tiles (5 x 5 mosaic tiles). Therefore, 
each image was a square with 640 x 640 pixels and 650 
wavenumbers (409,600 pixels/spectra per sample). 

 Data analysis and software. Region of Interest (ROI) for 
each sample image was initially selected using PCA models to 
remove any pixels not related to the MP particles. The spatial 
pre-processing was made using the score frequency histogram 
obtained from PCA realized on the hyperspectral images.30 In 
sequence, the hyperspectral images (three-dimensional) were 
unfolded in the spatial direction to two-dimensional matrices 
and only the pixels retained in the ROI were used to build the 
multivariate classification models. 

Different pre-processing strategies were applied on the 
spectra to reduce any physical and instrumental artefacts such 
as noise and baseline offset that are not related to the chemical 
information of the polymers. Standard Normal Variate (SNV), 
Asymmetric Least Squares (AsLs), Savitzky-Golay 1st and 2nd 
derivative were all evaluated in this work.40–42 Normalization of 
the data was also investigated to remove the intensity variability 
in the spectra due to the different thickness of the plastic particle 
that modifies the light pathway. On the pre-processed data, 
discriminant analysis and class modeling techniques, PLS-DA 
and SIMCA, respectively, were developed to classify the 
different microplastic types. 

Pixels from each standard sample were partitioned into 
calibration and prediction subset containing randomly 600 
pixels and 400 pixels, respectively. The same calibration and 
prediction subset were used for PLS-DA and SIMCA models. 

Another measured mosaic for each plastic class and the samples 
with plastic mixtures were also used to test the performance of 
the models.

PLS-DA regression models were developed using the pre-
processed spectra. Random cross-validation was carried out to 
select the optimal number of latent variables (LV) in the 
regression models. The number of LVs was determined from 
the classification error. A dummy matrix was used as a response 
matrix to describe class membership. For SIMCA models, PCA 
was performed for each plastic class, and random cross-
validation was used to determine the optimal number of 
principal components (PCs). It is worth to mention that all data 
were mean-centered before both PLS-DA and SIMCA models 
development. 

The assessment of the classification models was done using 
the misclassification error, sensitivity and sensibility for cross-
validation and prediction steps. Sensitivity (Sn), also called 
True Positive Rates (Eq. 6), describes the fraction of the pixels 
from a category of interest that were correctly classified by the 
model. This measurement is used to estimate the probability of 
pixels that were genuinely belonging to the correct target 
category. On the other hand, Specificity (Sp), also called True 
Negative Rates (Eq. 7), describes the fraction of the pixels not 
coming from the category of interest that was rejected by the 
model and it estimates the probability of these pixels to be 
genuinely identified as aliens.35,43 Misclassification error is the 
proportion of samples that were incorrectly classified by the 
models, and it is described by Eq. (8).43  

               (6)𝑆n =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

          (7)𝑆p =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

      (8)𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠. 𝐸𝑟𝑟𝑜𝑟 =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

Where, TP and TN stand for true positive and true negative, 
respectively, accounting the number of pixels signed correctly 
as belonging (TP) or not (TN) for a specific class. On the other 
hand, FP and FN stands the false positive and false negative, 
respectively, accounting the number of pixels that were 
wrongly signed as belonging (FP) or not (FN) to a specific 
class.44 

Distribution maps for the external mosaics were obtained by 
refolding the predicted plastic class at each pixel of the 
hyperspectral image. For these external predicted mosaics, 
confusion matrix was used to evaluate the model performance 
encoding the classification rates per plastic category. Particle 
features such as the diameter were calculated using the rebuild 
images and the number of particles determined. 

All calculations were performed using Matlab software 
(Mathworks). PLS Toolbox (Eigenvector Research Inc.) was 
used for model development, Multivariate Image Analysis 
Toolbox (Eigenvector Research Inc.) for morphological 
analysis and HYPER-Tools45 (freely available in 
www.hypertools.org) for exploratory analysis. 

Figure S1 (Supporting information) shows a flowchart 
describing the data analysis strategy used in this work.

RESULTS AND DISCUSSION
Microplastic µ-FTIR spectra and exploratory analysis. 

