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ABSTRACT
Modern malware increasingly exploits information hiding to re-
main undetected while attacking. To this aim, network covert chan-
nels, i.e., hidden communication paths established within legitimate
flows, can be used to exfiltrate data or exchange commands with-
out getting noticed by firewalls, antivirus, and intrusion detection
systems. Since the secret data can be directly injected in various
portions of the stream or encoded via suitable alterations of the
traffic, spotting hidden communications is a challenging and poorly
generalizable task. Moreover, the majority of works addressed IPv4,
thus leaving the detection of covert channels targeting IPv6 almost
unexplored.

This paper presents bccstego, i.e., an inspection framework for
computing statistical indicators to reveal covert channels targeting
the IPv6 header. The proposed approach has been designed to be
easily extended, for instance to search for channels not known a
priori. Numerical results demonstrate the effectiveness of our first
tool in the bccstego framework as well as its ability to handle
high-throughput IPv6 flows without adding additional delays.

CCS CONCEPTS
• Networks→ Network performance evaluation; • Security
and privacy→ Network security; Domain-specific security and
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1 INTRODUCTION
In recent years, the Internet has become the target of sophisticated
attacks causing huge economical losses. Threats like cryptolock-
ers, ransomware, cryptominers and advanced persistent threats are
endangering individuals and large-scale organizations on a daily
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basis, highlighting the limits of standard security tools and prac-
tices [1]. An emerging trend concerns the use of some form of
information hiding or steganography to create malicious software
which is difficult to detect, defined as stegomalware [2]. For instance,
stegomalware can hide data within an innocent-looking carrier to
prevent its detection, bypass blocks enforced by a firewall, imple-
ment stealthy multi-stage loading architectures, or escepe security
perimeters implemented by sandboxes [1, 2]. Among the various in-
formation hiding techniques, the ability of creating network covert
channels is gaining popularity [1–3]. In essence, a network covert
channel enables two remote endpoints to secretly communicate
by injecting data within a legitimate traffic flow. This allows to
remain under the radar while orchestrating a botnet, exfiltrating in-
formation from the victim, upload commands or configure a remote
backdoor [3].

Covert channels can be created by hiding information in dif-
ferent portions of the traffic. Specifically, an attacker can directly
inject data in packets composing the legitimate stream, e.g., by stor-
ing secrets in unused bits of the header or by further compressing
the payload to free space. Secrets can be also cloaked via suitable
encoding schemes able to alter some properties of the traffic, e.g.,
via modulating the inter packet time [4]. The research commu-
nity has already investigated covert channels targeting IPv4, but it
has largely neglected the popularity gained by IPv6 in last years
[4–6]. In fact, IPv6 offers to attackers various options for hiding
data [7], either by using transitional mechanisms or by exploiting
peculiarities of the traffic in real-world deployments [8].

The detection of a network covert channel is a nontrivial and
poorly generalizable problem [4]. Spotting hidden communications
within a bulk of network flows typically requires to implement
attack-specific methodologies or to perform deep packet inspection,
which poses scalability problems [9]. Moreover, security tools can
not detect IPv6 covert channels out of the box [8], andmany of them
even have issues in handling IPv6 traffic as well as conversations
exploiting v4/v6 transitional mechanisms [10].

The detection of covert channels targeting IPv6 is of prime im-
portance today to fully assess security of modern network scenar-
ios and to mitigate the advancement of stegomalware and other
information hiding attacks [1–3]. Nevertheless, scalability of the
approach should be considered as a design constraint, since inspec-
tion processes should not penalize legitimate traffic flows, e.g., by
adding additional delays or disrupt the perceived Quality of Experi-
ence [1, 4, 9]. To this aim, we introduce bccstego, a framework that
can be used for detecting network covert channels in the header of
IPv6 packets. Specifically, bccstego allows to create usage statis-
tics for specific fields, which can reveal anomalous patterns. The

https://orcid.org/0000-0001-8478-2633
https://orcid.org/0000-0001-6466-3354
https://orcid.org/0000-0001-6932-3199
https://doi.org/10.1145/3465481.3470028
https://doi.org/10.1145/3465481.3470028


