
AutoML for Video Analytics with Edge Computing
Apostolos Galanopoulos∗, Jose A. Ayala-Romero∗, Douglas J. Leith∗, George Iosifidis†

∗ School of Computer Science and Statistics, Trinity College Dublin, Ireland
† Delft University of Technology, The Netherlands

Abstract—Video analytics constitute a core component of
many wireless services that require processing of voluminous
data streams emanating from handheld devices. Multi-Access
Edge Computing (MEC) is a promising solution for support-
ing such resource-hungry services, but there is a plethora
of configuration parameters affecting their performance in
an unknown and possibly time-varying fashion. To overcome
this obstacle, we propose an Automated Machine Learning
(AutoML) framework for jointly configuring the service and
wireless network parameters, towards maximizing the analytics’
accuracy subject to minimum frame rate constraints. Our
experiments with a bespoke prototype reveal the volatile and
system/data-dependent performance of the service, and motivate
the development of a Bayesian online learning algorithm which
optimizes on-the-fly the service performance. We prove that our
solution is guaranteed to find a near-optimal configuration using
safe exploration, i.e., without ever violating the set frame rate
thresholds. We use our testbed to further evaluate this AutoML
framework in a variety of scenarios, using real datasets.

Index Terms—Edge Computing, Online Learning, GP-UCB

I. INTRODUCTION

Background & Motivation. An increasing number of
wireless services today rely on accurate and fast video
analytics. From mobile gaming and augmented reality apps
[1], to cognitive assistance [2], autonomous vehicles or
surveillance systems [3], user devices capture frames (or,
images) from video streams that need to be processed so
as to extract critical information, e.g., detect objects of
interest. These video analytics are very demanding as they
require voluminous data transfers and daunting computations,
in almost real time. This renders impractical both their
execution at the resource-constrained user devices, and their
transfer to distant cloud servers [4]. A promising solution
for adhering to these requirements is, indeed, Multi-Access
Edge Computing (MEC) [5], where users transmit their video
frames for processing to nearby servers equipped with GPUs
that implement efficient Neural Networks (NNs).

Existing MEC solutions manage computing or network
resources to offload various tasks from user devices [6]–
[8]. However, video analytics are heavily affected by several
new parameters at the user side, e.g., image resolution and
encoding rate, and at servers, e.g., NN architecture. In partic-
ular, the key criteria of accuracy and latency are intertwined
and shaped by the configuration parameters of the processing
pipeline1 and the wireless network that connects devices and
servers. For instance, sending low-resolution or compressed

1This term refers to the video processing stages, e.g., decoder, frame
sampler and inference module (as, e.g., Yolo [9]), see [10] for details.

Encode Image

Display Results

Neural Network
Processing

Collect Results

Mobile Device Edge Server

Capture Image Decode Image

802.11ac
Access Point

Fig. 1: Video edge analytics prototype where mobile devices
employ Neural Network processing units at edge servers to execute
high-accuracy, low-latency object recognition in their frames.

frames reduces the transmission latency but also the object
recognition accuracy; and increasing the frame rate improves
a user’s experience but strains the network and exacerbates
the frame rate of others. Clearly, deciding jointly the resource
allocation and pipeline configuration is of utmost importance.

Pertinent studies focus on reducing the resource costs of
video analytics [10], [11], and on maximizing their perfor-
mance [12], [13]; see Sec. II for an overview. However, the
dependence of performance metrics – accuracy, latency, and
others – on the pipeline configuration and on the allocated
resources is unknown in practice, and might as well vary
with time (e.g., due to wireless conditions). Importantly, as
our experiments reveal, the performance depends also on the
platform, i.e., the devices’ and servers’ hardware and soft-
ware; and on the actual video data. Hence prior approaches
that rely on statistical models, offline datasets or pre-training,
are limited to specific systems and scenarios. Here we take
a fundamentally different approach and develop a Bayesian
learning framework towards automating the configuration of
multi-user video edge analytic services.

Methodology & Contributions. We start with an exper-
imental analysis using our prototype system where devices
capture video frames and transmit them to an edge server
that performs object recognition using a Deep Neural Net-
work (DNN), Fig. 1. We aim to maximize the recognition
accuracy while satisfying user-defined minimum frame rate
constraints; by deciding the image encoding rate, service time
allocation and NN input layer size. We find that the system
has stochastic accuracy and latency response (which shapes
the achieved frame rate) even for fixed configurations. The
former is due to differences in the images’ objects, and the
latter due to wireless channels and processing delay varia-
tions. We also find that similar configurations induce similar
performance, which depends on the DNNs and devices, and
exhibits even non-monotonic behavior. Our measurements
extend prior works [13]–[15], and highlight the platform and
data-dependent performance of these systems.

