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Abstract The celebrated Kleene fixed point theorem is crucial in the mathemat-
ical modelling of recursive specifications in Denotational Semantics. In this paper
we discuss whether the hypothesis of the aforementioned result can be weakened.
An affirmative answer to the aforesaid inquiry is provided so that a characteriza-
tion of those properties that a self-mapping must satisfied in order to guarantee
that its set of fixed points is non-empty when no notion of completeness are as-
sumed to be satisfied by the partially ordered set. Moreover, the case in which
the partially ordered set is coming from a quasi-metric space is treated in depth.
Finally, an application of the exposed theory is obtained. Concretely, a mathe-
matical method to discuss the asymptotic complexity of those algorithms whose
running time of computing fulfils a recurrence equation is presented. The afore-
said method retrieves the fixed point based methods that appear in the literature
for asymptotic complexity analysis of algorithms and, in addition, preserves the
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1 Introduction

Fixed point theory in partially ordered sets plays a central role in many fields
of Computer Science. In particular, Kleene’s fixed point theorem is one of the
fundamental pillars of Denotational Semantics (see, for instance, [5,13,20]). The
aforesaid result allows to state the so-called Scott’s induction principle which mod-
els the meaning of recursive specifications in programming languages as the fixed
point of non-recursive monotone self-mappings defined in partially ordered sets,
in such a way that the aforesaid fixed point is the supremum of the sequence of
successive iterations of the non-recursive mapping acting on a distinguished ele-
ment of the model (see [8,19]). In the Scott’s approach, the non-recursive mapping
models the evolution of the program execution and the partial order encodes some
computational information notion so that each iteration of the mapping matches
up with an element of the mathematical model which is greater than (or equal to)
those that are associated to the preceding steps of the computational process. It is
assumed that in each step the computational process gives more information about
the meaning of the denotational specification than the preceding steps. Therefore,
the aforementioned fixed point encodes the total information about the meaning
provided by the elements of the increasing sequence of successive iterations and,
in addition, no more information can be extracted by the fixed point than that
provided by each element of such a sequence.

In order to guarantee the existence of fixed point of a monotone self-mapping,
Kleene’s fixed point theorem assumes conditions about the partially ordered set
(order-completeness) and the self-mapping (order-continuity). Such conditions have
a global character, i.e., they must be hold for every element of the partially ordered
set (the mathematical model). However, in real applications to Denotational Se-
mantics to check the aforesaid conditions for all elements of the partially ordered
set is unnecessary. In fact, the proof of Kleene’s fixed point theorem is based on the
construction of a sequence of iterations from a fixed element and, thus, the global
assumed conditions apply for warranting the desired conclusions. In the view of
the preceding remark, it seems natural to wonder whether the hypothesis in the
statement of Kleene’s fixed point theorem can be weakened in such a way that the
new ones are better suited to the demands of the real problems (with local more
than global character) and, at the same time, preserve the spirit of the original
Kleene’s fixed point theorem.

In this paper we provide an affirmative answer the posed question. Concretely,
we characterize those properties that a self-mapping must satisfied in order to en-
sure that its set of fixed points is non-empty when a general partially ordered set
is under consideration and no notion of order-completeness is assumed. Moreover,
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we derive a few characterization when, in addition, the partially ordered set is
chain complete and the self-mapping is order-continuous. Special interest is paid
to that case in which the partially ordered set is coming from a quasi-metric space.
Finally, the developed theory is applied to discuss the asymptotic complexity of
those algorithms whose running time of computing fulfills a recurrence equation
in such a way that, on the one hand, the fixed point based methods that appear in
the literature are retrieved as a particular case and, on the other hand, the orig-
inal Scott’s ideas are preserved providing a common framework for Denotational
Semantics and Asymptotic Complexity of algorithms.

2 The fixed point theorems

This section is devoted to discern which are the minimal conditions that allow to
guarantee the existence of fixed point for self-mapping defined in partially ordered
sets. In order to achieve our objective we recall a few pertinent notions.

Following [5], a partially ordered set is a pair (X,�) such that X is a nonempty
set and � is a binary relation on X which holds, for all x, y, z ∈ X:

(i) x � x
(ii) x � y and y � x⇒ x = y
(iii) x � y and y � z ⇒ x � z

(reflexivity),
(antisymmetry),
(transitivity).

If (X,�) is a partially ordered set and Y ⊆ X, then an upper bound for Y
in (X,�) is an element x ∈ X such that y � x for all y ∈ Y . An element z ∈ Y
is the minimum of Y in (X,�) provided that z � y for all y ∈ Y . Thus, the
supremum of Y in (X,�), if exists, is an element x? ∈ X which is an upper
bound for Y and, in addition, it is the minimum of the set (UB(Y ),�), where
UB(Y ) = {u ∈ X : u is an upper bound for Y }. Moreover, fixed x ∈ X, the sets
{y ∈ X : x � y} and {y ∈ X : y � x} will be denoted by ↑� x and ↓� x,
respectively.

According to [1], a partially ordered set (X,�) is said to be chain complete
provided that there exists the supremum of every increasing sequence. Of course,
a sequence (xn)n∈N? is said to be increasing whenever xn � xn+1 for all n ∈ N,
where N? denotes the set N∪{0} and N denotes the set of positive integer numbers.

After recalling the above notions on partially ordered sets, we present the well-
known Kleene’s fixed point theorem (see [1,5,13,20]). First, let us recall that a
mapping f : X → X is said to be �-continuous provided that the supremum
of the sequence (f(xn))n∈N? is f(x) for every increasing sequence (xn)n∈N whose
supremum in (X,�) exists and is x.

Theorem 1 Let (X,�) be a chain complete partially ordered set and let f : X →
X be a �-continuous mapping. Assume that there exist x0 ∈ X such that x0 �
f(x0).

Then, there exist a fixed point x? which is supremum of the sequence (fn(x0))n∈N?

and, thus, x? ∈↑� x0. Moreover, x? ∈↓� y0 provided that y0 ∈ X such that x0 � y0
and f(y0) � y0. Furthermore, x? is the minimum fixed point in ↑� x0.
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It is well known that each �-continuous mapping is monotone. So, Kleene’s
theorem cannot be applied, at least, to non-monotone mappings. However, the
next example shows that there are self-mappings on a chain complete partially
ordered sets, which fulfill the conclusions of the above theorem, but there are not
monotone (and consequently, there are not �-continuous).

