
Appendices

1 Table of the notations
λ cladogenetic (speciation) rate
µ extinction rate
ψ fossil find rate
θ (λ, µ, ψ), the vector of parameters
ρ sampling rate of extant taxa

α, β and ω 3 quantities depending on the rates convenient for expressing for-
mula

Pθ(n, t)
probability of ending with n lineages at time t by starting with a
single lineage at time 0 and without fossil meanwhile

Po,θ(t) probability for a lineage present a time 0 to be observable at t
Pτ (S | n) probability of the tree topology S conditioned on having n leaves

Px,θ(k + 1, t, t′)
probability density of a fossil find at t′ on a lineage, in addition
to k other lineages observable at time t′ by starting with single
lineage at t and without any other fossils meanwhile

Py,θ(k, t, t
′)

probability of ending with k lineages observable at t′ by starting
from a single lineage at t and without fossil meanwhile

Pa,θ(E) (resp. Pb,θ(E), Pc,θ(E)) probability (density) of the pattern E of type a (resp. b, c)

2 Probability of a tree topology

Number of birth rankings consistent with a tree topology
We are interested here in tree topologies (i.e. trees without time information) resulting from realiza-

tions of general birth and death processes, in which no deaths occur, i.e. the process is not necessarily
a pure-birth process but we consider only realizations in which only births occur. Most of the ideas of
this section are close to those developed in Ford et al. (2009).

To keep things as general as possible, we define a (pure-birth) realization of n lineages with birth
times t1 < t2 < . . . < tn−1 in the following way. The process starts with a single lineage at a time t0 < t1.
At time ti, a lineage is picked among the lineages alive to give birth to a new lineage. Each lineage is
associated to a different label in an arbitrary way (i.e. not depending on its birth date, its parenthood
etc.). Remark that, since by convention, we consider only realizations without death, all the lineages
live until the end of the process. In particular, a lineage is still alive after having given birth to a new
one. The natural (and usual) way to associate a tree topology with a realization is as follows:

• the internal nodes and the leaves of the tree are in one-to-one correspondence with the birth events
and the lineages of the realization, respectively;

• the direct ancestor of the leaf associated with the lineage x is the node corresponding to the last
birth event involving x, which may be either its own birth, or the last time it gave birth to another
lineage;

• the direct ancestor of the internal node associated with the birth of the lineage x is the node
corresponding to the last event before the birth of x that involves the parent of x.

By construction, the trees resulting from realizations are rooted, binary and (leaf) labeled (labels of
leaves are those of the lineages).

The scenario of a realization is its sequence of birth events ordered following their occurrence times.
The ith event of a scenario E is noted Ei and is of the form “lineage x is borne from lineage y”, x and
y being referred to as the child and the parent lineages of Ei, respectively. A given scenario is valid if
there exists a realization from which it arises. Basically a scenario is valid if and only if all its lineages
but the starting one are the child lineages of the earliest event involving them.

Let us point out a major conceptual difference between species as we conceptualize them here and
lineages as actors of the (modeled) diversification process. From the phylogenetic perspective, each branch
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Figure 1: The two possible scenarios leading to a tree with two leaves. Note that this scenario involves
two lineages, but three species as we conceptualize them here (the unlabeled species corresponds with
the part of lineage that includes the stem of x and y under both scenarios).

of the tree is associated to different species and a speciation event corresponds to the pseudo-extinction
of the ancestral species that gives birth to two new species. By contrast, birth and death processes model
diversification and not evolution, in the sense that they do not take into account genotypic or phenotypic
changes, and more importantly, no pseudo-extinction is involved in this diversification process, given that
a lineage is considered to continue after it gives rise to another lineage (Fig. 1). Thus, the delimitation of
species differs from that of lineages in this framework. Birth and death processes thus deal with lineages
rather than with species. This explains why several evolutionary scenarios may lead to a same tree. For
instance, a tree made of only two lineages x and y may result from both the scenarios “y was borne from
x” (Fig. 1-left) or “x was borne from y” (Fig. 1-right). Conversely, the scenario of a realization fully
determines its tree in the following way. If a tree topology S and a scenario E both result from a same
realization, the internal nodes and the leaves of S are in one-to-one correspondence with the events and
the lineages of E respectively. The direct ancestor of the leaf associated with the lineage x is the internal
node corresponding to the event with the greatest rank in E involving x, while the direct ancestor of the
node associated with the event Ei is the node corresponding to the event with the greatest rank strictly
smaller than i which involves the parent lineage of Ei.