Motivated by these findings, we propose an optimization
framework consisting of two components: a surrogate model
builder for the unknown objective and constraint functions,
and an acquisition rule that explores iteratively the system
configurations. The former employs Gaussian Processes (GP)
and Bayesian updates [16] to construct the required models
in real time using the collected data. The second component
quantifies each configuration’s optimality, while also account-
ing for the uncertainty regarding the existence of better
configurations [17]. The result is a data-driven, platform-
oblivious algorithm that is executed at system runtime. We
prove that the algorithm finds a near-optimal solution and
achieves average sublinear pseudo regret of O(

√
TγT) where

γT is a system-related parameter. Moreover, the algorithm is
safe in the sense that it satisfies the users’ minimum frame
rate constraints while exploring the configuration space.

Our approach builds on the theory of Bayesian non-
parametric learning, and falls into the realm of Automated
Machine Learning. AutoML, as it is known, has been used
to automate the configuration of software packages, or the
selection of various ML hyper-parameters [18], [19] which
otherwise are set using heuristics [20]. We extend these ideas
to automate the video pipeline and network configuration,
while catering for frame rate constraints. This way, we tackle
the main challenge of the service’s dependency on system
hardware and video data. Being a powerful framework, it can
be used to also allocate computing resources, select different
networks, and so on (see details in Sec. VI).

Finally, we evaluate the system performance and find
that our algorithm can get to within 5% from the optimal
point in no more than 150 iterations. We also propose a
set of practical steps to improve its performance, based on
our experimental observations, e.g., the usage of stopping
criteria for the different stages of the algorithm. Our technical
contributions can be thus summarized as follows:
• Experimentally-motivated problem. We perform exten-

sive experiments using different system equipment and
datasets which reveal the volatile performance of video
analytics and their dependency on said system and data.
• AutoML Framework. We propose an optimization frame-

work that finds a near-optimal configuration without violating
the users’ frame rate thresholds. This is achieved by combin-
ing a Bayesian GP technique with bandit learning and safe
constraint exploration. To the best of our knowledge, this is
the first time an AutoML framework is used to configure a
video edge analytics service.
• Model Extensions. We extend our analysis to problems

where additional video-related (e.g., frame resolution) or net-
work parameters (e.g., user association to networks/servers)
are decided. This manifests the framework’s potential.
• Prototypes and Experiments. We evaluate the framework

based on real data in our bespoke prototype, where we
perform a thorough parameter sensitivity analysis, quantify
its overheads, and verify its generality using a wealth of
scenarios and system setups. All our measurements are made
available in an online fully-documented dataset [21].

Paper Organization. Sec. II discusses prior work, Sec. III

presents our preliminary experiments, and Sec. IV introduces
the system model and problem. Sec. V presents the AutoML
framework, while in Sec. VI we discuss interesting extensions
and practical aspects of our approach. Finally, Sec. VII
presents the evaluation, and Sec. VIII our conclusions.

II. RELATED WORK

Systems & Experiments. Video analytics often employ
MEC to improve scalability and latency. For instance, [22]
and [23] explore DNN partitioning across user devices, edge
servers and the cloud. Other systems like JAGUAR [24],
Glimpse [25], OverLay [26] and [27] improve real-time ob-
ject detection via intelligent encoding, caching, visual space
pruning, and on-device tracking, respectively. Additionally,
JALAD [28], MobiQoR [29] and DeepDecision [13] explore
the accuracy - latency trade off. These important experimental
studies reveal the gains of proper configurations, while our
experiments further explore the configuration dependence on
the system architecture and video data.

Optimization-based Approaches. Configuring these sys-
tems, however, requires solving rigorous mathematical prob-
lems. DeepDecision [13] formulates a frame-rate/accuracy
problem to decide the sampling and DNN model;
VideoStorm [14] allocates resources through a utility maxi-
mization problem with greedy search of configurations; and
[29] minimizes the energy and latency. A convex program is
solved in [30] to decide frame sizes, and [31] formulates
a similar integer decision problem; while [32] minimizes
latency. Another large corpus of works take a computation-
offloading perspective and handle computing or network
resources without considering video analytics (e.g., accuracy)
or NN configurations (e.g. NN size); see [6]–[8] and survey
[33]. Importantly, all above works formulate static model-
driven problems, while in practice training data are hardly
available and models are valid only for specific systems.