Example 1 Consider the chain complete partially ordered set ([0, 1] ,≤), where ≤
stands for the usual partial order defined on [0, 1]. Define f : [0, 1]→ [0, 1] by

f(x) =


1− x

2 , if x ∈
[
0, 12

[
1+x
2 , if x ∈

[
1
2 , 1
] .

On the one hand, we can observe that f is not monotone on ([0, 1] ,≤), so it is
not ≤-continuous. Nevertheless, f has as a fixed point x = 1.

On the other hand, 1
2 ≤ f(1

2 ), since f(1
2 ) = 3

4 . Furthermore, a straightforward
computation shows that the sequence (fn(x0))n∈N? is increasing in ([0, 1],≤) and,
in addition, 1 is its supremum. The rest of conclusions of Theorem 1 are clearly
obtained due to the fact that 1 is the supremum of [0, 1].

The preceding example suggests the possibility of providing a more general
version of Kleene’s fixed point theorem where weakened conditions are assumed.
To this end, we introduce the following concept related to �-continuity.

Definition 1 Let (X,�) be a partially ordered set and let x0 ∈ X. A mapping
f : X → X will be said to be orbitally �-continuous at x0 provided that f
preserves the supremum of the sequence (fn(x0))n∈N? , i.e., f(x) is the supremum
of the sequence (fn+1(x0))n∈N? in (X,�), whenever x is the supremum of sequence
(fn(x0))n∈N? .

It is not hard to check that the self-mapping defined in Example 1 is orbitally
�-continuous at 1

2 .

Notice that, initially, there is not a direct relationship between the preceding
notion and the �-continuity. Clearly there are �-continuous self-mappings that
are not orbitally �-continuous such as the next example illustrates.

Example 2 Consider the partially ordered set ([0, 1] ,�1) where �1 is defined for
all x, y ∈ [0, 1] as follows:

x �1 y ⇔ x = y or y = 1.

Define f : [0, 1]→ [0, 1] by f(x) = x
2 . Clearly f is �1-continuous, since a sequence

(xn)n∈N? increasing in ([0, 1],�1) provided that xn = xn+1 for all n ∈ N?. How-
ever, f is not orbitally �1-continuous, for instance, at 1. Indeed, the sequence
(fn(1))n∈N? is given by

fn(1) =

{
1 if n = 0
1
2n if n ≥ 1

and, thus, it has 1 as the supremum in ([0, 1],�1). Nevertheless, the sequence
(fn+1(1))n∈N? is given by fn+1(1) = 1

2n+1 for all n ∈ N? and it has not f(1) as
the supremum in ([0, 1],�1).
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It must be pointed out that, given a partially ordered set (X,�) and x0 ∈ X,
every �-continuous self-mapping is orbitally �-continuous at x0 whenever x0 �
f(x0).

Then next example gives that there are orbitally �-continuous self-mappings
that are not �-continuous.

Example 3 Consider the partially ordered set (X,�X) such that X = [0, 1] ∪ {2}
and the partial order �X defined on X as follows:

x �X y ⇔


x, y ∈ [0, 1] and y ≤ x

or
x ∈]0, 1] and y = 2

.

Define the mapping f(x) = 0 for all x ∈ [0, 1] and f(2) = 2. It is clear that f is not
monotone, since 1 �X 2 but 0 = f(1) 6�X f(2) = 2. So, it is not �X -continuous.
It is clear that f is orbitally �X -continuous at x0 with x0 ∈ [0, 1].

Even more, orbitally �-continuity at any x0 does not imply that the sequence
(fn(x0))n∈N? is increasing, as shown in the following example.

Example 4 Consider the chain complete partially ordered set ([0, 1] ,≤) introduced
in Example 1. Define f : [0, 1] → [0, 1] by f(x) = x

2 . Take x0 = 1. Then, the
sequence (fn(1))n∈N? is decreasing, since fn(1) = 1

2n , for each n ∈ N. Further-
more, 1 is the supremum of (fn(1))n∈N? and 1

2 is the supremum of the sequence

(fn+1(1))n∈N? . Since f(1) = 1
2 we have that f is orbitally �-continuous at 1.

Another restriction of Theorem 1 is the assumption of chain completeness of
the partially ordered set. Indeed, the example below shows an instance of self-
mapping defined in a non chain complete partially ordered which has a fixed point
satisfying all the conclusions in the aforesaid theorem.

Example 5 Consider the partially ordered set ([0, 2[,≤), where ≤ stands for the
usual partial order defined on [0, 2[. Obviously, ([0, 2[,≤) is not chain complete. The
mapping f : [0, 2[→ [0, 2[ given by f(x) = x+1

2 has 1 as a fixed point. Moreover, the
sequence (fn(0))n∈N? is increasing and f is orbitally �-continuous at 0. Obviously
1 is the supremum of (fn(0))n∈N? and 1 ∈↓≤ y such that y ∈ [1, 2[ (notice that
f(y) ≤ y ⇔ 1 ≤ y and 0 ≤ y for all y ∈ [1, 2[).

In order to yield a generalized Kleene’s fixed point theorem, the above ex-
posed facts suggest the possibility of demanding only conditions on sequences
(fn(x0))n∈N? , for a given x0, in order to weak to the maximum the assumptions
in the statement of Kleene’s fixed point theorem.

The next result shows that such a Kleene type fixed point is possible in the
suggested direction in such a way that it provides two characterizations of those
properties that a self-mappings must satisfied in order to have a fixed point in
partially ordered sets (without order-completeness assumptins). Before stating it,
let us point out that, given a partially ordered set (X,�) and a mapping f : X →
X, we will denote by Fix(f) the set {x ∈ X : f(x) = x}.

Theorem 2 Let (X,�) be a partially ordered set and let f : X → X be a mapping.
The following are equivalent:
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(1) x? ∈ Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(2.1) The sequence (fn(x0))n∈N? is increasing in (X,�),
(2.2) x? is the supremum of (fn(x0))n∈N? and, thus, x? ∈↑� x0,
(2.3) f is orbitally �-continuous at x0.

(3) There exists z0 ∈ X such that
(3.1) z0 � f(z0) in (X,�),
(3.2) z? is the supremum of (fn(z0))n∈N? and, thus, z? ∈↑� z0,
(3.3) f is orbitally �-continuous at z0.