ARES ’21, August 17–05, 2021, Matteo Repetto, Luca Caviglione, and Marco Zuppelli

Secret 
Sender

Victim Attacker

Secret 
Receiver

Overt Traffic

Covert Channel
Overt IPv6 Flow

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 311

0 2 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Fi
re
w
al
l

bccstego

Figure 1: Reference scenario and attack model for the use of
a network covert channel.

tool exploits the BPF Compiler Collection (BCC) framework, which
facilitates the creation and injection of extended Berkley Packet
Filter (eBPF) programs within the Linux kernel, as well as the collec-
tion of measurements in user-space. This turns into a very flexible
approach, which can be easily extended to other protocols, such
as IPv4, TCP and UDP. Moreover, our method does not introduce
instability in the kernel and, compared with other solutions (e.g.,
flow monitoring), its lightweight nature allows to scale well with a
growing number of flows. In fact, bccstego has a constant memory
consumption and a processing overhead of few CPU instructions
per packet.

The contribution of this work is twofold: i) a tool that collects
statistical indicators for IPv6 traffic, which can be used for spot-
ting network covert channels and, ii) a performance evaluation
that takes into account the impact in terms of packet processing
overhead and CPU/network footprint.

The rest of the paper is organized as follows. Section 2 briefly
reviews the problem of network covert channels, with specific focus
on those exploiting fields in the IPv6 header. Section 3 explains the
methodology to collect measurements, and the reasoning behind
this choice. Then the program currently available in bccstego is
described in Section 4, while functional and performance evaluation
is reported in Section 5. A brief overview of related work and
alternative technologies is given in Section 6. Finally, conclusions
and plans for future work are discussed in Section 7.

2 NETWORK COVERT CHANNELS
TARGETING IPV6

As said, a network covert channel allows two peers (commonly
defined as secret sender and secret receiver) to covertly communi-
cate through the Internet (see Fig. 1). To this aim, the secret sender
hides data by injecting information in packets of an overt traffic
flow. The overt flow, acting as the carrier for the secret information,
can be eavesdropped (in this case, the two secret endpoints act in
a Man-in-the-Middle manner) or generated artificially. The ulti-
mate goal of a network covert channel is to evade blockages (e.g.,

a forwarding rule that prevent communications from/to specific
range of network addresses) or to elude the detection from security
tools (e.g., a firewall). In the general model, we consider an attacker
who wants to covertly communicate with a victim host previously
infected via a suitable vector, e.g., phishing [1].

Despite the wide array of options, the most popular mechanisms
for the creation of an IPv6 covert channels are those targeting
its header, as they provide a good tradeoff among robustness (i.e.,
how the channel can resist against delays, errors and deliberate
manipulations from a security tool), capacity (i.e., how much secret
information can be sent per time unit) and undetectability (i.e., how
the channel is difficult to spot) [4, 6–8]. Specifically, we consider
two complementary methodologies in our work, which either fill
the entire field or modulate its original value with a secret.

There are two main examples for injecting information by re-
writing an entire field [7, 8, 11]. The first exploits the Traffic
Class, which specifies the service expected from the network. The
information contained in this 8 bit long field can be replaced with
hidden data to create a covert channel with a bandwidth of 8 bit per
packet. The second exploits the Flow Label, which helps network
nodes to route traffic towards the most appropriate path. The 20
bit long labels are generated in a pseudo-random manner and can
be replaced with hidden data, leading to a covert channel with a
capacity of 20 bit per packet.

Another popular approach is based on the modulation of the
original values of a field. Among the others, the Hop Limit has been
considered in many works [7, 8, 11]. It is 8 bit long and defines the
maximum number of nodes that can be traversed by the packet. A
channel of a capacity of 1 bit per packet can be created by increasing
or decreasing the value of this field for consecutive packets. The
secret is then decoded by comparing the received values [7, 11].