Learning & Adaptive Approaches. Dynamic algorithms
can indeed tune better such systems. Chameleon [10] profiles
periodically the configurations and searches greedily for
the most resource-prudent, but does not consider latency.
VideoEdge [11] solves a similar problem for hierarchical
systems. An integer program is solved in [34] to allocate
computing resources and decide the image compression and
DNN model. In [12], video quality and computing resources
are selected to maximize successful queries; while [35] uses a
Lyapunov algorithm to select frame and NN parameters, and
optimizes accuracy under average delay constraints. These
interesting works either do not offer optimality bounds [10],
[34] or consider asymptotic-only performance [35], assume
known models [12], [34], [35] or convex functions [12].
Finally, online algorithms for general edge computing, e.g.,
[36], [37], do not cater for video analytic metrics or the
specifics of video pipelines.

Our approach is different since: (i) it uses Gaussian
Processes [16] to build models in real-time, thus does not
require prior data; (ii) jointly configures server, device and
network parameters; and (iii) employs data-efficient non-
parametric learning, hence does not make assumptions about

25 50 75 100
Encoding Rate (%)

128
192
256
320
384
448
512
576

NN
 si
ze

1 1.1 1.1 1.1
2.1 2.2 2.2 2.2
2.6 2.7 2.8 2.8
2.8 3 3 3
2.8 3 3 3.1
2.8 3 3.1 3.2
2.7 3 3.1 3.2
2.6 3 3.2 3.3

1.2

1.6

2.0

2.4

2.8

3.2

(a) Cumulative Confidence

25 50 75 100
Encoding Rate (%)

128
192
256
320
384
448
512
576

NN
 si
ze

45.6 42.3 39.1 21.6
42.7 39.9 36.8 20.6
40.0 37.6 35.0 20.0
35.4 33.2 31.1 18.4
30.7 29.0 27.8 17.5
26.7 25.7 24.2 16.1
23.9 23.2 22.1 15.2
19.4 18.7 17.9 12.2

18

24

30

36

42

(b) Frame Rate

0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25
CC value

0

50

100

150

200

250

Fr
eq

ue
nc

y

(256,50)
(384,100)

(c) CC distribution

10 20 30 40 50
Frame rate value

0

50

100

150

200

250

Fr
eq

ue
nc

y

(256,50)
(384,100)

(d) Frame Rate distribution

Fig. 2: (a)-(b): Cumulative Confidence and frame rate for various NN sizes and encoding rates; results are averaged across 32K images
of COCO dataset [38]. (c)-(d): Distributions of CC and frame rate for (NN size, encod. rate): (256, 50%), (384, 100%).

25 50 75 100
Encoding Rate (%)

5.0

7.5

10.0

En
co
di
ng

 D
el
ay

 (m
s)

Pixel 2
P10 Lite
Galaxy S8

(a)

25 50 75 100
Encoding Rate (%)

5

10

Tr
an

sm
iss

io
n

 D
el
ay

 (m
s)

Pixel 2
P10 Lite
Galaxy S8

(b)

128 256 320 512 608
NN size

20

40

Pr
oc
es
sin

g
 D
el
ay

 (m
s)

GTX 1080 Ti
RTX 2080 Ti

(c)
Fig. 3: (a) Encoding and (b) transmission delay for 3 devices. (c) Dependence of the NN processing delay (YOLO [9]) on GPU.

the system. We draw ideas from the area of Automated
Machine Learning (AutoML) that streamlines the selection of
ML hyper-parameters cf. [18], [19], [39], also using, lately,
Bayesian optimization to improve the overall process [20].
Such techniques have been only recently used in systems,
e.g., configuring cloud servers [40] or cellular networks [41].

III. PRELIMINARY EXPERIMENTS

In this section, we lay out our testbed details, and present
measurements that motivate our optimization approach.

Testbed setup. We built a bespoke Android application
that captures images though the mobile’s camera, performs
JPEG encoding, and transmits the compressed images2 to
a MEC server through a wireless 802.11ac Access Point
(AP)3, see Fig. 1. A C/C++ routine at the server uses the
REST API for accepting object recognition requests on the
transmitted frames. It firstly decodes the JPEG files to obtain
RGB images, and then downsamples them to match the input
layer size of the DNN at the server’s GPU. The integer
RGB image values are converted to floats before processed
with the state-of-the-art object recognition system YOLO [9],
that accepts an y×y array of image pixels. Henceforth, the
dimension y is referred to as the NN input layer size, or
simply the NN size. The output is a set of: (i) bounding box
coordinates, (ii) inferred classes, and (iii) confidence values
for each recognized object. Those are transmitted back to the
devices and overlaid on their screens. The main configurable
parameters of this system are the image encoding rate x,
which determines frame quality and file size, and the NN
size y that affects the inference quality and delay.

2Encoding an image at a certain rate, e.g. 50% achieves 2 things. First,
the image data is converted to the JPEG format, and second the resulted file
is compressed to 50% of the original file size, hampering image quality.

