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Abstract In 1982, E. Trillas introduced the notion of indistinguishability op-
erator with the main aim of fuzzifying the crisp notion of equivalence relation.
In the study of such a class of operators, an outstanding property must be
stressed. Concretely, there exists a duality relationship between indistinguisha-
bility operators and metrics. The aforesaid relationship was deeply studied by
several authors that introduced a few techniques to generate metrics from
indistinguishability operators and vice-versa. In the last years a new gener-
alization of the metric notion has been introduced in the literature with the
purpose of developing mathematical tools for quantitative models in Computer
Science and Artificial Intelligence. The aforesaid generalized metrics are known
as relaxed metrics. The main purpose of the present paper is to explore the
possibility of making explicit a duality relationship between indistinguisha-
bility operators and relaxed metrics in such a way that the aforementioned
classical techniques to generate both concepts, one from the other, can be
extended to the new framework.
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1 Introduction

Throughout this paper we will assume that the reader is familiar with the
basics of triangular norms (see [15] for a deeper treatment of the topic). In [22],
E. Trillas introduced the notion of T -indistinguishability operator with the aim
of fuzzifying the classical (crisp) notion of equivalence relation. Let us recall
that, according to [22] (see also [15,19]), given a t-norm T : [0, 1] × [0, 1] →
[0, 1], a T -indistinguishability operator on a nonempty set X is a fuzzy relation
E : X ×X → [0, 1] satisfying for all x, y, z ∈ X the following conditions

(i) E(x, x) = 1 (Reflexivity),
(ii) E(x, y) = E(y, x) (Symmetry),
(iii) T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity).

A T -indistinguishability operator E is said to separate points provided that
E(x, y) = 1⇒ x = y for all x, y ∈ X.

In the literature the relationship between metrics and T -indistinguishability
operators has been studied in depth for several authors [3,8,12,15,18,19,23].
Let us recall a few facts about metric spaces in order to explicitly state the
aforesaid relationship. Following [5], a pseudo-metric on a nonempty set X is
a function d : X × X → [0,∞] such that, for all x, y, z ∈ X, the following
properties hold:

(i) d(x, x) = 0,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y) + d(y, z).

A pseudo-metric d on X is called pseudo-ultrametric if it satisfies, in ad-
dition, for all x, y, z ∈ X the following inequality:

(iv) d(x, z) ≤ max{d(x, y), d(y, z)}.

Of course, a pseudo-metric (pseudo-ultrametric) d on X is called a metric
(ultrametric) provided that it satisfies, in addition, the following axiom for all
x, y ∈ X:

(i’) d(x, y) = 0⇒ x = y.

Regarding the relationship between (pseudo-)metrics and indistinguisha-
bility operators, the next results make it explicit. The first one introduces a
technique that allows to construct (pseudo-)metrics from indistinguishability
operators.

Theorem 1 Let X be a nonempty set and let T ∗ be a t-norm with additive
generator fT∗ : [0, 1]→ [0,∞]. Let dE : X×X → [0,∞] be the function defined
by

dE(x, y) = fT∗(E(x, y))

for all x, y ∈ X. If T is a t-norm, then the following assertions are equivalent:
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1) T ∗ ≤ T (i.e., T ∗(x, y) ≤ T (x, y) for all x, y ∈ [0, 1]).
2) For any T -indistinguishability operator E on X the function dE is a pseudo-

metric on X.
3) For any T -indistinguishability operator E on X that separates points the

function dE is a metric on X.

The second one introduces a method to revert the technique given by The-
orem 1, i.e., to construct now indistinguishability operators from (pseudo-
)metrics.

Theorem 2 Let T ∗ be a continuous Archimedean t-norm with additive gener-
ator fT∗ : [0, 1]→ [0,∞]. Let Ed : X ×X → [0, 1] be the fuzzy binary relation
defined by

Ed(x, y) = f
(−1)
T∗ (d(x, y))

for all x, y ∈ X. If d is a pseudo-metric on X, then Ed is a T ∗-indistingui-
shability operator. Moreover, the T ∗-indistinguishability operator Ed separates
points if and only if d is a metric on X.

In the last years a few generalizations of the metric notion have been intro-
duced in the literature with the purpose of developing suitable mathematical
tools for quantitative models in Computer Science and Artificial Intelligence.
Concretely, the notion of dislocated metric, dislocated ultrametric, weak par-
tial (pseudo-)metric and partial (pseudo-)metric have been studied and applied
to Logic Programming in [10,11], Domain Theory in [9,20,21], Denotational
Semantics in [16,17] and Asymptotic Complexity of Programs in [1], respec-
tively. Each of the preceding generalized metric notions can be retrieved as
a particular case of a new notion, called relaxed metric, which has been in-
troduced recently in [5]. Let us recall, according to [5], the notion of relaxed
metric.

Definition 1 A relaxed pseudo-metric on a nonempty set X is a function
d : X ×X → [0,∞] which satisfies for all x, y, z the following:

(i) d(x, y) = d(y, x),
(ii) d(x, y) ≤ d(x, z) + d(z, y).

We will say that a relaxed pseudo-metric d on a nonempty set satisfies
the small self-distances (SSD for short) property in the spirit of [9] whenever
d(x, x) ≤ d(x, y) for all x, y ∈ X. Moreover, a relaxed pseudo-metric d is a
relaxed metric provided that it satisfies the following separation property for
all x, y ∈ X:

(iii) d(x, x) = d(x, y) = d(y, y)⇒ x = y.