Despite the number of alternative techniques to create covert
channels, existing security tools are not able to spot their presence
(see, e.g., [9] and the references therein). Therefore, we are devel-
oping a framework that could be easily extended to detect as many
network channels as possible. An important design requirement
was to not disrupt legitimate traffic or penalize IPv6 conversations,
by adding further delays or increasing the packet loss [9]. For this
reason, bccstego defines a framework made of an eBPF program
and a user-space utility, which are combined to inspect packets,
collect field usage statistics, and report them for analysis. This ap-
proach simplifies the integration with standard kernel operation,
reduces the overhead, improves the scalability, and facilitates the
portability to different Linux systems. In this paper, we describe
our first tool, which covers the relevant fields in the standard IPv6
header that were briefly introduced above.

3 COLLECTING STATISTICS ON IPV6 HEADER
FIELDS

The most effective and straightforward way to detect covert chan-
nels in the IPv6 header requires to track the values assigned to
relevant fields within the same network flow, an approach that we
can indicate as “flow tracing.” Usually, the <src addr, dst addr,
protocol, src port, dst port> tuple is used for identifying
a conversation. For each stream, several parameters are recorded,
e.g., the number of packets, number of bytes, average inter-packet
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Figure 2: Mapping field values to bins.

delay, and the status of the flags. It would be simple to extended
such approach to also consider fields vulnerable to covert com-
munication attempts (namely Flow Label, Traffic Class and
Hop Limit) and use this information to detect anomalous usages.
However, the overhead due to tracing increases linearly with the
number of flows, and may be unfeasible for large Internet links.
Indeed, it is well-known that common tools for network monitoring
cannot sustain high bitrates, and sometimes make use of sampling
techniques for “estimating” the active flows [12].

Based on this consideration, we introduce an alternative tech-
nique able to scale independently of the number of flows. Rather
than keeping the “state" for each flow, we only measure general
statistics about the usage of vulnerable fields. More in details, we
count the number of occurrences for the different values that a
given field assumes. To make this approach scalable, multiple val-
ues may be grouped together into what we call a “bin”, and a single
counter is used for the whole group. We will refer to this technique
as “counters" method to emphasize the different approach with flow
tracing previously outlined.

Fig. 2 depicts our approach. Specifically, we consider 𝑁 = 2𝑛
possible values for a given field, where 𝑛 is its length in bit, hence
𝑛 = 20 for Flow Label, and 𝑛 = 8 for Traffic Class and Hop
Limit. Such values are split into𝐵 = 2𝑏 bins, thus there are 𝑆 = 2𝑛−𝑏
values that are grouped into the same bin. In our design, the number
of bins is always a power of 2, which is necessary to have uniform
bins. In addition, with this constraint, mapping the value of a field
to the corresponding bin reduces to a simple bitwise operation, i.e.,
a prefix matching where the first 𝑏 bits of a field value are used to
index the corresponding bin. Let us consider a numerical example,
with 𝑏 = 8 and the current packet bearing the value of 0xA59B8
in the Flow Label field. Since 𝑏 = 8, the resulting 256 bins are
indexed into an array ranging from 0 to 255 and each bin counts
the occurrences of 212 different Flow Label values. To find the
bin to increment for the given Flow Label value, we use its first
8 bits, i.e., 0xA5, as the index for the array, i.e., the counter to be
incremented is the one with the index equal to 165.

For what concerns resource consumption, the lower the number
of bins, the less the memory needed. However, this requires to map
a larger number of values in the same bin, hence resulting in coarse-
grained statistics that limit the efficiency of the detection when
many flows are present. To make a rough comparison of memory
consumption, we estimated the memory required by classical flow
tracing approaches and by our counters methodology.

For the case of flow tracing, the computation of the required
memory is rather straightforward. First, we should consider the
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tuple for identifying the conversation, i.e., source and destination
addresses (128 bits each), protocol number (8 bits), and source and
destination ports (16 bits each). Then, we also need memory for
storing the state (8 bits), timestamp (64 bits), and the IPv6 header
field that is supposed to contain secret data (32 bits, which allow to
contain the larger field, i.e., Flow Label). Thus, each flow requires
a minimum of 400 bits.

