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Using satellite-based maps, Ceccherini et al.1 report abruptly increasing harvested area estimates in 16 

several EU countries beginning in 2015. They identify Finland and Sweden as countries with the 17 

largest harvest increases and the biggest potential effect on the EU’s climate policy strategy. In an 18 

response to comments 2,3 regarding the original study, Ceccherini, et al. 4 reduce their estimates 19 

markedly but generally maintain their conclusion that harvested area increased abruptly. Using more 20 

than 120,000 field reference observations to analyze the satellite-based map employed by Ceccherini 21 

et al.1 we confirm the hypothesis by Palahí, et al. 2 that it is not harvested area  but the map’s ability 22 

to detect harvested areas that abruptly increases after 2015. While the abrupt detected increase in 23 

harvest is an artifact, Ceccherini et al.1 interpret this difference as an indicator of increasing intensity 24 

in forest management and harvesting practice. 25 

Ceccherini et al. 1 use satellite-based Global Forest Change (GFC) 5 data to estimate the yearly harvest 26 

area in each of 26 EU states over the period 2004 to 2018. They claim that  an increase of harvested 27 

areas will impede the EU’s forest-related climate-change mitigation strategy, triggering additional 28 

required efforts in other sectors to reach the EU climate neutrality target by 2050.  29 

In their response to comments, Ceccherini, et al. 4 carry out a stratified estimate of harvested area 30 

for the combined area of Finland and Sweden with more than 5,000 visually classified reference 31 

points based on manual interpretation, using high-resolution aerial images and Landsat data. They 32 

compare the time periods 2011-2015 and 2016-2018 to find a 35% increase in harvested area in the 33 

second period which is a considerable reduction compared to the original article, where a 54% and 34 

36% increase was reported for Finland and Sweden, respectively. Although this approach is more 35 

robust than the “pixel counting”2 of the original article, as can be seen below this is still a gross 36 

overestimation of the change in harvested area. The main issue is the use of Landsat to determine 37 

the timing of forest cover losses. Because Landsat became more sensitive in detecting forest cover 38 

loss over time, many losses that occurred in or before the first period are thus detected in the second 39 
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period. This causes errors in the reference data which propagate in the reported estimate. Moreover, 40 

Landsat provides the primary data input for GFC, which results in circular reasoning when using 41 

Landsat as reference data for GFC. In other words, Landsat cannot be used to validate a Landsat-42 

based product. 43 

Further, Ceccherini, et al.'s 4 argument that abrupt changes in harvested areas were not observed in 44 

all countries and therefore cannot be caused by data artifacts is inappropriate because the 45 

algorithms used to create the GFC map and even the underlying processed Landsat data are 46 

inherently non-linear5. Unexpected changes can therefore happen in some regions but not in others. 47 

Finally, Ceccherini, et al. 4 claim inconsistencies in GFC were unknown. Though inconsistencies in 48 

GFC’s time series have previously been reported 6,7, this may indeed not have be well-known. 49 

However, it is a well-established fact that Earth observation data and related products can be 50 

unreliable and inconsistent8,9. Important decisions should therefore not be based on “pixel counting” 51 

estimates. 52 

We employ more than 120,000 field observations from repeated measurements in 44,000 sample 53 

plots from the Finnish and Swedish national forest inventories (NFIs) as reference data in statistically 54 

rigorous estimators in order to analyze the accuracy of Ceccherini et al. 1 findings (see Supplement). 55 

We find that GFC’s ability to detect harvested areas and thinnings* abruptly increases after 2015 56 

(Figure 1). When the ability to detect harvest improves, the overall harvested area in GFC will 57 

increase, even without a real change in management activity. As a result, more harvested areas and 58 

thinnings were detected by GFC after 2015, and this explains why the “harvested area” reported by 59 