Furthermore, a relaxed (pseudo-)metric d on X will be called a relaxed (pse-
udo-)ultrametric if satisfies in addition, for all x, y, z, the following inequality:

(iv) d(x, y) ≤ max{d(x, z), d(z, y)}.
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The following example gives an instance of a relaxed pseudo-metric which
is not a pseudo-metric.

Example 1 Let X = {1, 2, 3}. Define the function dX : X ×X → [0, 1] by

dX(a, b) =

1 if (a, b) = (1, 2) or (a, b) = (2, 1),

1
2 otherwise.

A straightforward computation shows that dX is a relaxed pseudo-metric on
X which satisfies the SSD property. However, dX is not a pseudo-metric, since
dX(x, x) = 1

2 . Observe that defining d̂X(1, 1) = 1 and d̂X(x, y) = dX(x, y) oth-
erwise, we obtain an instance of relaxed pseudo-metric which is not a pseudo-
metric and, in addition, it does not satisfy the SSD property.

Recently, it has been discussed that the notion of indistinguishability oper-
ator and relaxed metric are closely related. Indeed, in [5,6] it has been stated
that the logical counterpart for relaxed metrics is, in some sense, a general-
ized indistinguishability operator. On account of [5] (see also [14]), the notion
of generalized indistinguishability operator related to relaxed metrics can be
formulated as follows:

Definition 2 Let X be a non-empty set and let T : [0, 1]× [0, 1]→ [0, 1] be a
t-norm. A relaxed T -indistinguishability operator E on X is a fuzzy relation
E : X ×X → [0, 1] satisfying the following properties for any x, y, z ∈ X:

(i) E(x, y) = E(y, x),
(ii) T (E(x, z), E(z, y)) ≤ E(x, y).

Moreover, a relaxed T -indistinguishability operator E satisfies the small-self
indistinguishability (SSI for short) property provided that

(i) E(x, y) ≤ E(x, x).

for all x, y ∈ X. Furthermore, a relaxed T -indistinguishability operator E is
said to separate points provided that E(x, y) = E(x, x) = E(y, y)⇒ x = y for
all x, y ∈ X.

Notice that the notion of T -indistinguishability operator is retrieved as a
particular case of relaxed T -indistinguishability operator whenever the relaxed
T -indistinguishability operator satisfies also the reflexivity. In fact, a relaxed
indistinguishability operator is an indistinguishability operator if and only
if it is reflexive. The same occurs when we consider T -indistinguishability
operators that separate points. Furthermore, it must be stressed thatM -valued
equalities are exactly relaxed T -indistinguishability operators with the SSI
property when the t-norm T is left-continuous and the underlaying GL-monoid
M is exactly ([0, 1],≤, T ) (see, for instance, [13,14]).

The next examples give instances of relaxed indistinguishability operators
which are not indistinguishability operators.
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Example 2 Fix k ∈]0, 1[. Consider the fuzzy binary relation Ek : R+ → [0, 1]
defined by

E(x, y) = k

for x, y ∈ R+. It is obvious that Ek is a relaxed TMin-indistinguishability
operator which is not a TMin-indistinguishability operator because E(x, x) =
k 6= 1 for each x ∈ R+. Notice that Ek satisfies the SSI property but it does
not separate points.

Example 3 Let Σ be a nonempty alphabet. Denote by Σ∞ the set of all finite
and infinite sequences over Σ. Given v ∈ Σ∞ denote by l(v) the length of v.
Thus l(v) ∈ N ∪ {∞} for all v ∈ Σ∞. Moreover, if ΣF = {v ∈ Σ∞ : l(v) ∈ N}
and Σ∞ = {v ∈ Σ∞ : l(v) = ∞}, then Σ∞ = ΣF ∪ Σ∞. Define the fuzzy
binary relation EΣ : Σ∞ ×Σ∞ → [0, 1] by

EΣ(u, v) = 1− 2−l(v,w)

for all u, v ∈ Σ∞, where l(v, w) denotes the longest common prefix between v
and w. Of course we have adopted the convention that 2−∞ = 0. Then it is not
hard to check that EΣ is a relaxed TMin-indistinguishability operator which is
not a TMin-indistinguishability operator. Notice that EΣ(u, u) = 1− 1

2l(u)
for all

u ∈ Σ∞ and that EΣ(u, u) = 1⇔ u ∈ Σ∞. It is clear that EΣ satisfies the SSI
property and separates points. Clearly EΣ is not a TMin-indistinguishability
operator because EΣ(u, u) < 1 for each x ∈ ΣF .

The following example shows that there are relaxed indistinguishability
operators that do not satisfy the SSI property.

Example 4 Let X be the set considered in Example 1. Define the fuzzy binary
relation EX : X ×X → [0, 1] by

EX(a, b) =


1
4 if (a, b) = (1, 1),

1
2 otherwise.

A straightforward computation yields that EX is a relaxed TP -indistingui-
shability operator which does not separate points, where TP denotes the prod-
uct t-norm. Moreover, EX does not satisfy the SSI property, since EX(1, 3) = 1

2
and EX(1, 1) = 1

4 .