When using counters, only 32 bits of memory are required for
each bin, independently of the length of the considered field. How-
ever, the number of bins 𝐵 is not fixed, and we have to select this
value in an appropriate way to make the comparison fair. Indeed,
for the Flow Label, using a number of bins equals to the entire
value space (e.g., 𝑏 = 20) would led to excessive overhead. From
our experiments we found the empirical rule of thumb that the
number of bins 𝐵 should be at least twice the average number of
flows, in order to capture meaningful trends that could be used
for the detection of anomalies caused by a network covert channel
nested within a flow. To be more conservative in our estimation, we
considered different scenarios, where the number of bins was 2, 4,
8, and 16 times the number of active flows. For the Traffic Class
and the Hop Limit the memory consumption accounts to 8192 bits
in the worst-case scenario, namely when 256 bins are used (one bin
for each value).

Fig. 3 compares the estimated memory consumption of our ap-
proach versus flow tracing while varying the number of active flows.
As shown, the memory requirement for standard flow tracing in-
creases linearly with the number of flows (i.e., each flow requires a
400 bit long record), whereas our method scales much better and
the estimated memory consumption is larger only in case of few
flows.

4 THE BCCSTEGO FRAMEWORK
Our main objective is to design a tool able to run with a low ex-
ecution footprint the inspection in different environments, both
physical and virtual. Since the range of possible covert channels is
virtually unlimited, extensibility is an important design constraint,
mainly for handling additional protocols or considering new at-
tacks. Based on such considerations, we found the Linux-based
eBPF to be the best suited technology that fits our requirements.
In this section, we will introduce the eBPF framework, the used
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library, as as well as the implementation details of the first tool of
our bccstego framework.

4.1 The eBPF Framework
Originally conceived as an efficient mechanism for packet filtering,
the BPF has recently widened its scope, being now able to define
small tasks triggered by the reception of a packet or the execution
of a kernel function (not limited to system calls). Roughly speaking,
an eBPF program consists of two parts: i) a hook that triggers its ex-
ecution, and ii) a list of instructions to be executed. eBPF programs
run in a dedicated virtual machine within the Linux kernel, hence
they have their own instruction set. They can be loaded dynami-
cally, but for security and stability reasons, programs have limited
access to system resources. Thus, the only way to interact with an
eBPF program is through maps, which are shared-memory regions.
Therefore, the typical development pattern includes both the eBPF
program and a user-space utility for loading the program in the
kernel as well as pushing/collecting data.

There are different types of eBPF programs, based on the specific
context where they are executed. For our purposes, we develop
programs for the traffic control subsystem (usually indicated as tc),
which inspects network packets via the special clsact qdisc. This
approach gives access to both ingress or egress traffic, and to richer
kernel metadata than the eXpress Data Path subsystem.1

4.2 The BPF Compiler Collection
Although the implementation of an eBPF program consists of a
limited number of instructions, there may be a non-negligible over-
head in the external constructs that are necessary to compile the
code, load it into the kernel, and exchange data. Among the al-
ternative loaders available (e.g., bpftool, tc and ip utils), BCC2

emerged as a flexible yet powerful framework for running eBPF
programs, including a rich collection of tools for investigating the
performance of the operating system.

The programmingmodel for BCC tools revolves around a Python
class delivering functionalities for compiling, loading, and running
eBPF programs. The class also takes care of creating shared maps,
and provides specific methods to read and write data. The user-
space portion of the code is therefore written in Python, but BCC
also offers some bindings for the Go language. The source code of
the eBPF program is usually embedded into the Python script (e.g.,
it is statically-stored as string within the module), which simplifies
the portability of the application. Alternatively, eBPF programs can
also be loaded from an external file.

4.3 The ipv6stasts.py tool
The bccstego is an umbrella for collecting various tools targeting
specific traits of the traffic and provide support for the detection of
network covert channels. The idea is to share a common pattern for
parsing packets and collecting data, while different eBPF programs
are developed for specific protocols or steganographic threats.

