Exploring the environments of SMGs using narrowband observations

Thomas Cornish (He/Him) Lancaster University Supervisor: Dr Julie Wardlow

Motivation

- Submillimetre galaxies (SMGs):
 - dusty, star-forming galaxies at high-z
 - extremely high SFRs
 - extremely IR-luminous.
- Studying their environments can provide insight into their evolution.
- This study: in what environments do SMGs typically reside?

An example SMG SED.

Aravena+2020

SMGs: Early-Type Galaxy Progenitors?

- Local early-type galaxies are...
 - massive
 - thought to have formed most of their stellar content in short bursts before $z \sim 2$
 - typically found in galaxy clusters.

The galaxy cluster Abell 1689.

SMGs: Early-Type Galaxy Progenitors?

- SMGs are...
 - massive
 - undergoing intense bursts of star formation at a median redshift of $z \sim 2-2.5$
 - typically found in ??? environments.

False colour images of various SMGs.

Red: 870 μ m Green: I_{814} Blue: H_{160}

Hodge+2016

SMG Environments: What Do We Know?

- Clustering measurements suggest SMGs typically reside in overdense regions, but...
 - many of these are uncertain, being largely dependent on photo-zs
 - difficult to obtain uniform coverage e.g. with ALMA
 - provides a picture of the SMG population as a whole, rather than individual cases. (e.g. Hickox+2012, Wilkinson+2017)
- SMGs have been observed in protoclusters, but...
 - existing SMG samples are inherently biased towards overdense environments.

 $(e.g.\ Casey+2015,\ Oteo+2018)$

This Study

- ALESS: ALMA follow-up to the LABOCA ECDFS Submillimetre Survey (LESS)
 - produced a catalogue of 131 SMGs, many of which now have spec-zs.
- 6 ALESS SMGs were chosen for observing with VLT/HAWK-I based only on their redshifts
 - $H\alpha$ ([OIII]) line shifts into HAWK-I Br γ ٠ coverage at z = 2.3 (3.3).
- Only 3 were observed, in two $7.5' \times 7.5'$ pointings:

 - ALESS 005.1 (z = 3.303)
 ALESS 075.2 (z = 2.294) Pointing 1
 - ALESS 102.1 (z = 2.296). \rightarrow Pointing 2 •

The photometric filters used for this study.

HAWK-I Pointings

Pointing 1

Thomas Cornish

(degrees)

Dec.

Candidate NB Emitters: Colour-Magnitude Diagrams

Pointing 1

Pointing 2

Method: cf. e.g. Bunker+1995, Geach+2008, Sobral+2013.

Candidate NB Emitters: Redshifts

- So far, had only identified candidate line emitters in general
 - these could include several possible lines at various redshifts.
- Needed to identify any line emitters at the same redshifts as the SMGs
 - i.e. are they H α ([OIII]) emitters at z = 2.3(3.3)?
- Done by cross-matching our data with a reference catalogue which contains multiband photometry and photo-zs across the entire ECDFS.

(photo-zs: Simpson+2014)

Candidate NB Emitters: Redshifts

Pointing 1

$H\alpha$ candidate ≈ Unknown photo-z $H\alpha$ candidate Known photo-z Known photo-z [OIII] candidate • Unknown photo-z **££** [O11] [OII] Hβ $H\beta$ [OIII] [OIII] z_{phot} z_{phot} 4 $H\alpha + [NII]$ $H\alpha + [NII]$ He_I Hei [SIII] [SIII] Hei Hei Paβ •Pab $Pa\alpha$ Pao 25 20 10 25 10 10 150 10 1520 0 5 5 5 -5 Number Number Σ Σ

Thomas Cornish

Physics

Lancaster 🌌

University

$H\alpha$ (corrected for [NII])

$[OIII] (+ H\beta)$

Physics

Lancaster

H α (corrected for [NII])

$[OIII] (+ H\beta)$

Physics

Lancaster

$H\alpha$ (corrected for [NII])

$[OIII] (+ H\beta)$

Physics

Lancaster

Universit

$H\alpha$ (corrected for [NII])

 $[OIII] (+ H\beta)$

Physics

Lancaster

Universit

H α (corrected for [NII])

$[OIII] (+ H\beta)$

Physics

Lancaster 253

University

H α (corrected for [NII])

$[OIII] (+ H\beta)$

Physics

Lancaster 25

University

H α (corrected for [NII])

$[OIII] (+ H\beta)$

Physics

Lancaster

University

Conclusions

- We have conducted a narrowband study in search of overdensities of star-forming galaxies around three known SMGs at $z \sim 2.3$ and $z \sim 3.3$.
- Our results suggest a substantial overdensity around at least two of the SMGs => potential protoclusters.
- Further analysis required to determine if the other two SMGs reside in significant overdensities.

Thank you