Motivated, on the one hand, by the exposed facts and, on the other hand,
by the utility of generalized metrics in Computer Science and Artificial Intel-
ligence, the target of this paper is to study deeply the relationship between
both concepts, relaxed indistinguishability operators and relaxed metrics, and
try to extend the methods given in Theorems 1 and 2 to this new context.
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2 From relaxed indistinguishability operators to relaxed metrics

In this section we focus our work on the possibility of extending Theorem
1 to the relaxed framework. To this end, we will structure our study in two
subsections. The first one, Subsection 2.1, will be devoted to make clear the
relationship between relaxed metrics and relaxed TMin-indistinguishability op-
erators, where TMin stands for the minimum t-norm. The second one, Sub-
section 2.2, will be devoted to specify the correspondence between realaxed
T -indistinguishability operators and relaxed metrics whenever one considers
t-norms T with additive generator.

2.1 Relaxed TMin indistinguishability

According to [24] (see also [19]), the relationship between TMin-indistingui-
shability operators and metrics is given by the next result.

Proposition 1 Let X be a nonempty set and let E : X × X → [0, 1] be a
fuzzy relation. Then the following assertions are equivalent:

1) E is a TMin-indistinguishability operator.
2) The function dE is a pseudo-ultrametric on X, where dE(x, y) = 1−E(x, y)

for all x, y ∈ X.

Moreover, E separates points if and only if dE is a ultrametric on X.

Next we show that the preceding result can be easily extended to our new
context.

Proposition 2 Let X be a nonempty set and let E be a fuzzy relation on X.
Then the following assertions are equivalent:

1) E is a relaxed TMin-indistinguishability operator.
2) The function dE is a relaxed pseudo-ultrametric on X, where dE(x, y) =

1− E(x, y) for all x, y ∈ X.

Moreover, E separates points if and only if dE is a relaxed ultrametric on X.

Proof 1)⇔ 2). It is clear that

E(x, y) = E(y, x)⇔ 1− E(x, y) = 1− E(y, x)⇔ dE(x, y) = dE(y, x)

for all x, y ∈ X. Next fix x, y, z ∈ X. Then we have that the next inequality

min{E(x, z), E(z, y)} ≤ E(x, y)

is equivalent to

1−max{1− E(x, z), 1− E(z, y)} ≤ E(x, y).

Moreover, the preceding inequality is equivalent to the next one:
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−1 + max{1− E(x, z), 1− E(z, y)} ≥ −E(x, y).

At the same time the above inequality is equivalent to the following one:

max{1− E(x, z), 1− E(z, y)} ≥ 1− E(x, y).

Furthermore, the last inequality is equivalent to

max{dE(x, z), dE(z, y)} ≥ dE(x, y).

Therefore E is a relaxed TMin-indistinguishability operator if and only if dE
is a relaxed pseudo-ultrametric on X.

Finally, it is clear that

E(x, y) = E(x, x) = E(y, y)⇔ 1− E(x, y) = 1− E(x, x) = 1− E(y, y)

⇔ dE(x, y) = dE(x, x) = dE(y, y)

for all x, y ∈ X. It follows that E separates points if and only if dE is a relaxed
ultrametric on X. �

Corollary 1 Let X be a nonempty set and let E be a TMin-indistinguishability
operator on X. Then E fulfills the SSI property if and only if dE fulfills the
SSD property.

Proof Since E is a TMin-indistinguishability operator we have that

min{E(x, z), E(z, y)} ≤ E(x, y)

for all x, y ∈ X. So taking x = y in the preceding inequality we obtain that

E(x, z) = min{E(x, z), E(z, x)} ≤ E(x, x)

for all x, z ∈ X. Thus every TMin-indistinguishability operator satisfies the
SSI property. Clearly

E(x, y) ≤ E(x, x)⇔ 1− E(x, x) ≤ 1− E(x, y)⇔ dE(x, x) ≤ dE(x, y)

for all x, y ∈ X. Therefore E fulfills the SSI property if and only if dE fulfills
the SSD property.

It must be pointed out that relaxed TMin-indistinguishability operators
match up with Ω-valued equalities in the sense of [7] when the underlaying
Heyting algebra is exactly ([0, 1],≤).

The next example illustrates Theorem 2.
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Example 5 Consider the relaxed TMin-indistinguishability operator EΣ intro-
duced in Example 3. Proposition 2 guarantees that the function dEΣ given
by

dEΣ (u, v) = 1− EΣ(u, v)

for all u, v ∈ Σ∞ is a relaxed pseudo-ultrametric. Since EΣ satisfies the SSI
property and separates points we get by Corollary 1 that the relaxed pseudo-
ultrametric dEΣ is, in fact, a relaxed ultrametric which fulfills the SSD prop-
erty. Observe that the preceding facts agree with those pointed out in [5] (see
also [16]).

2.2 T-norms with additive generator and relaxed T -indistinguishabilities

In this section we study the duality relationship that exists between relaxed
metrics and relaxed indistinguishability operators when the t-norm under con-
sideration admits an additive generator. Notice that the study developed in
Subsection 2.1 considers relaxed TMin-indistinguishability operators and that
the t-norm TMin does not admit additive generator. In particular we wonder
whether Theorem 1 can be stated in our more general framework. The next re-
sult provides an affirmative answer to the posed question. Although few parts
of the proof run following the same arguments to those given in the proof of
Theorem 1, we have included all of them for the sake of completeness.

