Environmental quenching and galaxy structural evolution in the first cluster environments

Veronica Strazzullo (INAF)

with M. Pannella, J. Mohr, A. Saro, M. Ashby & SPT-clusters WG

DEGLI STUDI DI TRIESTE

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

GCF II, June 17, 2021

Two main questions in the next 12 minutes on galaxies in z~1.5 clusters: 1. Is star formation suppressed in z~1.5 cluster environments?

Two main questions in the next 12 minutes on galaxies in z~1.5 clusters: 1. Is star formation suppressed in z~1.5 cluster environments?

<sSFR>

0.0

projected clustercentric radius (Mpc)

1.0

0.5

11 < z < 1.37

2.0

1.37 < z < 1.75 •

1.5

... from SPT2349-56 to Coma ...

... via which path?

Two main questions in the next 12 minutes on galaxies in z~1.5 clusters: 1. Is star formation suppressed in z~1.5 cluster environments?

Two main questions in the next 12 minutes on galaxies in z~1.5 clusters: 2. Are there environmental signatures on structural properties?

a morphology-density relation is in place by at least z~1 (some more mixed results going to higher-z, e.g. Sazonova+20)

Two main questions in the next 12 minutes on galaxies in $z \sim 1.5$ clusters: 2. Are there environmental signatures on structural properties?

possibly lower (wrt field) disk-dominated fraction in cluster core?

... harder to identify more specific "signatures" on matched populations

possibly higher (wrt field) disk-dominated

Two main questions in the next 12 minutes on galaxies in $z \sim 1.5$ clusters: 2. Are there environmental signatures on structural properties?

Which clusters

Which clusters

Galaxy populations in cluster central regions (r<0.7 r₅₀₀)

- a massive red sequence typically dominates the bright population
- a clear excess of red sources compared to the field color distribution

es tho

Galaxy populations in cluster central regions (r<0.7 r₅₀₀)

cluster (r<0.45 r₅₀₀) cluster (r<0.7 r₅₀₀) field (at the cluster redshift)

The environmental quenching efficiency at high stellar masses, in the central regions of these massive clusters, is typically ≥50%

log(M/M_o)>10.85

1.0 0.8 0.6 0.4 0.2 0.0 -0.2-0.4

efficiency

quenching

vironmental

en

1.5<nsersic<**2.5**

high quiescent fraction

high quiescent fraction

field (van der Wel+14)

(scaled to z=1.5)

n>2.5

Mass-size relation of early-type cluster galaxies

adapted from Matharu+2019

In short...