Let r denote the birth ranking of the lineages of a realization (i.e. r is the vector in which the ith entry
ri contains the ith oldest lineage). A scenario E perfectly determines the birth ranking of its lineages:
the starting lineage has rank 1 while the ranks of the other ones are obtained by adding 1 to the ranks
of their birth events in E.

Remark 1. If a tree topology and a scenario come from a same realization, then the node n associated
with the event “x is borne from y” is such that y and x are respectively the oldest and the second oldest
lineages/leaves of the subtree rooted at n. It follows that the given of both the tree and the birth ranking
of the lineages resulting from a realization is sufficient to reconstruct its scenario.

In short, the scenario of a realization fully determines both its tree topology and the birth ranking
of its lineages, while the given of both the tree topology and the ranking of a realization determines
its scenario. A tree and a birth ranking are consistent with one another if there exists a valid scenario
corresponding to both of them.

With Remark 1, the number of scenarios leading to a given tree S is equal to the number RT of birth
rankings consistent with S. This number depends on the tree considered. It may actually differ between
two trees with the same number of leaves.

Lemma 1. Let S be a rooted binary labeled tree topology, and Sl and Sr be the two subtree topologies
rooted at the children of its root. A birth ranking r of the lineages of S is consistent with S if and only
if:

1. the two oldest lineages of S are the oldest lineage of Sl and of Sr,

2. r(l), the restriction of r to the lineages of Sl, is consistent with Sl,

3. r(r), the restriction of r to the lineages of Sr, is consistent with Sr.

Proof. Let us first assume that r is consistent with S. There exists a scenario E leading to S in which
the ith event is the birth of the lineage of rank (i + 1). In particular, its first event is the birth of
the second oldest lineage of S (the oldest one starts the process). The first event corresponds to the
root node of S, which thus involves the two oldest lineages and splits S into the subtree containing the
second oldest lineage and all its descendants and the subtree containing the oldest lineage and all its
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descendants except that of the second oldest one and the second oldest one itself. It follows that the
two oldest lineages of S are the oldest lineage of Sl and the oldest one of Sr. Let E(l) be the scenario
obtained from E by discarding its first event and all the events not involving a lineage of Sl. Basically
the tree Sl follows the sequence of events of E(l) and the corresponding birth ranking is the restriction
of r to the lineages of Sl. The same holds for Sr.

Reciprocally, let r(l) and r(r), two birth rankings consistent with Sl and Sr respectively and r be
obtained by merging r(l) and r(r) in such a way that the two first lineages of r are chosen among r

(l)
1

and r
(r)
1 . There exist two scenarios E(l) and E(r) leading to the pair (r(l),Sl) and the pair (r(r),Sr)

respectively. Let now E be the scenario where the first event is “r2 borne from r1” and, for all i > 1,
the event Ei is the birth event of the lineage ri+1, which belongs either to E(l) or to E(r). Since the
scenarios E(l) and E(r) are valid, E is valid and determines both the tree S and the birth ranking r.

Theorem 1. The number of birth rankings consistent with a rooted binary labeled tree topology S is

RS = RSlRSr2

(
LSl + LSr − 2

LSl − 1

)
where Sl, Sr ,LSl and LSr are the two subtree topologies rooted at the children of the root of S and

their numbers of leaves/lineages respectively.