Theorem 3 Let X be a nonempty set and let T ∗ be a t-norm with additive
generator fT∗ : [0, 1]→ [0,∞]. Given a fuzzy relation E, let dE be a function
defined by

dfT∗
E (x, y) = fT∗(E(x, y))

for all x, y ∈ X. If T is a t-norm, then the following assertions are equivalent:

1) T ∗ ≤ T .

2) For any relaxed T -indistinguishability operator E on X the function dfT∗
E

is a relaxed pseudo-metric on X.
3) For any relaxed T -indistinguishability operator E on X that separates points

the function dfT∗
E is a relaxed metric on X.

Proof 1) ⇒ 2). Since E(x, y) = E(y, x) for all x, y ∈ X we have dfT∗
E (x, y) =

dfT∗
E (y, x) for all x, y ∈ X. Next we show that

dfT∗
E (x, z) ≤ dfT∗

E (x, y) + dfT∗
E (y, z)

for all x, y ∈ X. To this end note that if E is a relaxed T -indistinguishability
operator, then E is also a relaxed T ∗-indistinguishability operator. Thus we
have that

T ∗(E(x, y), E(y, z)) ≤ E(x, z)

for all x, y, z ∈ X.
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Since fT∗ is an additive generator of the t-norm T ∗ we have that

T ∗(u, v) = f
(−1)
T∗ (fT∗(u) + fT∗(v))

for all u, v ∈ [0, 1]. It follows that

T ∗(E(x, y), E(y, z)) = f
(−1)
T∗ (fT∗(E(x, y)) + fT∗(E(y, z)))

for all x, y, z ∈ X. Whence we have that

f
(−1)
T∗ (fT∗(E(x, y)) + fT∗(E(y, z))) ≤ E(x, z)

for all x, y, z ∈ X.
Since fT∗ is decreasing we deduce, from the preceding inequality, that

fT∗

(
f
(−1)
T∗ (fT∗(E(x, y)) + fT∗(E(y, z)))

)
≥ fT∗(E(x, z)).

Next we distinguish two possible cases:

Case 1. fT∗(E(x, y))+fT∗(E(y, z)) ∈ Ran(fT∗), where we haveRan(fT∗) =
{fT∗(x) : x ∈ [0, 1]}. Then there exists u ∈ [0, 1] such that

fT∗(u) = fT∗(E(x, y)) + fT∗(E(y, z)).

Hence we obtain that

fT∗

(
f
(−1)
T∗ (fT∗(E(x, y)) + fT∗(E(y, z))

)
= fT∗

(
f
(−1)
T∗ (fT∗(u))

)
= fT∗(u)

= fT∗(E(x, y)) + fT∗(E(y, z)).

Therefore

dfT∗
E (x, y) + dfT∗

E (y, z) = fT∗(E(x, y)) + fT∗(E(y, z)) ≥

fT∗(E(x, z)) = dfT∗
E (x, z).

Case 2. fT∗(E(x, y)) + fT∗(E(y, z)) 6∈ Ran(fT∗). Then the fact that fT∗ is
an additive generator of the t-norm T ∗, and thus that Ran(fT∗) is relatively
closed, implies that fT∗(E(x, y))+fT∗(E(y, z)) > fT∗(0). Thus, taking into
account that fT∗ is decreasing we have that fT∗(0) ≥ fT∗(E(x, z)). Whence
we deduce that

dfT∗
E (x, y) + dfT∗

E (y, z) = fT∗(E(x, y)) + fT∗(E(y, z)) ≥

fT∗(E(x, z)) = dfT∗
E (x, z).
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Therefore we conclude that the function dfT∗
E is a relaxed pseudo-metric

on X.

2) ⇒ 3). Since E is a T -indistinguishability operator we have that the
function dE is a relaxed pseudo-metric on X. Moreover, on the one hand, the
fact that E separates points guarantees that E(x, y) = E(x, x) = E(y, y) ⇔
x = y. On the other hand, the fact that fT∗ is an additive generator of the
t-norm T ∗ implies that fT∗ is strictly decreasing and, hence, injective. So we
obtain that

dfT∗
E (x, y) = dfT∗

E (x, x) = dfT∗
E (y, y)⇔

fT∗(E(x, y)) = fT∗(E(x, x)) = fT∗(E(y, y))⇔

E(x, y) = E(x, x) = E(y, y)⇔ x = y.

Consequently the function dfT∗
E is a relaxed metric on X.

3) ⇒ 1). Let (a, b) ∈ [0, 1]2. We have to show that T ∗(a, b) ≤ T (a, b). Of
course, T ∗(a, b) = T (a, b) whenever a = 1 or b = 1. So we can assume that
a, b ∈ [0, 1[. Now fix three different elements x, y, z ∈ X and define the fuzzy
binary relation E on X as follows:

E(u, v) =


T (a, b) if u = x and v = y

a if u = x and v = z

b if u = y and v = z

,

E(u, v) = E(v, u) for all u, v ∈ {x, y, z}, E(u, u) = 1 for all u ∈ X and
E(u, v) = 0 otherwise. A simple computation shows that E is a relaxed T -

indistinguishability operator which separates points. Thus dfT∗
E is a relaxed

metric on X. Consequently

fT∗(E(x, y)) ≤ fT∗(E(x, z)) + fT∗(E(z, y)).