Proof show that (1) ⇒ (2) it is sufficient to set x? = x0 with x? ∈ Fix(f).
Furthermore, it is not hard to check that (2) ⇒ (3). Indeed, if we take z0 = x0,
then (3) is satisfied, since z0 � f(z0), due to the sequence (fnz0))n∈N? is increasing
in (X,�). So, it remains to prove that (3)⇒ (1). To this end, suppose that there
exist z0 ∈ X satisfying (3.1), (3.2) and (3.3). On the one hand, since z? is the
supremum of the sequence (fn(z0))n∈N? in (X,�) and z0 � f(z0), then z? is the
supremum (fn+1(z0))n∈N? . On the other hand, since f is orbitally �-continuous
at x0 we have that f(z?) is the supremum of (fn+1(x0))n∈N? in (X,�). Hence
f(z?) = z?.

The next examples shows that Theorem 2 does not give, in general, the unique-
ness of fixed point.

Example 6 Consider the partially ordered set ([0, 1],≤) introduced in Example 1.
Let f : [0, 1] → [0, 1] be the mapping given by f(x) = x for all x ∈ [0, 1]. It is
obvious that the sequence (fn(x0))n∈N? is increasing in ([0, 1],≤) for all x0 and, in
addition, x0 is the supremum of (fn(x0))n∈N? in ([0, 1],≤). Moreover, f is orbitally
≤-continuous at x0 for all x0 ∈ [0, 1]. Clearly, Fix(f) = [0, 1].

In the light of Theorem 2 we obtain that, given a partially ordered set (X,�),
for every self-mapping f such that Fix(f) 6= ∅ there exists x0 ∈ X such that f
is orbitally �-continuous at x0. However, Example 7 below shows that there exist
self-mappings whose set of fixed points is not empty but they are not �-continuous.

In the particular case in which the self-mapping is �-continuous we get the
following result.

Corollary 1 Let (X,�) be a partially ordered set and let f : X → X be a map-
ping. Assume that there exists x0 ∈ X such that

(1) x0 � f(x0),
(2) x? is the supremum of (fn(x0))n∈N? and, thus, x? ∈↑� x0,
(3) f is �-continuous.

Then x? ∈ Fix(f) 6= ∅. Moreover, x? ∈↓� y0 provided that y0 ∈ X such that
x0 � y0 and f(y0) � y0. Furthermore, x? is the minimum of Fix(f)∩ ↑� x0 in
(X,�).

Proof Since f is monotone and x0 � f(x0) we have that (fn(x0))n∈N? is increasing
in (X,�). Hence the existence of x? ∈ X such that x? ∈ Fix(f) is guaranteed by
Theorem 2.
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Next we assume that there exists y0 ∈ X such that x0 � y0 and that f(y0) �
y0. Then fn(x0) � f(y0) � y0 for all n ∈ N. It follows that y0 is an upper bound
of (fn(x0))n∈N? in (X,�). Moreover, since x? is the supremum of (fn(x0))n∈N?

in (X,�) we deduce that x? � y0. Whence we obtain that x? ∈↓� y0.

It remains to prove that x? is the minimum of Fix(f)∩ ↑� x0 in (X,�). With
this aim we suppose that there exists y? ∈ Fix(f)∩ ↑� x0. As it was pointed
above f is monotone and, thus, fn(x0) � y?. So, since x? is the supremum of
(fn(x0))n∈N? we have that x? � y? as we claim.

Taking into account Theorem 2 we obtain the next result.

Corollary 2 Let (X,�) be a chain complete partially ordered set and let f : X →
X be a mapping. Then the following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) The sequence (fn(x0))n∈N? is increasing in (X,�),
(b) f is orbitally �-continuous at x0.

In addition, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑� x0.

Proof By the same arguments as in Theorem 2 we have that (1) ⇒ (2). To show
that (2) ⇒ (1), assume that there exists x0 ∈ X satisfying (a) and (b). The fact
that the partially ordered set (X,�) is chain complete provides the existence of
x? ∈ X such that x? is the supremum of (fn(x0))n∈N? and, thus, x? ↑� x0. By
Theorem 2 we obtain that x? ∈ Fix(f) and, hence, that Fix(f) 6= ∅.

Combining Corollaries 1 and 2 we deduce the following.

Corollary 3 Let (X,�) be a chain complete partially ordered set and let f : X →
X be a mapping. Assume that there exists x0 ∈ X such that

(1) x0 � f(x0),
(2) f is �-continuous.

Then there exists x? ∈ Fix(f) 6= ∅. Moreover, x? ∈↓� y0 provided that y0 ∈ X
such that x0 � y0 and f(y0) � y0. Furthermore, x? is the minimum of Fix(f)∩ ↑�
x0 in (X,�).

When the self-mapping is assumed to be only monotone (not �-continuous),
Theorem 2 yields the following results which provide a bit more information about
the fixed point than the aforesaid theorem and improves Corollary 1.

Corollary 4 Let (X,�) be a partially ordered set and let f : X → X be a mono-
tone mapping. The following are equivalent:

(1) x? ∈ Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) x0 � f(x0),
(b) x? is the supremum of (fn(x0))n∈N? and, thus, x? ∈↑� x0,
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(c) f is orbitally �-continuous at x0.

In addition, x? ∈↓� y0 provided that y0 ∈ X such that y0 ∈↑� x0 and f(y0) � y0.
Moreover, x? is the minimum of Fix(f)∩ ↑� x0 in (X,�).

Proof (2) ⇒ (1). Since x0 � f(x0) and f is monotone we have that the sequence
(fn(x0))n∈N? is increasing in (X,�). Thus all assumptions in the statement of
Theorem 2 are hold. Therefore, Theorem 2 gives that there exists x? ∈ Fix(f)
which is the supremum of (fn(x0))n∈N? and, thus, x? ∈↑� x0.

The same arguments to those given in the proof of Corollary 1 can be applied
to conclude the remainder assertions in the statement of the result.

To prove that (1)⇒ (2) it is enough to take x0 = x? with x? ∈ Fix(f).

The next example shows that we cannot omit the monotony of the self-mapping
in the preceding result in order to guarantee that “x? ∈↓� y0 provided that y0 ∈ X
such that y0 ∈↑� x0 and f(y0) � y0”.

Example 7 Consider the partially ordered set (X,�X) and the self-mapping in-
troduced in Example 3. It is clear that 0 ∈ Fix(f). Corollary 4 guarantees that
there exists x0 ∈ X (x0 ∈ [0, 1]) such that x0 �X f(x0), 0 is the supremum of
(fn(x0))n∈N? and f is orbitally �X -continuous at x0. Moreover, it is obvious that
f(2) �X 2 and x0 �X 2 for all x0 ∈]0, 1]. However, 0 6�X 2.

The chain completeness of the partially ordered set allows to refine Corollary
4 obtaining the result below.