3The AP is the ASUS RT-AC86U router, and the server a 3.7 GHz Core
i7, 32 GB RAM PC, with a GeForce RTX 2080 Ti GPU.

Results. Previous works, e.g., [13]–[15], have studied sim-
ilar trade-offs between such system knobs in an offline setup,
i.e., by pre-calculating the average Precision/Recall accuracy
for large datasets of images. However, we aim to automate
the system configuration at runtime, and hence cannot rely on
offline evaluations; instead, we need instantaneous feedback
for the performance. To that end, we use the Cumulative
Confidence (CC) which is simply the sum of confidence
values for all recognized objects that is output by YOLO,
and is instantly available for each processed frame. We first
quantify the trade-off between the CC and service frame
rate using the COCO dataset of 40K images. Figures 2a-
2b depict the average CC and achieved frame rate, for
different encoding rates and NN input sizes. It is evident that
increasing the NN size and/or encoding rate, increases the CC
and decreases the frame rate. Interestingly, we also found in
Fig. 2a a case of non-increasing impact of the NN size on
CC (for 25% encoding rate). Notice that the CC increases
with the NN size before dropping for NN size > 448.

The main issue with those results is that they are averages
of the system performance and can be obtained only after
applying object recognition to thousands of images for each
possible system configuration. Indeed, Figures 2c-2d depict
the variations in CC and frame rate for 2 specific config-
urations. Moreover, the observed increase (decrease) in CC
(frame rate) is non-linear with either NN size or encoding
rate, and surprisingly, not even monotonic as explained
above. The measured performance can also vary depending
on factors like the device environment and specifications,
channel conditions or server capabilities, making the de-
velopment of general accuracy and latency models highly
cumbersome. We demonstrate the above in Fig. 3a-3b, where
we measure the average encoding and transmission delay
respectively, for 3 different mobile devices. Clearly, although
all delays are increasing with the encoding rate, the fitted

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Frame rate:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

Fig. 4: Each user n applies encoding xnt and sends images for
wnt secs to server which has NN size yt. The user enjoys frame
rate Rnt and accuracy Cnt. The system is configured every ∆ secs.

curves vary substantially across devices. The same trend
persists when the server’s hardware (GPU) changes. Fig. 3c
depicts the difference in DNN processing delay between 2
GPUs as we increase the NN input size.

In summary: our experiments reveal a non-trivial multi-
modal impact of the encoding rate and NN size on CC and
frame rate. These 2 key metrics are platform and dataset de-
pendent, highly volatile, and there are unknown correlations
among the configurations. Hence, it is both important and
challenging to find the best system configuration at runtime.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

Network and edge service. Our system operates in time
slots, each with fixed duration ∆ secs. A set N of N mobile
devices are connected to a MEC server that runs a video
analytics service, e.g. object recognition, as in Fig. 4. The
devices extract images from the captured video stream, where
properties like the number and type of objects in each image
vary over time. We denote those properties with {ont} which
follows an unknown random process {ont}∞t=1. Each user
applies an encoding rate to the captured images selected from
finite set X and transmits them to the server for processing.
The average signal strength (SNR) of device n during slot t
is denoted by hnt, which is calculated by the AP and is given
by a random process {hnt}∞t=1. Upon reception of an image,
the server decodes and downsamples it to fit the input size
of the NN that is loaded on its GPU. The possible NN size
values are selected from a finite set Y . Note that while each
device can apply their own encoding rate, the NN input size
is common for all devices as they share the server’s GPU4.

Decision variables. The encoding rate of each device n
during time slot t is a system decision variable denoted by
xnt ∈ X . The selection of xnt will determine the resulting
image size s(xnt), which in turn will affect the transmission
time to the server. We denote the fixed bandwidth of the wire-
less channel by W , and as a result, the Wi-Fi transmission
delay of user n during t is:

τnt(xnt) =
s(xnt) + L

W log(1 + hnt)
, (1)

where L is the TCP/UDP stack overhead added to the images.
To enable multi-user connectivity to the server and coordi-

nate transmissions and GPU computations, we introduce the

4Our experiments showed that changing the NN input size for each user
induces delay that impacts performance. In Sec. VI we extend our model to
allow different NN size per user whenever many GPUs are available.

Fig. 5: Task scheduling example for 3 users.

time allocation variable wnt ∈ W , [0,∆] as a configurable
parameter. By limiting the fraction of time wnt that is
allocated to each device n for continuous object recognition,
we can guarantee that all devices have the opportunity to send
a number of images during t. We compact all variables in
zt = (x1t, . . . , xNt, yt, w1t, . . . , wNt) ∈ Z,XN×Y×WN .
Note that our system is orthogonal to, and operates at a higher
time scale than other underlying wireless mechanisms, e.g.,
contention control, which run in the scale of milliseconds.