Taking into account that

T ∗(u, v) = f
(−1)
T∗ (fT∗(u) + fT∗(v))

for all u, v ∈ [0, 1] and that f
(−1)
T∗ is decreasing, we deduce that

f
(−1)
T∗ (fT∗(E(x, y))) ≥

f
(−1)
T∗ (fT∗(E(x, z)) + fT∗(E(z, y))) = T ∗(E(x, z), E(z, y)).

Since f
(−1)
T∗ (fT∗(E(x, y))) = E(x, y), we conclude that

T (a, b) = E(x, y) ≥ T ∗(E(x, z), E(z, y)) = T ∗(a, b),

as we claim. �
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It is worth pointing out that Theorems 1 and 3 disclose a surprising con-
nection (equivalence) between indistinguishability operators and the relaxed
ones.

In [4,8,23] (see also [2,3])), the subsequent characterization was given in
order to establish the relationship between indistinguishability operators and
(pseudo-)metrics. Concretely, the aforesaid characterization states the follow-
ing.

Theorem 4 Let X be a nonempty set and let E be a fuzzy binary relation on

X. Let dE be the function defined by d
fTL
E (x, y) = 1−E(x, y) for all x, y ∈ X.

If T is a t-norm, then the following assertions are equivalent:

1) TL ≤ T , where TL denotes the Lukasiewicz t-norm.

2) For any T -indistinguishability operator the function d
fTL
E is a pseudo-metric

on X.
3) For any T -indistinguishability operator that separates points the function

d
fTL
E is a metric on X.

Taking in Theorem 3, T ∗ as the Lukasiewicz t-norm TL and the function
fT∗ as the function fTL : [0, 1]→ [0,∞] given by fTL(x) = 1−x for all x ∈ [0, 1]
we obtain as a particular case the following results, one of them, Corollary 2,
providing an extension of Theorem 4.

Corollary 2 Let X be a nonempty set and let E : X ×X → [0, 1] be a fuzzy
relation. Let dE : X×X → R+ be the function defined by dE(x, y) = 1−E(x, y)
for all x, y ∈ X. If T : [0, 1] × [0, 1] → [0, 1] is a t-norm, then the following
assertions are equivalent:

1) TL ≤ T .
2) For any relaxed T -indistinguishability operator the function dE is a relaxed

pseudo-metric on X.
3) For any relaxed T -indistinguishability operator that separates points the

function dE is a relaxed metric on X.

When we consider in Theorem 3 the t-norm T as the minimum t-norm TM
and the function fT∗ as an additive generator of any t-norm T ∗ we retrieve as
a particular case the following result.

Corollary 3 Let X be a nonempty set and let E be a relaxed TMin-indistin-
guishability operator on X. Then the function dfT∗

E is a relaxed pseudo-metric
on X for any additive generator fT∗ of a t-norm T ∗.

Of course the preceding results agree with Theorem 1 because every relaxed
pseudo-ultrametric is a relaxed pseudo-metric.

If we consider in Theorem 3 the t-norm T ∗ as the Drastic product TD
and the function fT∗ the additive generator of TD given by fTD (x) = 2− x if
x ∈ [0, 1[ and f(1) = 0, then we get as a consequence the following result.
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Corollary 4 Let X be a nonempty set and let T be a t-norm. If E is a re-

laxed T -indistinguishability operator on X, then the function d
fTD
E is a relaxed

pseudo-metric on X.

Clearly if we consider in Corollaries 3 and 4 indistinguishability operators
that separate points then the obtained relaxed pseudo-metrics become relaxed
metrics.

Clearly Theorem 3 provides a technique to generate relaxed pseudo-metrics
from relaxed indistinguishability operators. Observe that in spite of the afore-
mentioned equivalence between Theorems 1 and 3, the new technique gives
instances of relaxed pseudo-metric which are not pseudo-metrics. The follow-
ing examples illustrate the exposed facts.

Example 6 Consider the fuzzy binary relation EMin on [0, 1] given by

EMin(x, y) = min{x, y}

for all x, y ∈ [0, 1]. Let fTP : [0, 1] → [0,∞] be the additive generator of the
product t-norm TP given by fTP (x) = − log(x) for all x ∈ [0, 1]. Theorem 3

yields that the function d
fTP
EMin

is a relaxed metric on [0, 1], since EMin is a
TP -indistinguishability operator that separates points. Notice that

d
fTP
EMin

(x, y) = − log(min{x, y})

for all x, y ∈ [0, 1]. It is clear that EMin does not satisfy the reflexivity and,

thus, that d
fTP
EMin

is not a (pseudo-)metric on X.

Example 7 Consider the set X introduced in Example 1. Define the fuzzy
binary relation ÊX : X ×X → [0, 1] by

ÊX(a, b) =


1
4 if (a, b) = (1, 2) or (a, b) = (2, 1),

1
2 otherwise.