Corollary 5 Let (X,�) be a chain complete partially ordered set and let f : X →
X be a monotone mapping. The following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) x0 � f(x0),
(b) f is orbitally �-continuous at x0.

In addition, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑� x0. Moreover, x? ∈↓� y0 provided that y0 ∈ X such
that x0 � y0 and f(y0) � y0. Furthermore, x? is the minimum of Fix(f)∩ ↑� x0
in (X,�).

Proof (1)⇒ (2). It is sufficient to take x? ∈ Fix(f) and set x0 = x?.

(2) ⇒ (1). Since f is monotone we have that the sequence (fn(x0))n∈N? is
increasing in (X,�). The chain completeness of (X,�) warranties the existence
of the supremum x? of (fn(x0))n∈N? in (X,�). Thus x? ∈↑� x0. Corollary 4
guarantees that x? ∈ Fix(f).

Similar argument to those given in Corollary 1 apply to show that x? ∈↓� y0
provided that y0 ∈ X such that x0 � y0 and f(y0) � y0 and to show that, in
addition, x? is the minimum of Fix(f)∩ ↑� x0 in (X,�).
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Observe that Corollary 5 improves the celebrated Kleene fixed point theorem
(see Theorem 1).

Let us recall that some distinguished partially ordered sets which play a central
role in Computer Science are those that come from a quasi-metric space (see, for
instance, [7]). In the following we focus our attention on obtaining appropriate
versions of the exposed results in those cases in which the partial order is induced
by a quasi-metric. To this end, we recall a few notions about quasi-metric spaces
that we will require later on.

Following [10] (see also [7]), a quasi-metric on a nonempty set X is a function
d : X ×X → R+ such that for all x, y, z ∈ X :

(i) d(x, y) = d(y, x) = 0⇔ x = y,
(ii) d(x, z) ≤ d(x, y) + d(y, z).

Each quasi-metric d on a set X induces a T0 topology τ(d) onX which has as
a base the family of open d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) = {y ∈
X : d(x, y) < r} for all x ∈ X and r > 0.

A quasi-metric space is a pair (X, d) such that X is a nonempty set and d is a
quasi-metric on X.

If d is a quasi-metric on a set X, then the functions d−1 and ds defined on X×X
by d−1(x, y) = d(y, x) and ds(x, y) = max{d(x, y), d−1(x, y)} for all x, y ∈ X are
a quasi-metric and metric on X, respectively.

Every quasi-metric space (X, d) becomes a partially ordered set endowed with
the specialization partial order �d. The specialization partial order �d is defined
on X as follows: x �d y ⇔ d(x, y) = 0.

According to [12], a quasi-metric space (X, d) is chain complete provided that
the associated partially ordered set (X,≤d) is chain complete. Clearly from the
preceding results we get a sequence of corollaries when the partial order is assumed
to be the specialization partial order coming from a quasi-metric. We only stress
two of the aforementioned results, when the partial order matches up with the
specialization one, because they will be of special interest later on.

Corollary 6 Let (X, d) be a chain complete quasi-metric space and let f : X → X
be a mapping. The following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) The sequence (fn(x0))n∈N? is increasing in (X,�d),
(b) f is orbitally �d-continuous at x0.

In addition, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑�d

x0.

Notice that the preceding result comes from Corollary 2. If in addition, we
demand monotony on the mapping we obtain the next corollary which is derived
from Corollary 5.

Corollary 7 Let (X, d) be a chain complete quasi-metric space and let f : X → X
be a monotone mapping. The following are equivalent:
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(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) x0 �d f(x0),
(b) f is �d-continuous at x0.

In addition, there exist x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑�d

x0. Moreover, x? ∈↓�d
y0 provided that y0 ∈

X such that x0 �d y0 and f(y0) �d y0. Furthermore, x? is the minimum of
Fix(f)∩ ↑�d

x0 in (X,�d).

It must be stressed that Corollary 7 improves Theorem 7 in [12], since it gives
a characterization about the existence of fixed point. Notice that the aforesaid
Theorem 7 only proves the implication (2) ⇒ (1) when the self-mapping is �d-
continuous. Besides, Corollary 7 yields information about the fixed point in the
particular case in which there exists “y0 ∈ X such that x0 �d y0 and f(y0) �d y0”
and such an information is not provided by Theorem 7.

It seems natural to wonder whether there are a wide number of examples of
chain complete quasi-metric spaces (X, d), or on the contrary if it is strange to
find instances of this type of spaces. The next result answer the posed question
affirmative, i.e., showing that the so-called �d-complete (in the sense of [12] )
provide a wide class of quasi-metric spaces that satisfy the aforesaid property (see
Propositions 1 and 2 below). Before introducing the announced result let us recall
that a quasi-metric space (X, d) is �d-complete provided that each increasing
sequence (xn)n∈N? in (X,�d) converges with respect to τ(ds).

In view of the above introduced notion we show that there are a wide class
of quasi-metric spaces which are �d-complete. To this end, let us recall a few
appropriate notion of completeness that arise in a natural way in the quasi-metric
framework.

According to [15], a sequence (xn)n∈N? in a quasi-metric space (X, d) is said to
be right (left) K-Cauchy if, given ε > 0, there exists n0 ∈ N? such that d(xm, xn) <
ε (d(xn, xm) < ε) for all m ≥ n ≥ n0. A quasi-metric space (X, d) is said to be right
K-sequentially complete provided that every right K-Cauchy sequence converges
with respect to τ(d). Following [3] (see also [11]), a quasi-metric space (X, d) is
left (right) Smyth complete provided that every left (right) K-Cauchy sequence
converges with respect to τ(ds). On account of [14], a quasi-metric space (X, d) is
called weightable provided the existence of a function wd : X → R+ such that

d(x, y) + wd(x) = d(y, x) + wd(y)

for all x, y ∈ X. Finally, a quasi-metric space (X, d) is said to be bicomplete if the
induced metric space (X, ds) is complete (see, for instance, [10]).

Next we show that all preceding classes of “complete” quasi-metric spaces are
instances of �d-complete quasi-metric spaces. To this end, we count with the help
of Lemma 1 whose proof we omit because it was given in .

Lemma 1 Let (X, d) be a quasi-metric space. If x ∈ X and (xn)n∈N? is an in-
creasing sequence in (X,�d) which converges to x with respect to τ(ds), then x is
the supremum of (xn)n∈N? in (X,�d).
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Proposition 1 Let (X, d) be a quasi-metric space such that one of the following
assertions holds:

1. (X, d) is left Smyth complete,
2. (X, d−1) is right Smyth complete,
3. (X, d) is weightable and bicomplete.