Proof. From Lemma 1, there are as many rankings consistent with S as ways of merging a ranking of Sl
with one of Sr, by taking the two first lineages among r

(l)
1 and r

(r)
1 . There are:

• RSl rankings consistent with Sl,

• RSr rankings consistent with Sr,

• 2 ways of setting the two first lineages of a ranking of S among r
(l)
1 and r

(r)
1 ,

•
( LSl−1
LSl+LSr−2

)
ways of merging the lineages of r(l) and r(r) except for the two oldest ones (such a

merging in fully determined by the ranks occupied by the lineages of r(l)).

All these possibilities may be combined independently to give a ranking consistent with S.

Since the number of rankings consistent with the tree made of a single lineage is 1, Theorem 1 provides
a recursive way to compute RS for any tree topology S.

Probability of a tree topology given its number of leaves
Since the labeling of the leaves/lineages is arbitrary (i.e. depends neither on the tree topology nor

on their birth ranks), the following remark follows by symmetry.

Remark 2. In a realization with n lineages arbitrarily labeled, all the birth rankings of the (labeled)
lineages have equal probability. Since there are n! possible rankings, this probability is 1

n! .

Until here, we made no assumptions about the realizations or about the processes leading to tree
topologies. From now on, we consider only tree topologies arising from pure-birth realizations (i.e.
realizations of general birth and death processes in which no death occurs). Moreover, we focus on
a large class of processes, which contains the usual diversification models. A process is said lineage-
homogeneous if, at each event time, all the lineages give birth at a same rate. Such models are called
ERM models in (Ford et al., 2009).

Lemma 2. Being given the birth ranking of a pure-birth realization of a lineage-homogeneous process,
all the tree topologies have probability 1

(n−1)! .

Proof. Since the realization contains no death and the process is lineage-homogeneous, the ith lineage is
borne from any of the (i− 1) lineages alive at its birth date with equal probability 1

i−1 , independently of
the other events. It follows that, being given the birth ranking, the joint probability of the parenthood
of all the lineages is 1

(n−1)! .
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Theorem 2. A tree topology S resulting from a pure-birth realization of a lineage-homogeneous process
has probability

Pτ (S | LS) =
RS

(LS − 1)!LS !

conditioned on having LS leaves.

Proof. From Remark 2 and Lemma 2, the joint probability of a pair tree/ranking is 1
(n−1)!n! . To obtain

the probability of a tree S with n leaves, we just have to sum these joint probabilities over all the rankings
consistent with S, which gives us the result.

3 Complexity index of a tree
The complexity of Algorithm 1 relies on the number of possible before/after assignments of the basic

trees encountered during its execution (see the proof of Theorem 1). Let us put AB for the number of
before/after assignments of a basic tree B with regard to a time t between those of the origin and of the
oldest leaf of B (i.e. any internal node of B, including its root, corresponds to a divergence date that is
possibly anterior or posterior to t). Let Bl and Br be the subtrees pending to the children of the root of
B. Any before/after assignment of B in which the root is set to “before” (time t), is obtained in a unique
way by combining an assignment of Bl with one of Br. There is only one possible assignment of B in
which the root is set to “after” (time t). It follows that we have

AB = ABl
ABr

+ 1

The number of before/after assignments of a basic tree is recursively computed (the tree made of a
single leaf has a unique before/after assignment).

The complexity index of a tree T is mainly obtained by summing the number of possible before/after
assignments of all the basic trees that have to be considered to compute the likelihood of T . For technical
reasons, we actually consider an additional term that is very similar to the number of assignments.
Though it can certainly be improved, the complexity index predicts quite well the duration of a likelihood
computation (see the help of Diversification, https://github.com/gilles-didier/Diversification).

4 Sampling extant taxa
Following Stadler (2010), we assume here that each extant taxon is independently discovered (or

sampled) in the present with a certain probability ρ. Let us define Pρ,θ(n, t) as the probability of
sampling n > 0 lineages at time t with the probability ρ, by starting from a single lineage at time 0
without any fossils dated between 0 and t, under the rates θ = (λ, µ, ψ). The probabilities Pρ,θ(0, t) and
Pρ,θ(1, t) were already provided in Stadler (2010).