A straightforward computation yields that ÊX is a relaxed TP -indistingui-
shability operator which does not separate points. Moreover, assertion 2) in

Theorem 3 (or assertion 2) in Corollary 2) gives that the function d
fTL
ÊX

defined

by d
fTL
ÊX

(x, y) = 1 − ÊX(x, y) for all x, y ∈ X is a relaxed pseudo-metric on

X. Of course, since ÊX does not separate points Theorem 3 (or Corollary 2)
provides that dÊX is a relaxed pseudo-metric that is not a relaxed metric.

Moreover, it is clear that ÊX is not reflexive and, thus, that d
fTL
ÊX

is not a

pseudo-metric on X.

It must be stressed that there are relaxed T -indistinguishability operators
that do not satisfy the SSI property such as Example 4 shows. Taking into
account the aforementioned fact we obtain, from Theorem 3, the result below.
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Corollary 5 Let X be a nonempty set and let T ∗ be a t-norm with additive
generator fT∗ : [0, 1] → [0,∞]. Moreover, let E be a relaxed T -indistingui-
shability operator on X such that T ∗ ≤ T . Then E fulfills the SSI property if
and only if dfT∗

E fulfills the SSD property.

Proof Theorem 3 guarantees that dfT∗
E is a relaxed pseudo-metric on X. Since

dfT∗
E (x, y) = fT∗ (E(x, y))

for all x, y ∈ X and fT∗ is strictly increasing we have that

dfT∗
E (x, x) ≤ dE(x, y)⇔ fT∗ (E(x, x)) ≤ fT∗ (E(x, y))⇔ E(x, y) ≤ E(x, x)

for all x, y ∈ X. Therefore E fulfills the SSI property if and only if dfT∗
E fulfills

the SSD property. �

In the light of Corollary 5 we can elucidate that the relaxed pseudo-metric

d
fTL
ÊX

given in Example 7 does not satisfy the SSD property, since the relaxed

TL-indistinguishability operator ÊX does not satisfy the SSI property. How-
ever, Corollary 5 guarantees that the relaxed pseudo-metric, introduced in

Example 6, d
fTP
EMin

induced by the TP -indistinguishability operator EX fulfills
the SSD property, since EMin fulfills the SSI property.

3 From relaxed metrics to relaxed indistinguishability operators

This section is devoted to explore the possibility of developing a technique that
allows to induce relaxed indistinguishability operators from relaxed pseudo-
metrics. In particular we inquire if Theorem 2 can be stated in our more general
framework. The next result answers the framed question. Although the proof
of assertion 1) in the aforesaid result runs following the same arguments to
those given in the proof of Theorem 2, we have included it for the sake of
completeness.

Theorem 5 Let X be a nonempty set and let T be a continuos Archimedean
t-norm with additive generator fT : [0, 1] → [0,∞]. If d is a relaxed pseudo-
metric on X and Ed is the binary fuzzy relation defined by

Ed(x, y) = f
(−1)
T (d(x, y))

for all x, y ∈ X, then the following assertions hold:

1) Ed is a relaxed T -indistinguishability operator.
2) If Ed is a relaxed T -indistinguishability operator that separates points for

every relaxed pseudo-metric d on X, then T is strict.
3) Ed is a relaxed T -indistinguishability operator that separates points pro-

vided that d is a relaxed metric on X if and only if T is strict.
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4) d is a relaxed metric on X provided that Ed is a relaxed T -indistingui-
shability operator that separates points.

5) If d is a relaxed metric such that d(x, y) ≤ fT (0) for all x, y ∈ X, then Ed
is a relaxed T -indistinguishability operator that separates points.

6) Ed is a relaxed T -indistinguishability operator which satisfies the SSI prop-
erty provided that the relaxed pseudo-metric d on X satisfies the SSD prop-
erty.

Proof 1). Clearly Ed(x, y) = Ed(y, x) for all x, y ∈ X. Next we show that

T (Ed(x, y), Ed(y, z)) ≤ Ed(x, z)

for all x, y, z ∈ X. To this end, fix x, y, z ∈ X. Since T is a continuos
Archimedean t-norm the continuity of the additive generator fT is guaranteed
(and, thus, left-continuous at 1). So fT is strictly decreasing and continuous.
Hence there exists f−1T which is also strictly decreasing on Ran(fT ). Taking
into account the preceding facts we have that

f
(−1)
T (x) = f−1T (min{fT (0), x})

for all x ∈ [0,∞]. Therefore

Ed(x, y) = f
(−1)
T (d(x, y)) = f−1T (min{fT (0), d(x, y)})

for all x, y ∈ X. Since

d(x, z) ≤ d(x, y) + d(y, z)

we have that

f−1T (min{fT (0), d(x, z) + d(z, y)}) ≤ f−1T (min{fT (0), d(x, z)}) = Ed(x, z).

A straightforward computation gives that

min{fT (0), fT (Ed(x, y)) + fT (Ed(y, z))} = min{fT (0), d(x, y) + d(y, z)},

where
fT (Ed(x, y)) = min{fT (0), d(x, y)}

and
fT (Ed(y, z)) = min{fT (0), d(y, z)}.

Thus we obtain that

f
(−1)
T (fT (Ed(x, y)) + fT (Ed(y, z))) =

f−1T min{fT (0), fT (Ed(x, y)) + fT (Ed(y, z))} ≤ Ed(x, z).
Since fT is an additive generator of T we have that

T (Ed(x, y), Ed(y, z)) = f
(−1)
T (fT (Ed(x, y)) + fT (Ed(y, z)))
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and, thus, we have deduced that

T (Ed(x, y), Ed(y, z)) ≤ Ed(x, z).