Then (X, d) is �d-complete.

Proof 1. Let (xn)n∈N? be an increasing sequence in (X,�d). Then there exists
n0 ∈ N? such that d(xn, xm) = 0 for all m ≥ n ≥ n0. Thus d(xn, xm) = 0
for all m ≥ n ≥ n0. It follows that the sequence (xn)n∈N? is left K-Cauchy in
(X, d). Since the quasi-metric space (X, d) is left Smyth complete we deduce
the existence of x ∈ X such that (xn)n∈N? converges to x with respect to τ(ds).
By Lemma 1 we obtain that x is the supremum of (xn)n∈N? in (X,�d).

2. Let (xn)n∈N? be an increasing sequence in (X,�d). Then there exists n0 ∈ N?
such that d(xn, xm) = 0 for all m ≥ n ≥ n0. Hence we have that d−1(xm, xn) =
0 for all m ≥ n ≥ n0. Since the quasi-metric space (X, d−1) is right Smyth
complete we deduce the existence of x ∈ X such that (xn)n∈N? converges to
x with respect to τ(ds). By Lemma 1 we obtain that x is the supremum of
(xn)n∈N? in (X,�d).

3. On account of [10], every weightable bicomplete quasi-metric space is always
left Smyth complete.

The following result states that every quasi-metric, which is complete in any
sense of Proposition 1, is chain complete.

Proposition 2 Let (X, d) be a �d-complete quasi-metric space. Then (X,�d) is
chain complete.

Proof Let (xn)n∈N? be an increasing sequence in (X,�d). Since the quasi-metric
space (X, d) is �d-complete we have that there exists x ∈ X such that (xn)n∈N?

converges to x with respect to τ(ds). By Lemma 1 we deduce that x is the supre-
mum of (xn)n∈N? in (X,�d). It follows that (X,�d) is chain complete.

From Corollary 6 we deduce the next two results.

Corollary 8 Let (X, d) be a �d-complete quasi-metric space and let f : X → X
be a mapping. The following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) The sequence (fn(x0))n∈N? is increasing in (X,�d),
(b) f is orbitally �d-continuous at x0.

In addition, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑�d

x0.

Proof By Proposition 2 we have that the partially ordered set (X,�d) is chain
complete. Applying Corollary 6 we obtain the desired conclusions.
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Corollary 9 Let (X, d) be a quasi-metric space such that one of the following
assertions holds:

1. (X, d) is left Smyth complete,
2. (X, d−1) is right Smyth complete,
3. (X, d) is weightable and bicomplete.

Let f : X → X be a mapping. The following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) The sequence (fn(x0))n∈N? is increasing in (X,�d),
(b) f is orbitally �d-continuous at x0.

In addition, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑�d

x0.

From Corollaries 7 we derive the next two results that will play a central role
in our subsequent discussion.

Corollary 10 Let (X, d) be a �d-complete quasi-metric space and let f : X → X
be a monotone mapping. The following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) x0 �d f(x0),
(b) f is orbitally �d-continuous at x0.

In addition, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑�d

x0. Moreover, x? ∈↓�d
y0 provided that y0 ∈

X such that x0 �d y0 and f(y0) �d y0. Furthermore, x? is the minimum of
Fix(f)∩ ↑�d

x0 in (X,�d).

Proof By Proposition 2 we have that the partially ordered set (X,�d) is chain
complete. Applying Corollary 7 we obtain the desired conclusions.

Corollary 11 Let (X, d) be a quasi-metric space such that one of the following
assertions holds:

1. (X, d) is left Smyth complete,
2. (X, d−1) is right Smyth complete,
3. (X, d) is weightable and bicomplete.

Let f : X → X be a monotone mapping. The following are equivalent:

(1) Fix(f) 6= ∅.
(2) There exists x0 ∈ X such that

(a) x0 �d f(x0),
(b) f is �d-continuous at x0.

Moreover, there exists x? ∈ Fix(f) such that x? is the supremum of the sequence
(fn(x0))n∈N? and, thus, x? ↑�d

x0. Furthermore, x? ∈↓�d
y0 provided that y0 ∈

X such that x0 �d y0 and f(y0) �d y0. Furthermore, x? is the minimum of
Fix(f)∩ ↑�d

x0 in (X,�d).
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3 The application

In 1995, M.P. Schellekens developed a new mathematical method to provide the
asymptotic upper bounds of those algorithms whose running time of computing
satisfies a recurrence equation (see [18]). The aforesaid method is based on the use
of the so-called complexity space. Let us recall that the complexity space is the
quasi-metric space (C, dC) such that

C = {f : N→ R+ :
∞∑
n=1

2−nf(n) <∞}

and the quasi-metric dC is given by

dC(f, g) =
∞∑
n=1

2−n
(

max

(
1

g(n)
− 1

f(n)
, 0

))
.

On account of [18], each algorithm A can be associated to a function fA ∈ C
such that fA(n) represents the time taken by A to solve the problem for which A
has been designed when the size of input data is n ∈ N. The mappings belonging
to C were called complexity functions in [18].

Observe that the condition “
∑∞
n=1 2−nf(n) < ∞” which is used to define

C is not restrictive, since it is hold by every computable algorithm, i.e., such a
condition is fulfilled by all algorithms B with fB(n) ≤ 2n for all n ∈ N. Moreover,
the value dC(fA, fB) can be understood as the relative progress made in lowering
the complexity by replacing any algorithm A with complexity function fA by any
algorithms B with complexity function fB . Thus, the condition dC(fA, fB) = 0
(or, equivalently, fA �dC fB) can be interpreted as the algorithm A is at least as
efficient as the algorithm B, since dC(fA, fB) = 0⇔ fA(n) ≤ fB(n) for all n ∈ N.

Notice that, given g ∈ C, dC(fA, g) = 0 implies that fA ∈ O(g), where
O(g) = {f ∈ C : there exists c ∈ R+ and n0 ∈ N with fA(n) ≤ cg(n) for all
n ≥ n0}. According to [2], when the precise information about the running time of
computing fA of an algorithm A is not known, the fact that fA ∈ O(g) yields an
asymptotic upper bound of the time taken by A in order to solve the problem un-
der consideration. It must be stressed that the condition dC(g, fA) = 0 can be also
interpreted as fA ∈ Ω(g), where Ω(g) = {f ∈ C : there exists c ∈ R+ and n0 ∈
N with cg(n) ≤ f(n) for all n ≥ n0}. Of course, from a computational viewpoint
the fact that fA ∈ Ω(g) provides that the mapping g gives an asymptotic lower
bound of the running time of computing of the algorithm A.