Performance metrics. We define the function Cn(zt) :
Z → R+ to be the expectation of the CC experienced by user
n when configuration zt is applied to the system. In practice
however, we can only observe the noisy instantaneous CC
achieved during each slot t, that follows a distribution like
in Fig 2c. This noise is caused due to the varying content of
the images expressed by ont that makes some objects eas-
ier/harder to classify than others. We denote the instantaneous
CC as Cnt(zt; ont) : Z → R+, n ∈ N , and can write it:

Cnt(zt; ont) = Cn(zt) + ε1(ont), with ε1∼N (0, σ2
1). (2)

In a single user scenario, the frame rate is fully determined
by the end-to-end latency of the system. With multiple users
however, service is interrupted (see Fig. 5 for a 3-user
scheduling example). The frame rate we refer to from now
on, is the number of images processed for each user during
a slot of length ∆, e.g. with respect to Fig. 5 we have 4
frames per slot for user 1, 3 frames for user 2 and 2 for
user 3. Similar to CC, we define the average frame rate of
device n by Rn(zt) : Z → R+, that depends on all variables.
Function Rn(zt) is also an average value that can vary over
time due to varying channel conditions hnt of each user, as
shown in Fig 2d. We denote the noisy frame rate observed
during slot t by Rnt(zt;hnt) : Z → R+ and can write it:

Rnt(zt;hnt) = Rn(zt) + ε2(hnt), with ε2∼N (0, σ2
2). (3)

Finally, each device n sets a minimum frame rate threshold
λn based on their preferences or requirements. We consider
the general case where these can differ across users.

User scheduling. If we allow the users to concurrently
send sequences of images, we face the problem of inter-
ference and queuing at the server, since only one image
can be processed at each time. In detail, if we consider
a shared medium (previous versions of WiFi) we want
to avoid the users to collide in their transmissions, i.e.,
avoid the contention phase, which will delay the service
pipeline (encoding-transmission-decoding-processing) shown
in Fig. 5. Second, if we consider the latest WiFi standard

(802.11ax), which is based on OFDMA, several users can
transmit using different subbands without colliding. In that
case our aim is to prevent the server queue to grow infinitely.
Such problems can deteriorate the analytics performance
since the end-to-end latency of a single image can increase,
and thus the information overlaid on the user’s screen can be
substantially outdated. To avoid that, we let the server apply
a polling scheme, so that each user n∈N executes the entire
processing pipeline (in both the mobile, the network and
server) without interruptions, for the duration of its allocated
time wnt, using the selected configuration xnt, yt.

Problem formulation. Our aim is to maximize the CC
of users while respecting their frame rate requirements. We
define the total observed CC as ft(zt) =

∑
n∈N Cnt(zt; ont),

and the constraints gnt(zt) = λn − Rnt(zt;hnt), n ∈ N .
Ideally, we would like to find the optimal solution z∗ =
(x∗1, . . . , x

∗
N , y

∗, w∗1 , . . . , w
∗
N) to the following problem:

P : maximize
z∈Z

E
{
ft(z)

}
(4a)

subject to: E
{
gnt(z)

}
≤ 0, n ∈ N (4b)∑

n∈N
wn ≤ ∆ (4c)

Observe that applying the expectations in (4a)-(4b), by using
(2)-(3), yields the unknown average functions, i.e.,

E
{
ft(z)

}
=
∑
n∈N

Cn(z), E
{
gnt(z)

}
= λn −Rn(z).

Also, constraints (4b), (4c) ensure that the frame rate thresh-
olds are respected, and that the time allocation is valid.

Clearly, P cannot be solved directly since we do not have
access to functions Cn(·) and Rn(·). Therefore, we follow
an online learning approach where we select configurations
zt at the beginning of each slot t and calculate the per-
turbed outputs ft(zt), gnt(zt) using the noisy measurements
Cnt(zt; ont), Rnt(zt;hnt). Our goal then is to find a sequence
of configurations {zt}t that will drive the average perfor-
mance close to the benchmark E

{
ft(z

∗)
}

, while satisfying
(probabilistically) the constraints gnt(zt),∀n and (4c) at each
slot. Formally, we define the pseudo-regret:

RegT =

T∑
t=1

E
{
ft(z

∗)
}
−

T∑
t=1

E
{
ft(zt)

}
, (5)

and ask that sequence {zt}t achieves sublinear average regret,
limT→∞RegT /T = 0. This will ensure that our policy
learns to perform as well as the hypothetical benchmark z∗

which can only be designed in hindsight, i.e., with complete
knowledge of the platform functions and data.