Therefore we have shown that Ed is a relaxed T -indistinguishability operator
on X.

2). For the purpose of contradiction suppose that T is not strict. Then

fT (0) < ∞. Consider the relaxed metric dfT+ : [1,∞[×[1,∞[→ [0,∞] defined

by dfT+ (x, y) = fT (0)(x+ y) for all x, y ∈ [1,∞[. Notice that 0 < dfT+ (x, y) for
all x, y ∈ [1,∞[, since 0 = fT (1) < fT (0). By hypothesis we have that E

d
fT
+

is a relaxed T -indistinguishability operator that separates points. However,
E
d
fT
+

(1, 2) = E
d
fT
+

(1, 1) = E
d
fT
+

(2, 2) = 0 and 1 6= 2.

3). Assertion 2) yields that if Ed is a relaxed T -indistinguishability operator
that separates points, then T is strict. Now we show the converse. Assume that
T is strict and that d is a relaxed metric on X. By assertion 1) we deduce that
Ed is a relaxed T -indistinguishability operator. We only need to prove that
Ed separates points. Since T is strict we have that fT is bijective. Thus the
fact that fT is strictly decreasing and continuous yields that there exists f−1T
which is strictly decreasing and f

(−1)
T (x) = f−1T (x) for all x ∈ [0,∞]. Assume

that there exists x, y ∈ X such that Ed(x, y) = Ed(x, x) = Ed(y, y). Then

f
(−1)
T (d(x, y)) = f

(−1)
T (d(x, x)) = f

(−1)
T (d(y, y)).

Hence

f−1T (d(x, y)) = f−1T (d(x, x)) = f−1T (d(y, y))

and, consequently, d(x, y) = d(x, x) = d(y, y). The fact that d is a relaxed
metric gives that x = y. Therefore the relaxed T -indistinguishability operator
Ed separates points.

4). Suppose that there exist x, y ∈ X such that d(x, y) = d(x, x) = d(y, y).
Then

f
(−1)
T (d(x, y)) = f

(−1)
T (d(x, x)) = f

(−1)
T (d(y, y)).

Thus

Ed(x, y) = Ed(x, x) = Ed(y, y).

Since the T -indistinguishability operator Ed separates points we deduce that
x = y and, thus, that d is a relaxed metric on X.

5). Since d(x, y) ≤ fT (0) for all x, y ∈ X we have that

Ed(x, y) = f−1T (min{fT (0), d(x, y)}) = f−1T (d(x, y))

for all x, y ∈ X. Consider x, y ∈ X such that

Ed(x, y) = Ed(x, x) = Ed(y, y).



16 Pilar Fuster-Parra et al.

Since f−1T is strictly decreasing on Ran(fT ) we have that

d(x, y) = d(x, x) = d(y, y).

The fact that d is a relaxed metric yields that x = y. Therefore the relaxed
T -indistinguishability operator Ed separates points.

6). Assume that d is a relaxed pseudo-metric on X that fulfills the SSD

property. Then d(x, x) ≤ d(x, y) for all x, y ∈ X. Since f
(−1)
T is decreasing we

have that

Ed(x, y) = f
(−1)
T (d(x, y)) ≤ f (−1)T (d(x, x)) = Ed(x, x)

for all x, y ∈ X. �

The following examples show that, in general, the relaxed T -indistingui-
shability operator Ed provided by Theorem 5 does not separate points and
does not enjoy the SSI property.

Example 8 Consider the Lukasiewicz t-norm TL, which is continuous and not
strict Archimedean. Let fTL be the additive generator of TL given by fTL(x) =

1 − x for all x ∈ [0, 1]. Then, the pseudo-inverse f
(−1)
TL

of fTL is given by

f
(−1)
TL

(x) = max{1 − x, 0} for all x ∈ [0,∞]. Consider the relaxed metric

d
fTL
+ introduced in the proof of assertion 2) in Theorem 5. Then assertion

1) in Theorem 5 gives that Ed+ is a relaxed TL-indistinguishability operator.
Nevertheless, Ed+ does not separate points. Indeed, Ed+(3, 2) = Ed+(3, 3) =
Ed+(2, 2) = 0 but 3 6= 2.

Example 9 Consider the product t-norm TP , which is TP is continuous and

Archimedean. Moreover, the pseudo-inverse f
(−1)
TP

of the additive generator

fTP (introduced in Example 6) is given by f
(−1)
TP

(x) = e−x for all x ∈ [0,∞].
Consider the relaxed metric d+ on [0,∞[ given by d+(x, y) = x + y for all
x, y ∈ [0,∞[. Then assertion 1) in Theorem 5 gives that Ed+ is a relaxed
TP -indistinguishability operator. Nevertheless, the SSI property is not hold by
Ed+ . Indeed, Ed+(2, 0) = e−2 � e−4 = Ed+(2, 2).

In the next example we show that the continuity of the t-norm cannot be
relaxed in Theorem 5 in order to guarantee the fact that the fuzzy binary
relation is a relaxed indistinguishability operator.

Example 10 Consider the Drastic t-norm TD, which is Archimedean and non
continuous. Moreover, an additive generator fTD of TD is given by

fTD (x) =

{
2− x if x ∈ [0, 1[
0 if x = 1

.