Observe that the asymmetry of dC plays a central role in order to provide
information about the increase in complexity whenever an algorithm is replaced
by another one. Clearly, a metric would be able to yield information on the increase
but it, however, will not reveal which algorithm is more efficient.

The utility of the complexity space (C, dC) was shown by Schellekens in [18],
where he gave an alternative proof of the fact that the Mergesort has optimal
asymptotic average running time of computing, i.e., fM ∈ O(flog)∩Ω(flog), where
fM represents the running time of the Mergesort and flog ∈ C such that flog(1) = c
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(c ∈ R+) and flog(n) = n log2(n) for all n ∈ N with n > 1. To achieve the men-
tioned target, Schellekens developed a technique based on the use of the celebrated
Banach fixed point theorem. The aforesaid fixed point technique was applied to
analyze those algorithms whose running time of computing satisfies a Divide and
Conque recurrence equation. Let us recall briefly that a Divide and Conque recur-
rence equation is given as follows (see [2,18] for a detailed discussion):

T (n) =

{
c if n = 1,
aT (nb ) + h(n) if n ∈ Nb,

(1)

where Nb = {bk : k ∈ N}, c ∈ R+, a, b ∈ N with a, b > 1 and h ∈ C with h(n) <∞
for all n ∈ N.

Set Cb,c = {f ∈ C : f(1) = c and f(n) = ∞ for all n ∈ N \ Nb with n > 1}.
It is clear that a mapping f ∈ Cb,c is a solution to the recurrence equation (1) if
and only if f is a fixed point of the mapping ΦT : Cb,c → Cb,c associated with the
recurrence equation (1) and given by

ΦT (f)(n) =


c if n = 1,
af(nb ) + h(n) if n ∈ Nb,
∞ otherwise,

(2)

for all f ∈ Cb,c.

Concretely, the fixed point technique introduced by Schellekens is given by the
following result:

Theorem 3 The quasi-metric space (Cb,c, dC) is left Smyth complete and the map-
ping ΦT satisfies that dC(ΦT (f), ΦT (g)) ≤ 1

2dC(f, g) for all f, g ∈ Cb,c. Thus, a
Divide and Conquer recurrence of the form (1) has a unique solution fT ∈ Cb,c.
Moreover, the following assertions hold:

1. If there exists g ∈ Ca,b such that g �dC ΦT (g), then fT ∈ Ω(g).
2. If there exists g ∈ Ca,b such that ΦT (g) �dC g, then fT ∈ O(g).

The technique introduced by the above result was tested and illustrated suc-
cessfully with the following particular case of the recurrence equation (1):

TM (n) =

{
c if n = 1,
2TM (n2 ) + n

2 if n ∈ N2,
(3)

where c ∈ R+. Therefore Schellekens proved that the mapping ΦTM
: C2,c → C2,c,

defined by

ΦTM
(f)(n) =


c if n = 1,
2f(n2 ) + n

2 if n ∈ N2,
∞ otherwise,

(4)

for all f ∈ C2,c, satisfies the following: g1 �dC ΦTM
(g1) and ΦTM

(g2) �dC g2 for
any g ∈ C2,c if and only if g1 = g2 and they are defined by

g(n) =


c if n = 1,
1
2n log2(n) if n ∈ N2,
∞ otherwise,

(5)
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In [16,17], the technique provided by Theorem 3 was extended to those cases
in which the recurrence equation associated to the running time of computing is
of the type below:

T (n) =

{
cn if 1 ≤ n ≤ k∑k
i=1 aiT (n− i) + h(n) if n > k

, (6)

where h ∈ C such that h(n) <∞ for all n ∈ N, k ∈ N, ci, ai ∈ R+ with ai ≥ 1 for
all 1 ≤ i ≤ k.

Observe that the recurrence equations of type (1) can be recovered from those
of type (6). In fact, the former recurrence equations can be transformed into one
of the following type

S(m) =

{
c if m = 1
aS(m− 1) + r(m) if m > 1

, (7)

where S(m) = T (bm−1) and r(m) = h(bm−1) for all m ∈ N. (Recall that Nb =
{bk : k ∈ N} with b ∈ N and b > 1).

The asymptotic lower and upper bounds for a few celebrated algorithms, like
Quicksort, Hanoi, Largetwo and Fibonnacci (see [4,2]), whose running time of com-
puting holds the recurrence equation (6), were discussed by means of appropriate
versions of the technique exposed in Theorem 3 and, thus, by means of the Banach
fixed point theorem. Notice that in such versions the unique thing to be proved,
additionally to the original Schellekens’ proof, was the contractive character of the
mapping ΦT : Cc1...,ck → Cc1...,ck associated to the recurrence equation (6) and
the left Smyth completeness of the subset Cc1...,ck with respect to τ(dsC) , where
Cc1...,ck = {f ∈ C : f(i) = ci for all 1 ≤ i ≤ k} and

ΦT (f)(n) =

{
ci if 1 ≤ i ≤ k,∑k
i=1 aif(n− i) + h(n) if n > k,

(8)

for all f ∈ Cc1...,ck . Thus the technique introduced in Theorem 3 was extended to
the new case as follows:

Theorem 4 The quasi-metric space (Cc1...,ck , dC) is left Smyth complete and the
mapping ΦT given by (8) satisfies that

dC(ΦT (f), ΦT (g)) ≤
(

max
1≤i≤k

1

ai

)(
2k − 1

2k

)
dC(f, g)

for all f, g ∈ Cc1,...,ck . Thus, an algorithm whose running time of computing holds a
recurrence equation of the form (6) has a unique solution fT ∈ Cc1...,ck . Moreover,
the following assertions hold:

1. If there exists g ∈ Cc1...,ck such that g �dC ΦT (g), then fT ∈ Ω(g).
2. If there exists g ∈ Cc1...,ck such that ΦT (g) �dC g, then fT ∈ O(g).

Notice that, by means of the transformation given by (7), Theorem 3 can be
retrieved from Theorem 4.