Ceccherini et al. 1 abruptly increases. In other words, the reported abrupt increase in harvest is to a 60 

large degree simply a technical artifact (bias) caused by the advancement of GFC over time. Their 61 

conclusions, however, are the product and direct consequence of an inconsistent time series and are 62 

thus both incorrect and misleading. 63 

Assuming the average proportion of correctly identified harvested areas before 2015 also applies 64 

after 2015, the GFC area after 2015 can be modeled without this increasing sensitivity. This indicates 65 

that the GFC recorded increase in “harvested area” of 54% and 36% in Finland and Sweden, reported 66 

by Ceccherini et al.,1 represents an overestimate of 188% and 851% compared to our reference data, 67 

respectively (Figure 2). Because this modelled area still includes commission error, thinnings and 68 

other harvests, additional calculations would be required to provide improved estimates of the 69 

actual harvested area change 6. We further highlight that Ceccherini et al.’s 4 more recent findings do 70 

not in any way alter or affect these basic, validated findings.  71 

In addition to generating harvested area estimates subject to systematic error, Ceccherini et al. 1 do 72 

not provide any estimates of uncertainty and further assume all the biomass in their mapped 73 

harvested areas was in fact removed. Given that a considerable share of the harvested areas in the 74 

period 2016-2018 are thinnings and not final harvests (Figure 2), the latter results in even larger 75 

errors with respect to C-losses. Ceccherini et al.1 likewise assume the biomass map they utilize is 76 

accurate and without uncertainty, which is unrealistic 10. We focus on the problems related to the 77 

harvested area estimate in Ceccherini et al.1 as this is the most fundamental issue and is adequate for 78 

illustrating the erroneous conclusions drawn by the authors. 79 

We acknowledge the strong desire for sound and independently verifiable monitoring strategies 80 

driven by their potential for supporting the promotion of forest-related climate benefit 11-13. Without 81 

 
*"Thinnings" are forest management activities where typically 20 – 40 % of growing stock is harvested to give 
more space to the remaining trees to grow before final felling. 
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this, much hesitation has accompanied interest in mobilizing forest resources behind the climate 82 

challenge. Earth observation remote sensing (RS) and related mapping efforts embody the promise 83 

of providing very important tools for monitoring land use change, tropical deforestation and forest 84 

restoration 5,14,15. As such, they likewise hold the promise of supporting efforts to better integrate 85 

forest resources into the framework of climate change mitigation strategies. 86 

RS products, however, can be used in ways that potentially result in estimates subject to severe 87 

systematic error as we have seen in this and other studies10. Because RS data measure reflections of 88 

electromagnetic waves (e.g., visual light in the case of optical satellites) rather than the direct object 89 

of interest such as forest cover loss and carbon stock, algorithmic models are required for 90 

interpreting these reflections. Models, however, are frequently imprecise tools16 and generally 91 

require reference data to correct their data output and thereby provide unbiased estimates 10,17. The 92 

compilation of RS data results in nice, colorful maps and scientific-looking figures further distract 93 

attention. The collection of the required reference data, however, is tedious, expensive and their 94 

enormous importance not well understood9. Combining the GFC map with adequate reference data 95 

into reliable estimators can prove very useful for estimating harvested area and related C-stock 96 

losses, as illustrated in various studies6,7,10,17,18. 97 

We certainly agree with the authors that one of the more important elements of the Paris 98 

Agreement is to; “achieve a balance between anthropogenic emissions by sources and removals by 99 

sinks of greenhouse gases in the second half of this century”19. Based on the data at hand, however, 100 

it would be erroneous to lay blame for the failure to achieve these goals at the feet of the forestry 101 

sector.  102 

We nonetheless remain hopeful future debate over the role of the European forest sector will remain 103 

rooted in more scientific foundations. Certainly, the use of large-scale open data in carbon 104 

monitoring and reporting, as Ceccherini et al.1 also propose, represents the next great trend and 105 

should generally be applauded. However, strong systematic errors in estimated results clearly need 106 

to be avoided. This demonstrates why work of this kind should always be accompanied by rigorous 107 

collection of field observations and appropriate statistical estimates. Future work should therefore 108 

continue in the direction of further combining the use of large-scale, field-based sampling methods 109 

with remote sensing data resources. 110 

 111 
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 112 

Figure 1: Proportion and 95% confidence interval of correctly detected areas by GFC given change 113 

cause as represented by NFI data. A) Finland; B) Sweden. 114 

 115 

 116 

 117 

 118 
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 119 

Figure 2: GFC harvested area estimate based on NFI plots with and without correction for an 120 

increase in GFC’s detection ability after 2015. The two top figures provide the uncorrected 121 

timeseries of GFC harvested area for A) Finland and B) Sweden along with their field-observed 122 

management outcomes (final fellings, other harvest, thinnings, no management). The area with final 123 

fellings is relatively stable while the area with detected thinnings increases considerably after 2015. 124 