Figure 1 shows the µ-FTIR spectra of all plastic types used in 
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this work and the corresponding data set used to develop the 
multivariate classification models. The spectral profile for each 
plastic type shows characteristic absorption bands with some 
differences among them. Although some spectral differences 
are appreciated, a high fraction of the spectral signal is 
overlapping in this spectral range.  These spectral differences 
are highlighted in the fingerprint region (> 2000 cm-1) due to 
the unique absorption bands for each compound. This region 
was not fully used in this work as the aluminum oxide filter was 
not suitably transparent over 1300 cm-1.14 The main 
characteristic organic bands for these polymers can be observed 
in Figure 1a such as the –C-H stretching which arises from 3100 
to 2800 cm-1 and around 1500 cm-1. The carbonyl peak 
presented in some plastic can be observed around 1700 cm-1. 
The broad bands noticed around 3300 cm-1 refers to the –NH 
stretching observed for PA and PU.14 

Figure 1b shows the spectra set used in this work to develop 
the multivariate classification models. In general, µ-FTIR 
hyperspectral images have some interferences as a consequence 
of the camera focus, instrumental and samples issues, as well as 
interference by absorption of atmospheric constituents such as 
the CO2. The latter absorbs infrared light from 2600 to 2000 cm-

1, and this region was therefore not included in the data analysis. 
The dataset was also influenced by baseline variation as a result 
of light scattering and partial light reflection due to plastic 
particle features. These plastic particles are heterogeneous in 
size, shape and thickness with rough surface causing variation 
in the spectra and their quality.46–48 These spectral interferences 
must be removed before any data analysis since it is not 
chemically related to the polymers. Thus, different pre-
processing strategies were evaluated to overcome these 
physical effects on spectral data quality before developing the 
classification models. 

Figure 1. (a) Pre-processed spectra (by AsLs) µ-FTIR spectra 
of the synthetic organic polymers and (b) the dataset used for 
PCA.

Exploratory analysis was initially performed on the data set 
using a PCA model to depict the variability in the dataset 
(Figure 2). The score plot (Figure 2a) revealed clear differences 

between the plastics with specific and distinct clustering for 
each plastic type. The PCA model in which the plastics are more 
clearly different was obtained using the 2nd derivative spectra 
with Savitzky-Golay filter applying 2nd order polynomial and 
15 window width. In addition, normalization (Inf-Norm) was 
applied to the data to deal with changes in the spectra intensity 
related to the optical pathway (plastic thickness). Based on 
these results, all the subsequent multivariate models were 
developed using this pre-processing. Figure 2b shows the PCA 
loadings indicating the main spectral regions used to describe 
the PCs. These results also demonstrated that the spectral region 
used in this work provided adequate information to differentiate 
the plastic types.

Multivariate Classification Models. The SIMCA model was 
applied to the data set to evaluate its performance to sort 
different plastic types. Table S1 summarizes the SIMCA model 
results presenting the statistic assessment of the model for 
calibration and prediction subset. SIMCA model was built 
using 3-6 PCs with cumulative explained variance of 75.37 ± 
12.03 %. In general, the SIMCA model had an excellent 
specificity (Sp ≅ 1) for all plastic types, and it demonstrates the 
model ability to identify the pixels that did not come from the 
interest category. The results also show the model ability to 
identify the plastic differences with low misclassification error 
(  1.5%). The average sensitivity was 0.85, which indicates the 
fraction of pixels that were correctly classified by the model. 
The remaining pixels were either unclassified or misclassified. 
As the model had an excellent specificity, these pixels were not 
categorized by the model with probability value below the 
acceptance threshold. 

These unsigned pixels typically had low quality spectra, and 
they are originated from areas of a particle that were poorly 
resolved due to an irregular surface or edge. It is important to 
note that it is preferential to have unsigned pixels rather than 
misclassifications to avoid false positive issues. The high 
similarity between the values obtained for calibration and 
prediction datasets indicate that the model is not under or over-
fitting.

Table S2 shows the confusion matrix for the SIMCA model 
derived from independent data for each plastic type. These 
results reiterate the findings based on the calibration and 
validation datasets. For all plastic types, most of the pixels were 
classified correctly. These images predictions did not show 
misclassification issues demonstrating the model ability to sort 
different plastic types and its ability to discriminate the classes 
studied.

Some particles from PVC samples were sorted as PC and PP 
due to sample contamination. These particles were not 
misclassified because their spectra were analyzed with a spectra 
library resulting in sample contamination. 

Figure 3 shows an example of the prediction image for PA 
and PU samples presented in Table S2 and demonstrates the 
issue with pixels with weak quality spectra. These samples 
should only contain PU and PA, respectively. The center of the 
particles was correctly classified, but towards the particle edges, 
the SIMCA model has problems with classification. The same 
issue was observed for all plastics. The unsigned pixels are 
typically at the particle edges, and this was explored more 
below. 

