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Abstract—Today’s networks undoubtedly require a high level
of protection from cyber threats and attacks. State-of-the-art
solutions that implement Machine Learning (ML) have shown
to improve the accuracy and confidence in threat detection
compared to previous approaches, making it suitable for the de-
tection of today’s sophisticated attacks such as Distributed Denial
of Service (DDoS). However, in real-world deployments, input
data streams take large bandwidth and processing, especially for
Deep Learning (DL) solutions that require extensive input data.
The deployment environments usually have limited bandwidth
and computing resources, such as for the Internet of Things
(IoT). Thus, a lightweight detection solution that satisfies such
constraints is needed. In this paper, we utilize a feature reduction
approach for our DL-based DDoS detector using the Analysis of
Variance (ANOVA), which is used to identify important data
features and reduce the data inputs needed for detection. Our
result shows that we can reduce the data input needed by up
to 84.21% while only reducing 0.1% detection accuracy. We
also provide a detailed analysis of the characteristics of DDoS
attacks using ANOVA and compared our work with recent DL-
based DDoS detection systems to demonstrate that our results
are comparable to existing approaches.

Index Terms—ANOVA, DDoS Detection, Deep Learning, Fea-
ture Selection

I. INTRODUCTION

With the advent of digitalization, the number of data-driven

digital services is expected to rise significantly to meet the

increasing customer demands [1]. These services feed on user

data, then process and integrate them with other services

to extract much more valuable information. In this respect,

cyber threats and attacks that disrupt on-going services are

also on the rise. Among others, Denial of Service (DoS) and

Distributed DoS (DDoS) attacks become prevalent with an

increased projection from the previous years [2]. Valuable

services, when stopped, could result in loss of large sums of

profit. Thus, early detection and prevention of such attacks are

critical topics of interest.
With the recent advancement in Machine Learning (ML),

numerous studies have shifted from rule-based detection (e.g.,

Ingress Filtering [3]) to ML-based detection strategies for the
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detection of DDoS attacks. More specifically, Deep Learning

(DL) methods have been recently developed [4], which is

suitable for more complex data input and more sophisticated

pattern recognition.

However, DL approaches are cumbersome in real-world

deployments [5]. One of the main limitations is the availability

of resources in the deployment environments. For instance,

in the Internet of Things (IoT) environments, the memory,

bandwidth, and computational capacity are limited, especially

on the ultra low-powered gateways. Among others, such

resource constraints are one of the reasons why a centralized

security architecture has been proposed in literature [1], which

executes the heavy computation in a centralized security server

for the security of digital services. In utilizing the centralized

approach, a lightweight agent is deployed in the local environ-

ment, which has the responsibility of monitoring and streaming

the traffic information needed for attack detection. Deployed

local agents also have to respect the resource limitations while

being able to provide large streams of traffic data.

Thus, this work aims to identify and use only the needed

input data for the detection of DDoS attacks by using the

Analysis of Variance (ANOVA) statistical method [6]. ANOVA

is widely used in feature selection (e.g., [7]) since it measures

the significance of numerical features depending on the dif-

ference between the means of the groupings of these features

according to the target vector (class label).

We developed a DL-based detector using the DDoS datasets

provided by the Canadian Institute of Cybersecurity (CIC).

Then, we used the results from ANOVA to significantly reduce

the input data. The evaluation results show that we are able to

achieve this target with a minuscule trade-off with detection

accuracy, allowing for a major cutback in resource utilization

and data input streams from traffic monitoring agents. Also, we

compared our detector to current DL solutions, which achieved

similar detection performance.

This paper is organized as follows. Section II presents

the details of the DDoS detector and explains the flow of

the experiments. Section III provides a detailed data analysis

using the ANOVA statistical method, discussing the important

data features for detection. Section IV presents the evaluation978-1-6654-0522-5/21/$31.00 ©2021 IEEE



Fig. 1: Simplified overview of the DL Detector data pipeline

results of the DL detector and the trade-off between accuracy

and data inputs, as well as the comparison to current DL

solutions. Finally, our concluding remarks are discussed in

Section V.

II. DEEP LEARNING FOR DOS/DDOS

In this section, an overview of the DL architecture is briefly

discussed, followed by the description of the DDoS datasets,

the DL model training specifics, and the evaluation metrics.

A. Architecture

The overview of the architecture is depicted in Figure 1.