The two bottom figures provide the timeseries of GFC harvested area corrected for GFC’s increased 125 

detection ability after 2015 for C) Finland and D) Sweden. For the period 2016-2018, the area is 126 

estimated assuming the correct detection proportion would have stayed the same as before. Based 127 

on these corrected area estimates, there is no abrupt increase in the harvested area after 2015. See 128 

spreadsheet in Supplement for standard errors of estimates. 129 

 130 

Supplementary material 131 

 132 

The Finnish NFI 133 

The Finnish NFI 20 is a systematic nation-wide cluster sampling survey composed of permanent and 134 

temporary clusters. In this study, only data from the permanent clusters were used. Since the 10th 135 

NFI (2004-2008), the inventory is continuous with a 5-year cycle such that 20% of the clusters are 136 

measured in each year. Finland is divided into six regions denoted as strata, with decreasing sampling 137 

intensity towards the north. In two of these strata, the partly autonomous Åland islands and the low-138 

productivity, northmost Lapland region, the continuous design is not applied and all plots are 139 

measured in a single field season. Because of this inconsistency compared to the vast majority of the 140 



6 
 

NFI data, these two strata were not included in this analysis. The distance between the permanent 141 

clusters ranges from 12 to 20 km. 142 

Each permanent cluster consists of 10 – 14 sample plots. Depending on the sampling stratum, a 143 

distance of 250 or 300 meters separates adjacent plots. Each sample plot position is recorded with a 144 

high-precision Global Navigation Satellite Systems (GNSS) device. Until 2013, the plot design was 145 

restricted angle count sampling (ACS) with a basal area factor (BAF) of 2 and maximum radius of 146 

12.52 m in southern Finland and a BAF of 1.5 and maximum radius 12.45 m in northern Finland. Since 147 

2014, tree-level measurements have been carried out on concentric circular plots with radii of 9.00 148 

and 5.56 m for trees with a diameter at breast height (dbh) ≥ 95 mm and ≥ 45 mm, respectively. 149 

Trees with a dbh < 45 mm are still sampled using ACS with a BAF of 1.5. As of 2019, the radius of the 150 

smaller circle was changed to 4.00 m. 151 

A large number of forest stand, site and tree variables are assessed on each plot. The tree level 152 

measurements are used to estimate stem volume and biomass. At re-inventory, trees are re-153 

measured and, if logged, harvested trees and time of logging are estimated and recorded. In this 154 

study, “logging-type” is defined as; 1) final felling consisting of clear cutting, cutting for natural 155 

regeneration and cutting before deforestation, 2) thinning (first thinning and later thinnings), and 3) 156 

other harvests (removal of seed trees, salvage cutting tree removal along ditches and other 157 

locations). Time of logging is defined by harvest season, not calendar years, and the harvest season 158 

starts on the 1st of June.  159 

For this study, the last calendar year of a harvest season determined the loss year and forest cover 160 

losses have been assessed since 2008 using 33,846 observations from 15,565 permanent sample 161 

plots visited from 2009 to 2019. The NFI data used represent a total land area including wetlands of 162 

27 Mha. 163 

 164 

The Swedish NFI 165 

The Swedish NFI 21 is a systematic nation-wide cluster sampling survey composed of permanent and 166 

temporary clusters. In this study, only data from the permanent clusters were used. The inventory is 167 

continuous with a 5-year cycle such that 20% of the clusters are measured in each year. Sweden is 168 

divided into five strata, with decreasing sampling intensity towards the north. The distance between 169 

clusters ranges from 11 to 26 km. 170 

Each permanent cluster consists of 4 – 8 sample plots. Depending on the sampling stratum, a 171 

distance of 300 to 1,200 meters separates adjacent plots. Each sample plot position is recorded with 172 

a hand-held GNSS device. A consistent plot design has been applied in the time period considered 173 

and tree-level measurements are carried out on concentric circular plots with radii of 10.0, 3.5 and 174 