V. GAUSSIAN PROCESSES AND PROBLEM SOLUTION

A. MAB formulation through GP modeling
Due to the online nature of our problem, we address it fol-

lowing a Multi-armed Bandit (MAB) approach, by which we
sequentially select different arms to tackle the exploration-
exploitation dilemma. However, most of classic MAB algo-
rithms such as UCB [42] and Thompson Sampling [43], do

not consider that nearby arms can be correlated, i.e., they
yield similar performance; or assume these correlations to
be known in advance, or to have a specific (e.g., linear)
structure [44], [45]. Nevertheless, as the experiments in
Sec. III showed, the system configurations exhibit unknown,
varying and even non-monotonic performance correlations.

In fact, these correlations could be fully characterized by
the objective and constraint functions in P, had they been
known. To rectify this, we can use Gaussian Processes which
is a model-free (or, assumption-free) approach requiring only
a certain level of function smoothness [16], something we
already validated with our measurements. A kernel function
ρ(z, z′) is used to express the correlation between the objec-
tive/constraint function value of any pair of configurations
(z, z′) and enables predictions about the function evaluation
at any vector z ∈ Z .

Following this approach, the seminal GP-UCB algo-
rithm [46] was applied to unconstrained problems where
the objective function is iteratively approximated using noisy
observations, much like in our setup with the difference of
constraints. The benefit of this approach is that it estimates
the mean value of ft(z) for any z by only using the rewards
observed up to t, including configurations that have not been
applied in the past. In specific, if At = {z1, . . . , zt}, Ft =
{f1(z1), . . . , ft(zt)} are the applied configurations and re-
spective rewards up to slot t, the mean value and variance of
ft(z) for any configuration (or, action) z are given by:

µf,t(z) = kt(z)
>(Kt + σ2

1I)−1Ft, (6)

kf,t(z, z
′) = ρ(z, z′)− kt(z)

>(Kt + σ2
1I)−1kt(z

′), (7)

where kt(z) = (ρ(z1, z), . . . , ρ(zt, z))
>, Kt = (ρ(zt, zt′))

is the positive definite kernel matrix, and I the identity
matrix. GP-UCB selects the next action based on a weighted
acquisition rule:

zt+1 = arg max
z∈Z

µf,t(z) + βt

√
kf,t(z, z),

where βt is a problem-related parameter, and it provably
achieves sublinear expected (or, pseudo) regret [46].

B. Constrained GP-based MAB optimization

In order to find configurations that progressively increase
system performance, and do so without violating the frame
rate thresholds, we need a twofold extension of GP-UCB.
There are only few works that proposed similar ideas for
safe GP-UCB algorithms, e.g., [47]–[49]. Following a similar
approach, we design a learning algorithm with 2 stages: the
expansion stage (for T0 slots) and the optimization stage
(for T − T0 slots). In the former, given an initial safe
set of configurations S0, i.e., actions guaranteed to satisfy
the thresholds, we successively create enlarged safe sets St
by adding configurations that conservatively (by means of
upper bounds) also respect the constraints. After we reach a
satisfactory approximation of the maximum achievable safe
set, we commence the optimization stage where we apply the
upper confidence bound (UCB) rule on that set, much like
in GP-UCB [46].

Algorithm 1 Automatic configuration of video analytics

1: Initialize: S0 ⊂ Z, z1 ∈ S0,A0,F0,Gn0 = ∅, ρ(z, z′),Mn,
λn > 0 and βt

2: for t = 1, . . . , T do
3: Process images and obtain: ft(zt), gnt(zt), n ∈ N
4: At ← At−1 ∪ {zt}
5: Ft ← Ft−1 ∪ {ft(zt)}
6: Gnt ← Gnt−1 ∪ {gnt(zt)}, n ∈ N
7: Update posteriors of z ∈ St using (6)-(9)
8: if t ≤ T0 then
9: St ← ∩n ∪z∈St−1 {z′ ∈ Z|un

t (z) +Mn‖z − z′‖2 ≤ 0}
10: Gt ← {z ∈ St | et(z) > 0}
11: if maxz∈Gt

(
un
t (z)− lnt (z)

)
< ζ,∀n ∈ N then

12: zt+1 ← arg maxz∈St u
f
t (z)

13: else
14: zt+1 ← arg maxz∈Gt

(
un
t (z)− lnt (z)

)
, n ∈ N

15: end if
16: else
17: St ← St−1

18: zt+1 ← arg maxz∈St u
f
t (z)

19: end if
20: end for

In detail, we use GPs to model the constraints, as we do
for the objective, and evaluate their posteriors using the past
observations Gnt = {gnτ (zτ)}tτ=1 as:

µn,t(z) = kt(z)
>(Kt + σ2

2I)−1Gnt, (8)

kn,t(z, z
′) = ρ(z, z′)− kt(z)

>(Kt + σ2
2I)−1kt(z

′). (9)

We also use the upper and lower confidence bounds (UCBs,
LCBs) for the constraint and objective functions:

uit(z) = µi,t(z) + βt

√
ki,t(z, z), i = f, 1, . . . , N (10)

lit(z) = µi,t(z)− βt
√
ki,t(z, z), i = f, 1, . . . , N (11)

where βt is an increasing with t scalar (discussed below).
Regarding the safe set expansion stage, if we knew the

constraints it could be achieved by performing the operation:

Vζ(St) = St∪
⋂
n∈N

{
z ∈ Z

∣∣∃ z′ ∈ St : gn(z′) + ζ

+Mn‖z − z′‖2 ≤ 0
}
, t = 0, 1, 2 . . .

where Mn is the Lipschitz constant of gn, and ζ a tunable
tolerance parameter. Essentially, we would expand St by
including points z that are close enough to previous safe
points z′ such that they also satisfy the constraints. We denote
with Sζmax , limt→∞ Vζ(St) the maximum reachable set
through this operation, and Smax the maximum possible safe
set that we obtain for ζ= 0. Yet, since we do not know the
constraints we follow a different approach.

Namely, we use instead the UCBs and the expansion rule:

St =
⋂
n∈N

⋃
z∈St−1

{
z′ ∈ Z | unt (z)+Mn‖z−z′‖2 ≤ 0

}
(12)

and employ the updated safe set St to create a second set
Gt ⊆ St that contains configurations which not only are safe
but can lead to further expansion. For that, we define:

et(z)=
∣∣∣ ⋂
n∈N

{
z′ ∈ Z\St

∣∣ lnt (z)+Mn‖z−z′‖2 ≤ 0
}∣∣∣, (13)

and then build Gt={z ∈ St | et(z)>0}. Finally, if the con-
figurations in Gt are still uncertain enough in terms of their
possible values, i.e. maxz∈Gt

(unt (z)−lnt (z)) ≥ ζ,∀n, we se-
lect the most uncertain zt+1 = arg maxz∈Gt

(unt (z)− lnt (z)).
Otherwise, we select the configuration with the highest UCB,
i.e., zt+1 = arg maxz∈St u

f
t (z). In that case, we have found

a good approximation for the safe set, i.e., close enough to
the maximum reachable set Sζmax, and can continue in the
optimization stage. All steps are shown in Algorithm 1.

C. Theoretical results

The effectiveness of Algorithm 1 relies on the accurate
estimation of sets St and Gt. Specifically, we want to
conservatively expand the safe set in order to guarantee the
feasibility of its configurations. On the other hand, if the
expansion is too conservative, we will need many iterations
to reach the set of all safe configurations Sζmax. This trade
off is controlled by parameter βt which is chosen as [48]:

βt = B + σ1
√

2(1 + γt−1 + log(1/δ)), (14)

In the above, B is an upper bound on the Reproductive Kernel
Hilbert Space (RKHS) norm of f and gn, while δ is the
allowed constraint violation probability. Parameter γt is the
maximum mutual information gain that can be obtained about
the prior of f , after t samples have been observed [46]:

γt = max
A⊂Z,|A|=t

=
1

2
log |I + σ−21 KA|,

where KA = [ρ(z, z′)], z, z′ ∈ A is the covariance matrix
of the samples collected after t slots. Evidently, γt is very
difficult to obtain in practice, but a conservative bound is
given in [47] for the case of finite Z as

γt ≤ |Z| log
(
1 + σ−21 t|Z|max

z∈Z
kf,t(z, z)

)
.

We employ the Matern kernel function with parameter ν =
3/2, which implies that our functions are at least once
differentiable [16]. The kernel is given by:

ρ(z, z′) =
(

1 +

√
3

l
‖z − z′‖2

)(
exp(−

√
3

l
‖z − z′‖2

)
,

where l is a length scale parameter.
Next, we formally present the convergence properties of

the safe set (expansion stage) and the average observed
reward (optimization stage), to Sζmax and E{ft(z∗)}, re-
spectively. For the former, what we need to do is find the
minimum T0 in the problem’s time horizon T that guarantees
this convergence. This is described as follows:

Lemma 1. Given an initial safe set S0 6= ∅ such that gn(z) ≤
0, ∀z ∈ S0, n ∈ N , fix any ζ > 0 and δ ∈ (0, 1), choose βt
as in (14), and γt = |Z| log(|Z|t). The safe set expansion

stage of Algorithm 1 guarantees with probability 1 − δ that
only safe actions are included to the safe set at any time.
Moreover, the expanded set St will reach the maximum safe
set Sζmax if we select T0 to be the smallest integer for which:

T0
β2
T0
|Z| log(|Z|T0)

≥ 8(|Smax|+ 1)

ζ2 log(1 + σ2
1)
.