It must be stressed that the uniqueness of solution to the recurrence equa-
tions (or equivalently the uniqueness of fixed point of the mapping ΦT ) under
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consideration in Theorems 3 and 4 is guaranteed by the left Smyth completeness
and the Banach fixed point theorem (we refer the reader to [18] for a detailed
discussion). However, from a complexity analysis viewpoint, it is not necessary to
debate about the uniqueness of the solution because the theory of finite difference
equations provides such a uniqueness for the so-called initial value problems (see,
for instance, Theorem 3.1.1 in [4]). So, the really novel and interesting about the
techniques introduced by Theorems 3 and 4 is exactly the possibility of studying
the asymptotic behavior of the solutions via fixed point arguments which differs
from the classical difference equation approach (see, again, [4]).

Inspired, in part, by the fact already exposed, L.M. Garćıa-Raffi, S. Romaguera
and Schellekens provided a mathematical method for asymptotic complexity anal-
ysis of algorithms which is not based on the use of the Banach fixed point theorem,
or equivalently of Theorems 3 and 4, in [6]. Concretely they provided, by means
of fixed point techniques and the use of increasing sequences of complexity func-
tions, asymptotic upper bounds for the running time of computing of the so-called
Probabilistic Divide and Conquer algorithms (see [9] for a detailed discussion of
this type of algorithms).

Let us recall that the running time of computing of Probabilistic Divide and
Conquer algorithms satisfies the following recurrence equation:

T (n) =

{
cn if 1 ≤ n < k∑n−1
i=1 vi(n)T (i) + h(n) if n ≥ k , (9)

where h ∈ C such that h(n) < ∞ for all n ∈ N, k ∈ N such that k ≥ 2 and
ci ∈ R+ for all 1 ≤ i < k. Moreover, (vi)i∈N is a sequence of positive mappings
defined on N in such a way that there exists K ∈ R+ with K > 0 satisfying that∑n−1
i=1 vi(n) ≤ K.

To get asymptotic upper bounds of the running time in those cases in which
the recurrence equation (9) is under consideration the next auxiliary result was
key and it was proved in [6].

Proposition 3 Let R ⊆ C such that (R, dC) is left Smyth complete. Let Φ : R→
R be a monotone mapping with respect to �dC . If there exists g ∈ R such that
g �dC Φ(g), then there exists f ∈ R such that the sequence (Φn(g))n∈N? converges
to f with respect to τ(dsC) and, in addition, f is an upper bound of (Φn(g))n∈N? in
(X,�dC ).

A specific method to provide the aforementioned asymptotic upper bounds for
the solution to recurrence equations of type (9) was proved using Proposition 3 in
[6]. Concretely, it was given the result below.

Theorem 5 Let k ∈ N with k ≥ 2 and let Ck be the subset of C given by
Cc1,...,ck−1 = {f ∈ C : f(i) = ci for all 1 ≤ i < k}. Define the mapping ΦT :
Cc1,...,ck−1 → Cc1,...,ck−1 by

ΦT (f)(n) =

{
cn if 1 ≤ n < k,∑n−1
i=1 vi(n)f(i) + h(n) if n ≥ k, (10)

for all f ∈ Cc1,...,ck−1 . Then the following assertions hold:
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1. The quasi-metric space (Cc1,...,ck−1 , dC) is left Smyth complete
2. The mapping ΦT is monotone with respect to �dC and there exists fT ∈
Cc1,...,ck−1 such that Fix(ΦT ) = {fT }. So fT is the unique solution to the
recurrence equation (9).

3. If there exists f ∈ Cc1,...,ck−1 such that Φ(f) �dC f , then fT ∈ O(f).

The advantage of the method exposed in the preceding result is given by the
fact that it does make use of the Banach fixed point theorem. However, the afore-
said method has been designed specifically for Probabilistic Divide and Conquer
algorithms. Observe, in addition, that the uniqueness of solution to the recurrence
equation (9) was warrantied by means of induction techniques in [6], i.e., following
the aforesaid classical techniques from finite difference equations. Motivated by
this fact we show that the theory exposed in Section 2 provides a general frame-
work for discussing asymptotic bounds (upper and lower) of the complexity of
algorithms in such a way that both mathematical methods for such a purpose
given in Theorems 3, 4 and 5 can be retrieved as a particular case. In particular
we can state the below method for asymptotic complexity analysis of algorithms.
Notice that such a method does not deal with uniqueness since that’s what the
theory of finite difference equation guarantees.

Theorem 6 Let R ⊆ C such that (R,�dC ) is chain complete. Let Φ : R→ R be a
monotone mapping. If there exist f, g ∈ R such that the following assertions hold:

1. g �dC Φ(g) and Φ is �dC -continuous at g,
2. g �dC f and Φ(f) �dC f .

Then there exists f? ∈ R such that f? ∈ Fix(Φ) and f? ∈ Ω(g) ∩ O(f).

Proof By Corollary 7 we deduce that Fix(Φ) 6= ∅ and that there exists f? ∈
Fix(Φ) such that f? ∈ Ω(g) ∩ O(f).

Corollary 12 Let R ⊆ C such that R is closed with respecto to τ(dsC). Let Φ :
R → R be a monotone mapping. If there exist f, g ∈ R such that the following
assertions hold:

1. g �dC Φ(g) and Φ is �dC -continuous at g,
2. g �dC f and Φ(f) �dC f .

Then there exists f? ∈ R such that f? ∈ Fix(Φ) and f? ∈ Ω(g) ∩ O(f).

Proof If R is closed with respecto to τ(dsC), then (R, dC) is left Smyth complete,
since (C, dC) is left Smyth complete. Proposition 1 ensures that (R, dC) is �dC -
complete and, thus, Proposition 2 gives that (R,�dC ) is chain complete. Theorem
6 yields the desired conclusions.

In the following we show that Theorem 3 can be recovered from Theorem 6.
To this end, we need the next sequence of useful results.

The proof of the below lemma than was given in [12].

Lemma 2 Let (X, d) be a quasi-metric space. If x is an upper bound of a sequence
(xn)n∈N? in (X,�d) and, in addition, (xn)n∈N? converges to x with respect to τ(d),
then x is the supremum of (xn)n∈N? in (X,�d).
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Taking into account the above result we have the next one.

Proposition 4 Let (X, d) be a �d-complete quasi-metric space and let f : X → X
be a monotone mapping. Assume that there exists x0 ∈ X such that (fn(x0))n∈N?

is increasing in (X,�d) and that f is continuous from (X, τ(d)) into itself at x0,
then f is orbitally �d-continuous at x0.