1Indeed, XDP allows access to packets before the struct sk_buff is allocated. The
only context for XDP programs is a couple of pointers that delimit the packet bound-
aries in memory. For this reason, XDP programs are particularly indicated for DDoS
mitigation or load balancing, because this kind of activities can often avoid the expen-
sive overhead of allocating sk_buff structures.
2BCC, available on line: https://github.com/iovisor/bcc. Last Accessed: March 2021.

Currently, we provide the ipv6stats.py tool that builds usage
statistics for multiple header fields, as described by the “counters"
methods introduced in Sec. 3. The name clearly indicates that the
current version specifically targets IPv6 packets, but we plan to
enrich the framework for covering a broader set of protocols3 .

Figure 4 depicts the build process for ipv6stats.py, which is
explicitly designed to facilitate the maintenance of the complemen-
tary programs (i.e., the eBPF filter and user-space utility). There are
two distinct files: bpfprog.c providing the skeleton of the eBPF
program and userprog.py, which is the user-space utility writ-
ten in Python. A Makefile helps to automatize the merge of the
different components and build the monolithic ipv6hstats.py ex-
ucatable Python module. As soon as new programs will be added
to bccstego, the same implementation pattern will be followed.

Since the eBPF code is run for each packet, it is important to use
as few instructions as possible, mainly to avoid unnecessary com-
putation overheads and delay. For this reason, the ipv6hstasts.py
script dynamically creates the eBPF code for monitoring a specific
IPv6 header field, which is indicated on the command line as a
parameter. The current version is able to create, starting from the
common skeleton, programs for gathering data about the Flow
Label, Traffic Class and Hop Limit fields. Other parameters
that can be given from the command line include the number of
bins 𝐵, the network interface to be monitored, the direction of the
traffic, the sampling interval, and the name of the file for saving
the obtained statistics.

5 NUMERICAL RESULTS
To evaluate the performances of the ipv6hstats.py tool in the
bccstego framework, we prepared a testbed composed of three
virtual machines running Debian GNU/Linux 10 (kernel 4.20.9),
with 1 virtual core and 4 GB of RAM: two machines exchanged
traffic, while the third one acted as a router and ran our software.
All the virtual machines were running on a 3.60GHz Intel i9-9900KF
host with 32 GB of RAM and Ubuntu 20.4 (Linux kernel 5.8.0). To
test our tool in real-world network conditions, the overt IPv6 traffic
load was created by replicating (via the tcpreplay tool) traffic
collected on a OC192 link between Sao Paulo and New York on
January 17, 2019 from 14:00 to 15:00 CET, and made available by the
Center for Applied Internet Data Analysis4. The sampling interval
(namely, the frequency with which the user-space program reads
the counters updated by the eBPF) was set equal to 1 second.

Though our tool provides the current values for every bin, this
information is complex to depict and not intuitive to analyze. There-
fore, we use a more compact parameter, namely the number of bins
that were incremented since last read. This is shown in Figure 5 and
indicated as “number of changed bins.” In case of Flow Label (see,
Figure 5(a)), this parameter provides an approximate information
about the volume of active IPv6 flows populating the overt traffic.
In fact, every packet belonging to the same IPv6 flow is expected to
use the same Flow Label value. When an attacker uses this field to

3The bccstego framework is open-source and publicly available on GitHub: link
removed to avoid the disclosure of the identities of the authors.
4The CAIDA Anonymized Internet Traces Dataset (April 2008 - January 2019) - Used
traces: Jan. 17th 2019. Available online: https://www.caida.org/data/monitors/passive-
equinix-nyc.xml [Last Accessed: April 2021].

https://github.com/iovisor/bcc
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Figure 5: Number of changing bins of the observed traffic when gathering data for different fields.
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Figure 6: Different behaviors of the number of bins changed between clean overt traffic and traffic containing a hidden
communication for different fields.

bear some secret, the number of changing bins will abnormally in-
crease, hence this parameter may be directly used for the detection
of covert channels. A similar consideration can be drawn for the
evolutions observed for the Traffic Class and Hop Limit. Specif-
ically, Figure 5(b) clearly shows that the number of values observed
for the Traffic Class is limited. Thus, an attacker wanting to
inject data in this field without producing visible alterations should
adopt some form of encoding (e.g., mapping 1 and 0 values into a
sequence of Traffic Class values that are present in the overt
traffic), or he/she should keep the data rate as small as possible (see
[8] for a thorough investigation on the embedding capacity of real-
world IPv6 traffic). Similarly, using the Hop Limit as a carrier for

secrets requires the attacker to modulate values without deviating
too much from the observed average value (see Figure 5(c)).