PLS-DA was also tested for microplastic classification, and 
Table S3 summarizes the model results applied for calibration 
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6

and prediction subset. The model had better sensitivity in 
comparison with the SIMCA model with an excellent true 
positive rate for all plastic types. This means that there is a high 
probability (>95%) of correct classification for every single 
pixel in its plastic category for PLS-DA model. The PLS-DA 
approach did not significantly differ from the SIMCA model 

concerning the ability to avoid false negative classifications, 
with specificity values also around one. However, the low 
misclassification rate (< 1% for all plastic types) demonstrates 
the ability of the PLS-DA model to encompass variability in 
spectral quality within the classes. 

Figure 2. (a) Score plot and (b) loadings obtained from a PCA model developed with all types of plastic.

Figure 3. Example of a small region the prediction image obtained from SIMCA (top row) and PLS-DA models (bottom row) for 
samples containing PU and PA only.

The superior sensitivity of the PLS-DA model can be 
explained by the nature of the model. PLS-DA models use the 
difference among the classes to determine the regression 
coefficient that will define the class features into the 
multivariate space. The PLS-DA regression coefficients 
account the spectral information which most describe the class 
variability and their difference from the other classes. The 
regression coefficients are orthogonal from each other, and 

unique information about the class is described. Therefore, the 
PLS-DA model can better recognize the minor spectroscopic 
changes caused by the particles features (roughness) and edge 
effects.

 Table S4 shows the confusion matrix for PLS-DA model 
performed with external sample images for each plastic type. 
The proportion of unassigned pixels for each plastic type (< 4%) 
is considerably lower than these obtained from the SIMCA 
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7

model (5-25%). Figure 3 shows the PLS-DA predicted image 
for PU and PA, as presented by the SIMCA model. An 
improvement on the particle prediction is observed for PLS-DA 
model mainly around the particle edges. This demonstrates the 
better PLS performance to compute the spectra variability 
within the particle for all plastics.

Figure 4 shows the mix samples prediction for both PLS and 
SIMCA models. Both classification methods predicted 
effectively the core of the particles with 60% and 7% of 
unsigned pixels for SIMCA and PLS-DA, respectively. 

Towards the particle edges, the SIMCA model had lower 
sensibility due to the spectra quality decay in this direction. The 
quality of the spectra for each pixel varies mainly for two 

reasons: (1) the features of the particles such as irregularity, 
roughness and shape; and (2) the particle thickness that usually 
changes over the particle length modifying the light pathway 
and, consequently, the spectra intensity and their quality.10,17,44 
Figure 5 shows the infrared spectra of a single PE particle and 
the variability in the spectra across the region covered by the 
particle. In general, the particle edges have poor spectra quality 
that makes these pixels classification more complex. An 
additional issue may arise from interference related to the 
background matrix (Anodisc), which influences the spectra on 
the particle edges. Although the pre-processing was carefully 
designed to remove these effects, it is clear that complete 
removal is not possible and this might influences pixel 
classification.44

Figure 4. Prediction image obtained for PLS-DA and SIMCA models applied to external Mix sample. Particle abundance numeration 
and size distribution are provided for the predicted image by PLS-DA model.
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Figure 5. PE single particle with selected pixels and their spectra. The observed spectra are pre-processed by AsLs to obtain a 
comprehensive observation of the vibration bands.

Particles size distribution was also calculated using the 
predicted image sample of the plastic mixture by the PLS-DA 
model (Figure 4). The diameter of the particles was calculated 
in two different ways, size distribution with (1) and without (2) 
the unsigned pixels. The differences between these two 
strategies allow the global estimation of particles fraction that 
can be reliably estimated. Plastic particles over 100 µm refer to 
clustering that is a common issue in microplastic determination 
and it compromises the size distribution estimation. Plastic 
grouping can be avoided using surfactants such as sodium 
dodecyl sulfate (SDS).17  As stated previously, the small 
particles can suffer from the background removal step and it 
mainly happened with the particles bellow 20 µm due to the 
spectra quality in these particles sizes. These small particles are 
close to the diffraction limit of IR spectroscopy (  10 µm) 
providing poor spectra and low signal-to-noise ration that 
underestimate the classification and diameter determination. 
10,49 The unsigned region also had some pixels classified by the 
model, and these pixels were counted as new particles after the 
region removal. For that reason, the smallest size fraction 
significantly increased the rate. The other size fraction also has 
rates variation, but it is more related to the new particle category 
size when the unsigned pixels were removed. Therefore, the 
confidence range for size distribution was set up between 20 
and 100 µm in this work.
  Figure S2 shows the predicted mix plastic sample with spiked 
sediment classified with the PLS-DA model. The sediment was 
added on the sample to increase its complexity and evaluate the 
model performance. The sediment particles spiked in this 
sample have been removed together with the background 
because their spectra are basically offset and clearly different 
from the plastic spectra. This result is essential to reinforce the 
background removal since it reduces the size of the dataset and 
removes most of the interfering particles. In that way, mainly 
microplastic spectra are used for multivariate classification, and 
it also reduces false positives. This strategy is also supported by 
Wander et al. 23 that removed the membrane information to 
perform the microplastic data analysis in a smaller dataset. The 
predicted sample image presented 7% of unsigned pixels, and 
they were mainly pixels on the edge of the particles which is 
difficult to remove as discussed previously. The size 
distribution was split by plastic category for individual class 
distribution. 