Proof Let x0 ∈ X such that the sequence (fn(x0))n∈N? is increasing in (X,�d
). Since the quasi-metric space (X, d) is �d-complete there exists x ∈ X such
that the sequence (fn(x0))n∈N? converges to x with respect to τ(ds). By Lemma
1, x is the supremum of (fn(x0))n∈N? . Moreover, the continuity of f gives that
(fn+1(x0))n∈N? converges to f(x) with respect to τ(d) and the monotony of f
provides that f(x) is an upper bound of (fn(x0))n∈N? in (X,�d). By Lemma 2
we have that f(x) is the supremum of (fn+1(x0))n∈N? . Therefore f is orbitally
�d-continuous at x0.

From the preceding result we can derive the following one which was proved
in [12].

Corollary 13 Let (X, d) be a �d-complete quasi-metric space and let f : X → X
be a mapping. If f is continuous from (X, τ(d)) into itself, then f is �d-continuous.

In addition to the preceding results we have the next one which will be crucial
in our subsequent discussion.

Proposition 5 Let (X, d) be a quasi-metric space and let f : X → X be a map-
ping. Assume that there exists c ∈ [0, 1[ such that

d(f(x), f(y)) ≤ cd(x, y)

for all x, y ∈ X. Then the following assertions hold:

1. f is monotone (X,�d) and continuous from (X, τ(d)) into itself.
2. If there exist v, w ∈ X with v �d f(v) and f(w) �d w, then v � w.

Proof 1. Suppose that x, y ∈ X with x �d y. Then d(x, y) = 0. Since d(f(x), f(y)) ≤
cd(x, y) we deduce that d(f(x), f(y)) = 0. Thus f(x) �d f(y) and f is mono-
tone. Consider x ∈ X and a sequence (xn)n∈N? which converges to x with re-
spect to τ(d). Then (f(xn))n∈N? converges to f(x) with respect to τ(d), since
d(f(x), f(xn)) ≤ cd(x, xn) for all n ∈ N. It follows that f is continuous from
(X, τ(d)) into itself.

2. Suppose that there exist v, w ∈ X with v �d f(v) and f(w) �d w. Then
d(v, f(v)) = d(f(w), w) = 0. Hence we have that

d(v, w) ≤ d(v, f(v)) + d(f(v), f(w)) + d(f(w), w) ≤ cd(v, w).

It follows that d(v, w) = 0 and, thus, that v �d w, because otherwise we deduce
that 1 ≤ c which is a contradiction.
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By virtue of what is set out in the previous results, we are able to show that
Theorems 3 and 4 comes from Theorem 6 as it was announced. Indeed, the sets
Cb,c and Cc1...,ck were showed to be a closed subset of C with respect to τ(dsC) in
[16] and [17], respectively. So the quasi-metric spaces (Cb,c, dC) and (Cc1...,ck , dC)
are left Smyth complete and, hence, �dC -complete. By Proposition 5 we have that
the mappings ΦT , associated to (6) and to (8), are monotone and continuous, since
they are contractive, i.e., they satisfy that

dC(ΦT (f), ΦT (g)) ≤ 1

2
dC(f, g)

for all f, g ∈ Cb,c and

dC(ΦT (f), ΦT (g)) ≤
(

max
1≤i≤k

1

ai

)(
2k − 1

2k

)
dC(f, g)

for all f, g ∈ Cc1,...,ck .

Now, if there exists g ∈ Ca,b (g ∈ Cc1...,ck) such that g �dC ΦT (g), then, by
Proposition 4, ΦT (g) is orbitally �dC -continuous at g. Moreover, if there exists
f ∈ Ca,b (f ∈ Cc1...,ck) such that ΦT (f) �dC f then Proposition 5 guarantees
that g �dC f . Therefore Theorem 6 (or Corollary 12) provides that there exists
f? ∈ Ca,b (f? ∈ Cc1...,ck) such that f? ∈ Ω(g) ∩ O(f).

Next we show that Theorem 5 can be derived form Theorem 6 as promised.
First, according to [17], the quasi-metric space (Cc1,...,ck−1 , dC) is left Smyth com-
plete and, hence, �dC -complete. So, by Proposition 2, we have that the partially
ordered set (X,�d) is chain complete.

It is clear that the mapping ΦT , given by (10), is monotone with respect to
�τ(dC). Moreover, gh �τ(dC) ΦT (gh), where gh ∈ Cc1,...,ck with gh(n) = h(n) for
all n ≥ k and gh(n) = cn for all 1 ≤ n < k. In fact, note that gh �dC Φ(f) for all
f ∈ Cc1,...,ck−1 .

Furthermore, ΦT is orbitally�dC -continuous at gh. Indeed, the sequence (ΦmT (gh))m∈N?

is increasing in (Cc1,...,ck−1 ,�dC ) and since (Cc1,...,ck ,�dC ) is chain complete, we
have that there exists f? ∈ Cc1,...,ck−1 such that f? is the supremum of (ΦmT (gh))m∈N?

in (Cc1,...,ck−1 ,�dC ). On the one hand, since ΦT is monotone we have that ΦT (f?)
is an upper bound of the sequence (Φm+1

T (gh))m∈N? . On the other hand, fixed
n ∈ N such that n > k we have that, for every ε, there exists mε such that

f?(i) < ε+ Φmε

T (gh)(i)

for all k ≤ i ≤ n− 1. Thus we obtain that

ΦT (f?)(n) <
∑n−1
i=k vi(n)ε+ h(n) + Φmε

T (gh)(n) =

ε
∑k−1
i=1 vi(n) + Φmε+1

T (gh)(n) ≤ Kε+ f?(n).

It follows that ΦT (f?) �dC f
? and so ΦT is orbitally �dC -continuous at gh.

Now, if there exists f ∈ Cc1,...,ck−1 such that ΦT (f) �dC f , then gh �dC
ΦT (f) �dC f . Whence we obtain, by Theorem 6 (or Corollary 12), that f? ∈
Ω(gh) ∩ O(f).
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It is worthy to observe that Proposition 3, the main result in which Theorem
5 is based on, can be derived from Lemma 1 and Propositions 1 and 2.

We end the paper, noting that Theorem 6 (and Corollary 12) introduces a
fixed point technique for asymptotic complexity analysis of algorithms which does
not assume requirements over all elements in a subset R of C. It follows that
we can reduce the set of elements over which we need to check those conditions
that allow discuss the asymptotic complexity of an algorithm whose running time
satisfies a recurrence equation. Hence the new technique improves those given in
[16–18]. Besides, the aforementioned technique captures the essence of that given in
Theorem 5 and, in addition, it allows to state upper and lower asymptotic bounds
for the running time computing of algorithms. So, in this sense, it improves the
technique introduced in Theorem 5.
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