Concerning resources used by the ipv6hstasts.py tool, we con-
sidered performances of both the eBPF and the user-space programs.
The eBPF code is composed of about 120 assembly instructions,
which are executed only when a packet is processed. As a conse-
quence, providing a simple estimation for the CPU usage is not
straightforward. Instead, we can provide an estimation of the ad-
ditional latency introduced when processing a packet. It turned
out that such a quantity is very small, 104.48 ns, on average. The
maximum and minimum execution times observed were 19, 715 ns
and 49 ns, respectively. To give an idea of the impact of the latency
introduced by our eBPF code on a realistic case, we measured the
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Table 1: CPU and memory usage for the user-space program.

Interval [s]

CPU Usage [%] Memory Usage [Kbyte]

1 10 30 1 10 30
Flow Label 12 7 3 179,748 176,160 174,472
Traffic Class 3 3 3 164,108 163,752 164,180
Hop Limit 3 3 3 163,680 164,032 163,920

total delay introduced when transferring a file of 1.2Gbytes. Results
indicate a very minor impact, as the additional delay was equal to
∼7 ms. As regards the memory usage, the stack size is limited to
512 bytes. Instead, the amount of shared memory depends on the
number of bins, but it is insensitive to the length of the monitored
field, as already discussed in Sec. 3. Accordingly, the maximum
memory occupancy occurs for 220 bins, and it is equal to ∼8 MB,
which is anyway rather small. For lower number of bins (i.e., in the
range of 4 − 8 entries), memory consumption is constant and equal
to 4 KB. Between these two ends, it increases proportionally to the
number of bins.

Coming to the user-space program, we measured both the mem-
ory and CPU usage. Table 1 reports the data obtained via the system
tools (top and time). Similar to the case of eBPF code, the size of the
shared memory area impacts on resource consumption, since data
is copied in user-space. For the sake of brevity, we only consider
a limited number of bins, corresponding to what used in Figures
5 and 6. For the case of CPU usage, the relevant parameter is the
sampling interval, i.e., the time frame between consecutive reads
from the user-space utility, denoted as “interval" in the table. As it
can be seen, the larger number of bins, the higher the utilization
or resources. For Traffic Class and Hop Limit, which only uses
256 bins, there is no meaningful difference in CPU utilization when
changing the sample time.

5.1 Towards the Detection of Covert Channels
Even if ipv6hstasts.py and upcoming tools in the bccstego
framework can be used as general methodologies for investigat-
ing different anomalies in network traffic, our prime goal is to use
them for the detection of network covert channels. To evaluate this
possibility, we conducted an additional round of tests. Specifically,
we used the same testbed and traffic conditions of the previous
round, but we added two malicious endpoints that hide a secret in
the different fields of the IPv6 header. The covert channel is imple-
mented by intercepting over packets with NetfilterQueue 0.8.1 and
re-writing the header fields with an ad-hoc Python scripts which
uses Scapy 2.4.3. The two endpoints injected data within an SCP
file transfer with a rate of 500 kbit/s.

Initially, we injected the secret in the Flow Label of an IPv6
conversation. The length of the secret message was set to 65 kbyte,
which is representative of a chunk of sensitive data or the retrieval
of additional attack routines. Figure 6(a) shows the number of
changed bins, while comparing to the “clean” scenario (namely,
when no covert channel is present). For the sake of clarity, the
figure is narrowed to a timeframe of 10 minutes. We have already
noted how, when no covert channel is present, changes in the num-
ber of bins indicate the arrival of new IPv6 conversations. This is

due to the “natural" evolution of randomly-generated Flow Label
values that are expected to fall under different bins during the sam-
ple period. This approximation is more precise when the number
of new flows is smaller than the number of bins (hence, 𝐵 and the
sampling interval must be chosen accordingly). Based on this con-
sideration, if the number of used bins suddenly increases, this is an
indicator that a hidden communication may be on-going.