Furthermore, the pseudo-inverse f
(−1)
TD

of the above additive generator is given
by

f
(−1)
TD

(x) =

0 if x ∈ [2,∞]
2− x if x ∈]1, 2]
1 if x ∈ [0, 1]

.
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Consider the relaxed pseudo-metric d+ on [0,∞] introduced in Example 9. It
is clear that

0.5 = Ed+(
1

2
, 1) < TD(Ed+(

1

2
, 0), Ed+(0, 1)) = TD(1, 1) = 1.

It follows that Ed+ is not a relaxed TD-indistinguishability operator.

Notice that Example 11 (below) yields that the converse of assertion 6)
in Theorem 5 is not satisfied in general. In the light of the preceding fact we
assume an additional condition about the relaxed pseudo-metric, inspired by
assertion 5) in Theorem 5 and by Example 9, in order to assure the converse
of the aforesaid assertion.

Theorem 6 Let X be a nonempty set and let T be a continuos Archimedean
t-norm with additive generator fT : [0, 1]→ [0,∞]. Let d be a relaxed pseudo-
metric on X such that d(x, y) ≤ fT (0) for all x, y ∈ X. Then Ed, given as
in Theorem 5, is a relaxed T -indistinguishability operator which fulfills the
SSI property if and only if the relaxed pseudo-metric d on X fulfills the SSD
property.

Proof Assume that d is a relaxed pseudo-metric on X that fulfills the SSD
property. By assertion 6) in Theorem 5, Ed is a relaxed T -indistinguishability
operator which fulfills the SSI property. Suppose that Ed is a relaxed T -
indistinguishability operator which fulfills the SSI property. Then

Ed(x, y) = f
(−1)
T (d(x, y)) ≤ Ed(x, x) = f

(−1)
T (d(x, x))

for all x, y ∈ X. Then we have that

f−1T (min{fT (0), d(x, y)}) ≤ f−1T (min{fT (0), d(x, x)})

for all x, y ∈ X. It follows that

min{fT (0), d(x, x)} ≤ min{fT (0), d(x, y)},

since fT is decreasing. The fact that d(x, y) ≤ fT (0) implies that

d(x, x) = min{fT (0), d(x, x)} ≤ min{fT (0), d(x, y)} = d(x, y).

Whence we conclude that the SSD property is not satisfied by the relaxed
pseudo-metric. �

It must be stressed that the boundness condition in Corollary 6 is always
satisfied whenever the t-norm under consideration is strict.

We end the paper showing that the boundness of the relaxed pseudo-metric
cannot be deleted in Theorem 6.
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Example 11 Consider the pseudo-inverse f
(−1)
TL

of the additive generator fTL
of the Lukasiewicz t-norm as introduced in Example 8. Moreover, consider the

relaxed metric d
fTL
+ introduced in Example 8. It is clear that 1 = fTL(0) <

d
fTL
+ (x, y) for all x, y ∈ [1,∞[. Assertion 1) in Theorem 5 gives that E

d
fTL
+

is a relaxed TL-indistinguishability operator. Besides E
d
fTL
+

saisfies the SSI

property, since
E
d
fTL
+

(x, y) = E
d
fTL
+

(x, x) = 0

for all x, y ∈ [1,∞[. Nonetheless, the relaxed metric d
fTL
+ does not satisfy the

SSD property.

4 Conclusions and Future Work

In the last years many generalized metrics have been introduced in the litera-
ture with the purpose of developing mathematical tools for quantitative mod-
els in Computer Science and Artificial Intelligence. All the aforementioned
metrics are particular cases of the notion of relaxed pseudo-metric. In this
paper we have studied a duality relationship between relaxed pseudo-metrics
and a new class of indistinguishability operators, that we have called relaxed
indistinguishability operators, in such a way that the celebrated techniques
to generate classical pseudo-metrics from indistinguishability operators, and
vice-versa, can be retrieved as a particular case. A few differences between the
classical framework and the new one have been exposed.

Among the aforesaid generalized metrics, it is worth mentioning the so-
called partial pseudo-metrics which satisfy the SSD property and a modified
triangle inequality. Concretely if p is a partial pseudo-metric on X, then

p(x, z) ≤ p(x, y) + p(y, z)− p(y, y) (1)

for all x, y, z ∈ X. Besides, in the literature, as we have mentioned in Section
1, a generalized indistinguishability operator, known as M -valued equality (in
the sense of [13,14]), can be found. Specifically if E is an M -valued equality
on X, then the following transitivity is hold:

T (E(x, y), E(y, y)→T E(y, z)) ≤ E(x, z), (2)

for all x, y, z ∈ X and where →T denotes the T -residuum. In [5,6], partial
pseudo-metrics have been proposed as the logical counterpart for M -valued
equalities. Motivated, on the one hand, by the preceding exposed fact and, on
the other hand, by the fact that the triangle inequality (1) is a refinement of
that one fulfilled by a relaxed pseudo-metric, it seems natural to try to explore
in depth, as a future research, whether (1) and (2) are really dual and, thus,
whether the techniques exposed in the present paper can be adapted in such
a way that partial pseudo-metrics can be generated from M -valued equalities
and vice-versa.
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