It shows a simplified view of the main data pipeline for

the detection of attacks. The DL detector is part of the

centralized security framework that provides programmable

security appliance solutions in the advent of heterogeneous

digital services managed by different service providers, which

are leveraged by both GUARD [8] and ASTRID [9] European

Projects. The detailed discussion for this architecture can be

found in [1].

We show the figure, including the centralized framework,

to point out the locally deployed agent on the client-side. It

is responsible for the extraction of features for attack detec-

tion. For this study, specifically, this agent extracts network

traffic parameters and statistics (e.g., eBPF, Netflow, nProbe,

CICflowmeter) to feed it to the DL attack detectors. Depending

on the agent’s capabilities, the collected traffic information can

range from simple traffic logs, flow statistics to more fine-

grained information such as individual packet information. In

theory, these agents can generate large streams of data, which

could strain the dedicated resource, especially in limited power

and bandwidth setting (e.g., IoT environments). Thus, this

work aims to reduce the input data needed without sacrificing

much of the detection accuracy.

B. Dataset Description and Features

Table I shows the denomination of the datasets used in

this study which are taken from the CIC, University of New

Brunswick (UNB). Only the datasets with DoS/DDoS attacks

were extracted which include ISCXIDS 2012 [10], CICIDS

2017 [11], CSE-CIC-IDS 2018 [11], and CICDDoS 2019 [12].

The ISCXIDS (2012) [10] dataset contains real traffic

traces that include Internet Relay Chat (IRC) Botnet DDoS.

The dataset comes with flow statistics, generated by using

the IBM QRadar appliance together with the attack labels,

TABLE I: Denomination of samples used from CIC Datasets

Dataset Date attack type attacks benign

ISCXIDS 2012 [10] 15/06/2010 IRC Botnet 34760 34760

CICIDS 2017 [11] 07/07/2017
05/07/2017
05/07/2017
05/07/2017
05/07/2017

LOIC (TCP)
Hulk
GoldenEye
slowloris
SlowHTTPtest

128025
231073
10293
5796
5499

97686
440031
-
-
-

CSE-CIC-IDS 2018 [11] 20/02/2018
21/02/2018
21/02/2018
15/02/2018
15/02/2018
16/02/2018
16/02/2018

LOIC (HTTP)
HOIC (TCP)
LOIC (UDP)
GoldenEye
Slowloris
Hulk
SlowHTTPTest

125130
400
360
8851
2417
30287
30391

124914
77876
-
2334
-
97040
-

CICDDoS 2019 [12] 12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019

DNS
LDAP
MSSQL
NTP
NetBIOS
SNMP
SSDP
UDP
Syn
TFTP
UDP-lag
WebDDoS

27065
12798
15981
115149
13530
12072
6016
17085
3025
202160
29635
39

2690
1280
1573
11454
1374
1198
615
1702
320
20250
2989
-

indicating whether the flow is benign or an attack. We used

the CICflowmeter tool [13] to generate the flow features from

the PCAP file and extracted the label information from the

output of the IBM QRadar tool. We used data features from

CICflowmeter to be consistent with the other datasets and

obtained 69,520 total samples as shown in Table I.

The CICIDS (2017), CSE-CIC-IDS (2018), and CICDDoS

(2019) are the latest datasets provided by UNB that include

multiple attacks. These datasets have real data traces in

PCAP format and also have flow features generated by the

CICflowmeter. The attacks include DoS such as DoS Hulk,

GoldenEye, slowloris, and slowHTTPtest. It also includes

DDoS attacks generated by the DDoS Low Orbit Ion Cannon

(LOIC) [10], a tool used for network stress testing which can

also be used to deploy attacks. Finally, protocol-based DDoS

attacks are also included, as reported in Table I.

The extracted network flow samples of all the datasets

contain 76 features that consist of traffic flow statistics. The

main features are the number of packets flows in both forward

and backward direction (abbreviated as fwd and bwd in the

figures), Inter-Arrival Times (IAT) of the packets, packet

length information, header flag counts, and header informa-

tion together with their simple statistical parameters such as

minimum, maximum, average and standard deviation. For the

complete description, the reader can refer to the CICflowmeter

documentation [13].

Fig. 2: The Deep Learning model configuration



(a) ISCXIDS 2012 (Botnet DDoS) (b) CICIDS 2017 (DoS only)

(c) DDoS LOIC TCP (2017) and HTTP (2018) (d) CICDDoS 2019 (DDoS)

Fig. 3: Ranking features using ANOVA and showing the boxplot of the regular and attack flows

C. Deep Learning Approach

We split each dataset and use 75% for the training and 25%

for the final testing data. In the training phase, 10% of the

training data was used for validation. Then, we scaled the data

using z-score normalization [14] to convert each feature into

a zero-mean and unit-variance distribution using the scikit-

learn’s standard scaler function1.