1.0 m for measurements of trees with a dbh ≥ 100 mm, ≥ 40 mm and ≥ 0 mm dbh respectively. 175 

A large number of forest stand, site and tree variables are assessed on each plot. The tree level 176 

measurements are used to estimate stem volume and biomass. At re-inventory, trees are re-177 

measured and, if logged, volume loss, logging type and time of logging are estimated and recorded. 178 

In this study, “logging-type” is defined as 1) final felling consisting of clear cutting, cutting for natural 179 

regeneration and cutting before deforestation, 2) thinning (first thinning and later thinnings), or 3) 180 

other harvests (removal of seed trees, salvage cutting, other tree removal). Time of logging is defined 181 

by harvest seasons, not calendar years, where harvest season is defined as the time between the 182 

start of the vegetation period (between end of April and end of May, depending on region) in one 183 
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calendar year to the start of the vegetation period in the next calendar year. The first three harvest 184 

seasons before the measurement of the plot are determined using this method and prior harvests 185 

are grouped into one harvest class.  186 

For this study, the first calendar year of a harvest season determines the loss year and forest cover 187 

losses have been assessed since 2004 using 91,304 observations from 28,544 permanent sample 188 

plots visited from 2004 to 2019. The NFI data used represent all of Sweden; a total land area 189 

including wetlands of 45 Mha. 190 

 191 

GFC data and determination of the loss year 192 

We intersected the GFC map version 1.6 map used by Ceccherini et al. 1 with the center coordinates 193 

of the NFI plots. The GFC loss year, if available, was then attributed to the respective NFI period. 194 

Because the NFI-based loss year is estimated, we replaced the NFI loss year by the GFC loss year 195 

where both were observed for individual plots. We use the NFI plots to analyze which changes in the 196 

forest can be detected by GFC. In other words, we use the field observations as ground-truth to 197 

evaluate how well GFC captures harvests over time. 198 

 199 

Estimators 200 

The estimators and notation used here closely follow 17 but deviate in important ways when it comes 201 

to the application. The estimators are repeated here for completeness and with minor adjustments 202 

for this context.  203 

The estimates utilizing only NFI data are based on the basic expansion (BE) estimator i.e., the sum of 204 

total estimates within each NFI stratum (region) 205 

t̂τ =∑t̂h
h

 (1) 

where t represents the total of a variable of interest, the “^” identifies this as an estimate of a 206 

population parameter and h indexes the strata. Uncertainty can be estimated by the variance 207 

estimator 208 

                                                V̂(t̂τ) = ∑ �̂�(t̂h)h  (2) 

and the standard error SE(⋅) = √�̂�(⋅). Estimates in the figures are accompanied by a 95% confidence 209 

interval (CI) calculated as 𝐶𝐼 = �̂� ± 2SE(⋅). 210 

The total within a stratum is estimated using nh clusters indexed by i within the sample of clusters sh 211 

located within the stratum. The design of the NFI clusters is fixed resulting in single-stage cluster 212 

sampling. To simplify the notation and improve readability, we drop the subscript h indexing the 213 

strata using the estimators in this section  214 

 215 

                                                  �̂�h = �̂� = λ
∑ 𝑚𝑖𝑦𝑖𝑖∈s

∑ 𝑚𝑖𝑖∈s
 (3) 

where λ is the area of the stratum and 𝑦𝑖  is the mean over the variable of interest observed on 𝑚𝑖 216 

plots of the i-th NFI cluster. To estimate the population parameter of interest for a certain domain 217 
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such as the area of final felling in a certain year, a domain indicator variable 𝐼𝑑 is used. This domain 218 

indicator is 1 if the plot belongs to the domain of interest and 0 otherwise such that 219 