Evaluation of an Environmental Sample. The approach was 
also evaluated in a seabed sediment sample (Roskilde Fjord, 
Denmark) to investigate the model efficiency in an 
environmental sampling. Figure 6 shows the sediment sample 
predicted with the PLS-DA model. It worth noting that this 
approach can be applied in any environmental sample as long 
as the sample is purified to remove the majority of the 
interfering particles such as clay, silt and organic matter. This 
Roskilde Fjord sediment had a high content of organic matter 
and silt. Although the sediment sample was purified and most 
of the interfering particles were removed, a significant amount 
of fine silt particles persisted and were found on the membrane.

The majority of the pixels containing interfering particles 
were removed together with the background information since 
their signal is basically offset. The multivariate model predicted 
PE, PET, PA and PP particles on the sediment sample in the 
analyzed area (12 mm2), where from a content for microplastic 
particles in the sample, 2430 particles per kg of sediment in dry 
weight could be determined. Figure 6 also shows some few 
particles not recognized by the model (unsigned), 
demonstrating its ability to sort particles that are not one of the 
category classes and were not removed previously together with 
the background. The model ability to identify unknown 
particles were also performed using a produced wood sample, 
and all particles were unsigned by the model (Figure S3). The 
unsigned particles can be investigated, and new classes can be 
added on the model in an ever-expanding way. It is also 
important to remark the importance of the appropriate data 
pretreatment for correct assignment of microplastic and to avoid 
false positives results. 50 For instance, the differentiation of 
animal fur and PA can be obtained with the derivative spectra 
such as the one applied in this work.  

The approach provides a wealth of information that can be 
useful for characterizing and tracing different sources of 
microplastics in environmental samples. Having individual size 
spectra of different polymer types, which can be generated in a 
few minutes, can potentially transform how microplastics 
samples are processed in the future. Additionally, the approach 
removes user bias and offers a method which can be 
standardized across laboratories. Furthermore, this strategy 
offers also agility in microplastic analysis with results delivered 
within few minutes improving time of monitoring programs 
with a fully automated approach. This proposed strategy is 
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faster than library search since a great part of the spectra 
information is removed, and the model regression coefficients 
(one for each category class) are used for microplastic 
classification. For instance, both prediction and size distribution 

analyses in this work images (12 mm2) were performed in 
around 10-15 minutes using a regular notebook. The analysis 
can be easily expanded to include the whole filter area, 
requiring more instrument and computational time.

 

Figure 6. Prediction of sediment sample (Roskilde Fjord, DK) for PLS-DA model.

CONCLUSION 
This work derived a machine learning approach for using µ-

FTIR hyperspectral images to quantify and characterize 
microplastic particles. The performance of PLS-DA and 
SIMCA models were compared on a range of conventional 
polymers. PLS-DA model performance was superior providing 
more specific and sensible model for all plastic classes. A mixed 
plastic sample could be classified with a high degree of 
precision and was capable of taking into account the effects of 
deteriorating spectral quality at particle edges. The SIMCA 
model had difficulties encompassing these artefacts. The 
derived method also provided particle analysis describing the 
number of particles and some features such as the diameter for 
each polymer type. These results demonstrate an approach to 
fully harness the potential of µ-FTIR hyperspectral for 
quantifying and qualifying microplastics. The proposed 
strategy demonstrated efficiency in a sediment sample, the 
developed model is equally applicable for different 
environmental samples as long as the samples are purified 
previously the spectroscopy analysis.  Lastly, the proposed 
method also provided benefits for method standardization 
sorting the microplastic particles more automated using 
optimized spectra to extract the most information from the data.
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