Neural Networks (NNs) are inspired by the biological

neurons, which consist of a multi-layer collection of nodes. A

basic NN consist of the input layer, a single hidden layer, and

an output layer. Recently, DL solutions exist that have more

than a single hidden layer [15]. Our lightweight DL solution

is a 4-layer NN, which is visually depicted in Figure 2, with

each layer having the number of nodes equal to the number of

features (i.e., 76). The DDoS detector uses the flow statistics

as the input data and outputs a binary decision, whether a

specific flow is associated with a DDoS attack or a regular

flow.

1StandardScaler function: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html

We use the Tensorflow2 module for developing the DL

model. The model has a total of 11,781 trainable weights

and biases. Upon training, we used binary cross-entropy loss

function, Adam optimizer to update the network weights, a

fixed learning rate of 0.001, and a training batch size of 64

samples.

The standard evaluation metrics for binary classification

include Accuracy (Ac), Precision (Pr), and Recall (Rc), and

are used in this study. Additionally, F1-score (F1) is also used,

which is a harmonic mean measure between Pr and Rc [16].

III. FEATURE ANALYSIS

We used ANOVA statistical method [6] to identify and rank

the most important features, which is widely used in feature

selection [7]. It forms groupings according to the categorical

label and measures the variance between the means of the

groupings. Features with larger variance indicate better sepa-

rability, which means they are more appropriate for detection.

Figure 3 shows the top 10 most important features according

to ANOVA for the different sets of attacks. The features are

2Tensorflow: https://www.tensorflow.org/



arranged in decreasing order of importance starting from the

top. The figures show the boxplot of the normalized values,

where the mean of the original values are centered at zero.

Then, for each feature, we show the regular and DDoS traffic

separately. The outliers in the boxplots are removed for better

representation.

Figure 3a shows the IRC Botnet’s ten most important

features, having the active forward packets (packets with more

than 1 byte of TCP data), forward packet length, and flag count

for the PUSH flag as the most significant. It clearly shows a

large difference between the normal and DDoS values, where

the normal traffic values are very close to the mean (i.e., zero)

and almost invariant, while the attack has a large variance.

During the attack, the IRC Botnet executes multiple downloads

using the HTTP GET request and uses the PUSH flags to force

the TCP to send the TCP segment immediately without waiting

for the buffer to become full.

The most important features for the DoS attacks are shown

in Figure 3b. The four most important features are the packet

length (mean, standard deviation, and maximum) and average

segment size of the backward packets. Thus, it is the size

of the packets that differentiates DoS attacks from normal

flows particularly for Hulk and GoldenEye. Moreover, the

list indicates that IAT and idle times also provide significant

importance in detecting DoS attacks.

Regarding the attack differences, Hulk and GoldenEye tend

to have similar properties. They mainly execute through a

large volume of backward packet length. On the other hand,

slowloris and slowHTTPtest also have similar properties and

are opposite to GoldenEye and Hulk. These attacks operate

through maintaining open connections with the server with

minimal bandwidth [11], which in turn, exhaust server re-

sources resulting in DoS. IAT and active/idle times show the

most important features for both slowloris and slowHTTPtest,

as confirmed by ANOVA.

Figure 3c shows the most important features for the LOIC

family. In the figure, we show the LOIC TCP and HTTP

attacks and computed the most important features altogether.

Packet features in the backward direction achieved the most

significant features, which are shown clearly for LOIC TCP.

By studying the features separately, LOIC (TCP) had similar

properties to the 2017 DoS volumetric attacks, as shown in

Figure 3b, where features on backward packet length (mean,

maximum, and standard deviation) play an important role

in detection. LOIC (HTTP), on the other hand, is more

similar to the LOIC (UDP) attack. The minimum, mean, and

maximum forward packet length attained the most important

features. Similarly, LOIC (HTTP) attack reached 200,000 of

forward packets in a single flow. Reset flag (RST) and Explicit

Congestion Notification-Echo flag (ECE) counts in TCP are

also significant for distinguishing this attack. Finally, the mean

and minimum IAT of the forward packets are also chosen by

ANOVA as important features.