𝑦𝑖 =
∑ 𝐼𝑑𝑦𝑖𝑗
𝑚𝑖
𝑗

𝑚𝑖
 (4) 

where 𝑦𝑖𝑗  is the observed value of the variable of interest on the j-th plot of the i-th cluster 22, p. 65. In 220 

the case of area estimation, 𝑦𝑖𝑗  is an n-vector of ones. (In the case where other variables would be of 221 

interest such as carbon stocks, 𝑦𝑖𝑗  is the observed carbon stock on the plot scaled to per-hectare 222 

values.) The number of plots 𝑚𝑖 is typically fixed within a stratum but can vary due to the irregular 223 

shape of the stratum. In other words, 𝑚𝑖 is the number of plots on land which usually is constant but 224 

can vary for clusters located close to the coast or along stratum borders. 225 

To develop the variance estimator of the total, it is convenient to write the total estimator as 226 

�̂� = λŶ = λ
∑ 𝑚𝑖𝑦𝑖𝑖∈s

∑ 𝑚𝑖𝑖∈s
 (5) 

where �̂� is the mean over all plots irrespective of the cluster structure 22, p. 66. This is the ratio of two 227 

random variables because 𝑚𝑖 is not fixed. Therefore, variance is estimated as 228 

V̂(Ŷ) =
1

𝑛(𝑛 − 1)
∑(

mi

m̅
)
2

(𝑦𝑖 − �̂�)
2

𝑖∈𝑠

 (6) 

where 𝑛 is the number of observations (clusters), �̅� =
1

𝑛
∑ mi𝑖∈𝑠  is the average number of plots per 229 

cluster 22, p. 68. The variance of the total is then estimated by multiplying the squared area of the 230 

stratum with the variance estimate of the mean 231 

                                                   V̂(t̂) = λ2�̂�(Ŷ). (7) 

We assume simple random sampling and accept that the variance estimates are likely conservative 232 

due to the systematic distribution of the clusters in the NFIs. Other options are possible 23 but will not 233 

generally change our case or conclusions. 234 

 235 

Application of the estimators 236 

The loss year determined by GFC if available or otherwise determined by the field crews, was the 237 

primary domain of interest (d). All sample plots that covered a loss year were used for estimating the 238 

variables of interest. For example, for estimates of the domain of interest “final felling area for the 239 

loss year 2018”, all sample plots measured in 2018 and 2019 were used and the indicator variable 240 

was set to 1 for sample plots with loss year 2018 and final felling was recorded based on the 241 

particular logging type. The indicator variable was set to 0 for all other plots. Because GFC 242 

information was not used in this estimate apart from adjustments to the felling year, we refer to this 243 

estimator as t̂τ
NFI. 244 

Correspondingly, for estimating the area of final felling detected by GFC, the indicator variable was 245 

set to 1 for sample plots with the GFC-based loss year 2018 and final felling recorded as the logging 246 

type. The indicator variable was set to 0 for all other plots. We refer to this estimator as t̂τ
GFC. 247 

The proportion of correctly detected final fellings (thinnings, or other harvests) by GFC is a ratio of 248 

the two estimates 22, p. 68 249 
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r̂τ = t̂τ
GFC/t̂τ

NFI (8) 

with variance 250 

V̂(�̂�τ) =
1

(t̂τ
NFI/λ)2

∑�̂�(�̂�h)(λℎ /λ)
2

h

 (9) 

where λℎ is the area of the h-th stratum and  251 

�̂�(�̂�h) =
1

𝑛ℎ(𝑛ℎ − 1)
∑ (

mi

m̅ℎ
)
2

(𝑦𝑖
𝐺𝐹𝐶 − r̂τ𝑦𝑖

𝑁𝐹𝐼)
2

𝑖∈𝑠ℎ

 (10) 

 252 

where 𝑦𝑖
𝐺𝐹𝐶 is 𝑦𝑖  [eq. (4)] resulting in t̂τ

GFC and 𝑦𝑖
𝑁𝐹𝐼 is 𝑦𝑖  [eq. (4)] resulting in t̂τ

NFI. 253 

 254 

While our approach is suitable for assessing the accuracy of GFC, it is not optimal for estimating 255 

actual harvested area for two reasons. First, the use of the GFC loss year can introduce bias in 256 

estimates if the GFC loss year has a systematic error. Second, official NFI statistics include 257 

measurements from both permanent and temporary sample plots and utilize stand level 258 

observations around the sample plots for area estimation rather than only plot level measurements. 259 

We have employed this approach because plot level measurements conceptually match the pixel-260 

level GFC data better than stand level observations. 261 
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