For all positive integers n, we have

Pρ,θ(n, t) =

∞∑
j=0

(
j + n

n

)
ρn (1− ρ)j Pθ(j + n, t)

=
(β − α)2eωtρn (1− eωt)

n−1

(β − αeωt − (1− ρ)(1− eωt))
n+1

The probability of sampling no lineage at t, still by starting from a single lineage at time 0 without
any fossils dated between 0 and t, is

Pρ,θ(0, t) = Pθ(0, t) +

∞∑
j=1

(1− ρ)j Pθ(j, t)

=
αβ(1− eωt) + (1− ρ)(βeωt − α)
β − αeωt − (1− ρ)(1− eωt)
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The probabilities Pρ,θ(0, t) and Pρ,θ(1, t) are equal to p0(t) and p1(t) of Theorem 3.1 in Stadler (2010),
which refer to the same probabilities but which are computed and expressed in a slightly different way.

The likelihood of a reconstructed tree with fossils and extant taxa sampled with the probability ρ
may be computed in a similar way as under the assumption that all the extant taxa are known. One
just needs to replace the probabilities of the form Pθ(n, T − t) by Pρ,θ(n, T − t) in the calculus. Further
tests have to be carried out to check to what extent the sampling probability influences the estimation
of the diversification and fossilization rates and in what extent it can be estimated itself.

5 Proportion of lineages unobservable from the fossil record
Let us put P�,θ for the probability for a lineage to leave no fossil, neither of itself, nor of its descendant

in the hypothetical situation where the diversification process continues indefinitely. Assuming this
hypothetical situation is essentially the same as considering that we are dealing with a lineage present
at a time arbitrarily far from the present. We have that:

P�,θ =
µ

λ+ µ+ ψ
+

λ

λ+ µ+ ψ
P2
�,θ

The first term of the right-hand side of the expression just above is the probability that the first event
occurring on the lineage after its birth is an extinction. The second one is the probability that this event
is a speciation giving birth to two lineages that left no fossils.

The preceding equation can be written as

λP2
�,θ − (λ+ µ+ ψ)P�,θ + µ = 0

and was already considered in the section Probability of ending with n lineages without observing
fossils – Type a and Didier et al. (2012).

If λ = 0, the unique solution of the equation just above is P�,θ = µ
µ+ψ , that is the probability that the

first event occurring on the lineage is an extinction (there cannot be any speciation/birth since λ = 0).
Otherwise, its roots are

α =
λ+ µ+ ψ −

√
(λ+ µ+ ψ)2 − 4λµ

2λ
and β =

λ+ µ+ ψ +
√
(λ+ µ+ ψ)2 − 4λµ

2λ

By noting that

(λ+ µ+ ψ)2 − 4λµ = (λ− µ+ ψ)2 + 4µψ = (−λ+ µ+ ψ)2 + 4λψ,

it comes that α and β are real numbers with β ≥ 1 and 0 ≤ α ≤ 1.
The case where ψ = 0 is plain: we then have P�,θ = 1 (there is no fossil). If ψ > 0, then β > 1 and we

have necessarily P�,θ = α, which gives us a natural interpretation of the coefficient α. The probability
P�,θ can be itself interpreted as the asymptotical proportion of lineages unobservable from the fossil
record. It does not take into account the lineages observable from the present time only.

The probability P�,θ is close to the complementary of the probability Ps of Bapst (2013). The
probability Ps is defined as the probability of sampling an extinct clade of unknown size, also under the
assumption that the diversification process continues indefinitely. The only difference is that P�,θ stands
for the probability of not sampling a clade extinct or not.

Remark that P�,θ is not the complementary probability for species to leave fossils (i.e. before clado-
genesis or extinction). This last probability, again under the assumption that the diversification process
does not end, is ψ

λ+µ+ψ .
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