Figure 3d shows the most important features for all the

DDoS attacks in the 2019 dataset. In this mixed data, the ratio

of download and upload came the most significant. The values
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Fig. 4: Model training vs validation accuracy

are inverted from the rest, meaning the regular flows are more

variant and have values higher than the mean value. On the

other hand, attack flows are more invariant and are usually

smaller than the mean value. This is true since attacks have a

very large upload rate, making the download versus upload

ratio very small. Also, the importance of forward packet

features in detecting the 2019 DDoS attacks is confirmed

by ANOVA as it includes the minimum, mean, and average

segment size of the forward packets in the top features. Figure

3d shows that these features have value ranges that do not

overlap, thus, we expect high detection rate for the DL models

given the large separability.

IV. EXPERIMENTAL RESULTS

In this section, we present the evaluation of the DL detectors

during the training period and final testing phase, followed

by the discussion of the feature reduction results. Then, we

show their comparison with existing DL approaches. For this

purpose, separate models are built for each dataset.

The experiments were conducted using a 32-core server

node with 64 GB of RAM. We used Python’s Tensorflow and

scikit-learn3 modules for the development of DL models.

TABLE II: Evaluation of the DL attack detector

Dataset Ac (%) F1 (%) Pr (%) Rc (%)

ISCXIDS (2012) 97.473 97.483 97.156 97.811

CICIDS (2017) 99.328 99.198 98.497 99.908

CSE-CIC-IDS (2018) 99.872 99.872 99.771 99.972

CICDDoS (2019) 99.932 99.962 99.964 99.960

3https://scikit-learn.org/stable/index.html
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Fig. 5: Feature reduction evaluation using ANOVA

A. DL Performance Evaluation

Figure 4 shows the evaluation of the models during the train-

ing phase, showing both the training and validation accuracy

for 100 epochs. All the training accuracies steadily increased

while there were no large gaps observed between the training

and validation accuracies that may constitute overfitting.

Figure 4a shows that the model built from the 2012 dataset

performed the least, reaching 97.47% of training accuracy

while the model built from the 2019 dataset achieved best

as shown in Figure 4d, reaching 99.93% of training accuracy.

The final training accuracy for 2017 and 2018 datasets also

reached 99.32% and 99.87%, respectively.

For the final test evaluation, the Ac, F1, Pr, and Rc are

shown in Table II. The models have achieved high Ac across

all the test datasets. Similar to the training phase, detecting

the Botnet achieved the lowest Ac. Nonetheless, the model

still detected 97.81% (Rc) of all the attack flows associated

with the 60-min Botnet attack, which is more than enough to

raise an alarm during an actual event. The rest of the models

achieved high detection performance, reaching over 99% Ac.

B. Feature Reduction

The main aim of this work is to reduce the input features

and, hence, the resource consumption without sacrificing much

of the accuracy. The previous results were conducted using all

the available 76 features. Here, we show the importance of

feature analysis and reduction, selecting subsets of features

with the results of ANOVA from Section III.

We start the subset selection by using the best input feature

given by ANOVA and iteratively add the next best feature in

the rank (i.e., forward selection approach). For each subset of

data, a DL model is built and trained up to 10 epochs. Figure

5 shows the results of feature reduction for each of the CIC

datasets, mapping the Ac and F1 for each subset of data.

The graphs show that utilizing all the features is not needed

to reach optimum detection. For instance, in detecting IRC

Botnet, it is enough to use the 54 most important features to

achieve almost the same detection accuracy as shown in Figure

5a, reducing the input data needed by 29%. Furthermore, using

only the 28 best features yields 94.15% Ac and 94.46% F1,

which trades off 3.23% Ac for 63.15% of input reduction.

For the 2017 dataset, utilizing only the 25 best features

already yields 97.89% Ac and 97.51% F1, as shown in Figure

5b. It means that a slight decrease of 1.43% in accuracy

yields 67.11% of input data reduction with respect to using all

features. The graph also shows that it can be further reduced

to the 10 best features, reaching 94.02% Ac and 93.19% F1.

The decrease of 5.3% in detection accuracy has lead to an

86% reduction of input data.

For the 2018 and 2019 datasets, the single best feature

already yields high accuracy, as shown in Figures 5c and 5d,

respectively. Detecting DDoS using only the average segment

size of forwarding packets already achieved 92.12% Ac and

92.55% F1 for the 2018 dataset. It decreases the accuracy by

7.75% but heavily reduces the input by 98.6%. For the 2019

dataset, the download/upload ratio has been the best feature,

as explained in Section III. Utilizing this single feature already

achieved 96.41% Ac and 98.05% F1, which is only 3.5% less

than the optimum accuracy but with a 98.6% reduction of

input data. These findings are similar in the Border Gateway

Protocol (BGP) scenario, where some features can individually

detect anomalies and hijacks that result in DDoS [17], [18].