Different considerations can be done for other fields of the IPv6
header. For the case of a channel in the Traffic Class, the limited
amount of values used in practice makes the detection trivial, as
indicated by the major “spike” at ∼3 minutes shown in Figure 6(b).
To elude the detection, the attacker should be able to use a suitable
encoding or to slow the channel down to only few bits per minute.
The “modulating" flavor used to hide a cover channel in the Hop
Limit makes the detection more difficult. As depicted in Figure
6(c), the altered behavior is less visible since the secret information
is not directly injected in the field and the alterations are spread
over the various bins in a more regular manner.

6 RELATEDWORK
High-rate inspection of network packets with software tools has al-
ways been challenging, especially since the architecture of general-
purpose computers is not designed for this scope. In this vein, sev-
eral technologies have been proposed to improve the performance
of packet processing. They usually leverage hardware acceleration
capabilities present in network interface cards and CPUs (for in-
stance, checksum offloading, DMA, NUMA, CPU pinning, and RSS),
reduce the implicit overhead in system calls (due to the context
switching between kernel and user space) and packet copies in
memory.

In more detail, the most effective approach is kernel bypass,
which replaces the networking stack with an alternative path. No-
table examples are PF_RING [13] and Netmap [14], which map NIC
memory and registers to userland to avoid the need of copying pack-
ets. To support such a paradigm, applications must re-implement
common networking utilities and protocols. To partially overcome
this issue, DPDK [15] provides a large set of libraries for common
packet-intensive tasks, whereas OpenOnload [16] uses a hybrid
architecture, which dynamically selects between user-space and
kernel mode for any network flow. To further reduce the impact
of context switches in the hardware, Vector Packet Processing [17]
exploits the persistence of common information in the processor
caches. In this case, it collects and processes large batches of pack-
ets (called vectors). From the viewpoint of supporting security
appliances and operations, [13–17] have been largely used in mid-
dleboxes for intrusion detection, firewalling, flow monitoring, and
mitigation of denial of service attacks.

Even if kernel bypass is a very effective mechanism for simple
networking processes (e.g., packet forwarding and routing), the
implementation of generic communication channels is not trivial.
Hence, many frameworks make use of kernel bypass technology to
create common processing patterns: Click [18], BESS [19], Snabb
[20], just to mention a few. In this case, the adoption of fixed pro-
cessing patterns may jeopardize the implementation of tailored
monitoring and detection features.
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More recently, eBPF was introduced to go beyond simple packet
filtering. Even if it cannot reach the performance of kernel bypass
mechanisms, it represents a very flexible and efficient solution for
making custom operations on the traffic processed by the host. eBPF
has beenmainly conceived for investigating the kernel performance,
while security-related tools are largely missing. Interestingly, many
eBPF-based tools are being integrated in the Cilium platform [21].
The flexibility of eBPF and the possibility to precisely monitor and
trace the kernel make this framework a really promising technology
for discovering and investigating a large variety of stegomalware
[22, 23] within single hosts or complex digital infrastructures [24].

7 CONCLUSION AND FUTUREWORK
In this paper we have introduced our framework bccstego, and the
first tool we developed for collecting statistics on IPv6 header fields.
Differently from other approaches, we leveraged in-kernel code
augmentation to reduce the development effort without impacting
the packet processing performances provided by Linux. Scope of
the tool is to provide a foundation to support the detection of ste-
gomalware leveraging network covert channels. In this perspective,
bccstego should not be conceived as a tool working “out of the
box" but it has to be considered as the part of a larger framework
that aggregates information from complementary sources.

Future work will aim at extending the tools to other protocols,
as well as to test the performances of bccstego when jointly used
for feeding algorithms aiming at revealing the presence of network
covert channels.
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