If high accuracy still needs to be respected and only a small

margin is permitted, the best trade-off maximizing accuracy

can still be achieved. For the 2018 dataset, utilizing 26 and 35

features achieved 99.22% and 99.82% Ac, which reduces input

data by 65.78% and 53.94%, respectively, and only sacrificed

a minuscule fraction of 0.64% and 0.04% from the original

accuracy. For the 2019 dataset, using the best 12 features

achieved 99.83% Ac and 99.90% F1, which means that a

reduction of only 0.1% accuracy from the best-case scenario

results in a reduction of 84.21% of the input data. These results

are similar to the feature reduction techniques in [19], where

they achieved up to 68% data reduction while trading only

0.03% on accuracy.

TABLE III: Comparison using ISCXIDS 2012

Year Detector ML Ac F1 Pr Rc

- DLDDoS Detector DNN 97.47 97.48 97.15 97.81

2020 LUCID [4] CNN 98.88 98.89 98.27 99.52

2018 TR-IDS [20] CNN+RF 98.09 - - 95.93

2017 DeepDefense [21] LSTM 98.41 98.40 98.34 98.47



C. Literature Comparison

Furthermore, we compare the results from our models,

which we call DLDDoS, with the existing approaches in the

literature, which also utilized the CIC datasets. The same set of

literature studies is also used in [4] for benchmark comparison.

Table III shows the detectors using the IRC Botnet as the

test set. These recent studies utilize NN approaches such as

Convolutional NNs (CNN) for LUCID [4] and Long-short

Term Memory (LSTM) for DeepDefense [21]. TR-IDS [20]

used CNN for the initial stage of processing unstructured data

and used Random Forests for the final classification.

The table shows that our results are comparable to current

approaches, having only around 1% lesser on Ac. As explained

in Section II-B, the monitoring tool used for this dataset

was IBM QRadar, but we used CICflowmeter features to be

consistent with the new datasets. Thus, some flows were not

labellable due to the conversion. Although we also performed

tests with the original flow features from IBM QRadar, which

obtained 99.02% Ac and 99.03% of F1 using the same

methods, outperforming other approaches.

TABLE IV: Comparison using CICIDS 2017

Year Detector ML Ac F1 Pr Rc

- DLDDoS Detector DNN 99.33 99.20 98.50 99.91

2020 LUCID [4] CNN 99.67 99.66 99.39 99.94

2019 Deep Learning [22] CNN+LSTM 97.16 - 97.41 99.10

2018 DeepGFL [23] RF - 94.05 92.62 95.52

LUCID [4], DeepGFL [23], and DL approach from [22]

utilized the attacks for the 2017 dataset, which is reported in

Table IV. Similar to our result, LUCID achieved over 99%

Ac, F1, Pr, and Rc. We took the best results from the DL

models developed in [22], which used the CNN+LSTM model

and reached 97.16% of detection accuracy. For the DeepGFL,

we present the result for detecting DoS Hulk, which reached

94.05% of F1 using Random Forests.

TABLE V: Comparison using CSE-CIC-IDS 2018

Year Detector ML Ac F1 Pr Rc

- DLDDoS Detector DNN 99.87 99.87 99.77 99.97

2020 LUCID [4] CNN 99.87 99.87 99.84 99.89

For the 2018 dataset, the results of this study are compared

with LUCID having identical performance, which is reported

in Table V. Thus, we conclude that all our results are com-

parable with the existing literature. Finally, we have not yet

found existing literature that utilizes the recent 2019 dataset

for comparison as of the time of writing.

V. CONCLUSION

The goal of the paper is to reduce the input data to scale

down the computation and bandwidth usage of monitoring

agents without sacrificing much of the detection performance,

which was obtained using the ANOVA statistical method. We

developed DDoS detectors using DNNs and achieved high

detection performance. We achieved a reduction of 63.15%,

67.11%, 65.78%, and 84.21% of the input data features for

2012, 2017, 2018, and 2019 datasets, respectively, reducing

only 3.23%, 1.43%, 0.64%, and 0.1% accuracy. Our results are

comparable to existing approaches in the literature that utilize

DL methods with the same datasets. For the 2018 and 2019

DDoS attacks, we found that a single feature, i.e., segment

size and down/up ratio, respectively, can be used to detect

attacks with 92.12% and 96.41% detection accuracies. With

these results, traffic monitoring agents can significantly reduce

their live data streams in real-world deployments.
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