Proof. The proof is based on Theorem 1 in [48] where we
apply the bound on the information gain γt. This is possible
since in our setup the action set Z is always finite. �

The next theorem characterizes the algorithm’s conver-
gence, and how its regret depends on the system parameters.

Theorem 1. Given an initial safe set S0 6= ∅ such that
gn(z) ≤ 0 ∀z ∈ S0, n ∈ N , fix δ ∈ (0, 1), and
choose βt as in (14). Algorithm 1 yields sublinear regret
of O(

√
T |Z| log(|Z|T)) with probability 1−δ. In specific:

RegT ≤ 4B
√

(T + 2)γT + γT
√

(T + 2)(α/γt + 1),

where α = 1 + log(1/δ), and γT = |Z| log(|Z|T).

Proof. By the definition of regret we have

RegT =

T∑
t=1

E{ft(z∗)} − E{ft(zt)} ≤
T∑
t=1

µf,t(zt)+

βt

√
kf,t(zt, zt)− E{ft(zt)} ≤ 2βT

T∑
t=1

√
kf,t(zt, zt)

where we used the upper and lower bounds (10),(11) and
the fact that βt is an increasing parameter. From Lemma 4
in [50] we have that

∑T
t=1

√
kf,t(zt, zt) ≤

√
4(T + 2)γT

hence we obtain

RegT ≤ 2βT
√

4(T + 2)γT

≤ 4
(
B +

√
2σ1
√
α+ γT

)√
(T + 2)γT

= 4B
√

(T + 2)γT + γT
√

(T + 2)(α/γt + 1).

Observe that the largest (second) term of the bound yields a
regret growth of O(

√
TγT) and by the selection of γT we

have O(
√
T |Z| log(|Z|T)). �

Discussion. The above result shows that the cumulative
regret does not grow indefinitely and the algorithm selects
configurations towards increasing the obtained rewards. The
performance of the algorithm depends on parameters such
as ζ which allow us to set the optimization accuracy –
increasing it reduces the expansion time T0 but shrinks the
range of considered configurations (by the algorithm and
the benchmark); while reducing parameter δ improves the
violation and regret bound probabilities but deteriorates the
regret bound. Finally, note that all bounds are probabilistic,
hence the term pseudo-regret.

VI. EXTENSIONS & PRACTICAL CONSIDERATIONS

Next, we present important extensions of our system
model, and also describe implementation issues that allow
the practical deployment of Algorithm 1.

Transmission control and sequencing. Besides schedul-
ing the users, in many scenarios it is crucial to guarantee
a low maximum delay between consecutive schedulings of
each user. In Fig. 5 for example, this maximum delay is
equal to w2 + w3 = ∆ − w1 for user 1. A way to reduce
this delay is to divide the slot into smaller subintervals, e.g.
k sub-slots of duration ∆/k, which will effectively reduce
the inter-arrival delay by a factor of k. Alternatively, one
might resort to interleaving transmissions for users with high
performance requirements, and break the scheduling pattern.
Moreover, note that this framework operates at a higher time
scale than typical wireless mechanisms, e.g. power allocation,
which run in a much smaller time scale. These decisions
are orthogonal to the video pipeline configuration, and are
essentially latent factors, the effect of which is incorporated
through our Bayesian updates.

Additional configurations. In our prototype we experi-
mented with the NN size, encoding rate and airtime. Never-
theless, other video processing pipelines involve parameters
such as the frame resolution [10], [14], or NN model and
number of NN layers [13], [30], [35]. These parameters
eventually trade off frame rate for CC, just like the encoding
rate and NN input size in our application, and our framework
can be readily extended to account for these options. For ex-
ample, consider the case where we can select the users’ frame
resolution pnt from a finite set P , on top of the encoding rate.
The impact on image size s(xnt, pnt) and transmission delay
τnt(xnt, pnt) would be 2-dimensional and the configuration
vector would be zt = (x1:Nt, yt, w1:Nt, p1:Nt), where we
use shorthand notations α1:Nt for vectors (α1t, . . . , αNt).
Similarly, if we can select among L NN models that differ
on, e.g., their training data, this vector becomes zt =
(x1:Nt, yt, w1:Nt, lt), lt ∈ L. Such extensions increase the
configuration space and this can impact the convergence
speed, which nevertheless is guaranteed.

Controlling computing resources. On the other hand,
some systems offer access to allocating their computing
resources or have multiple GPUs. Hence, we would be able
to allocate a GPU, and as a result a distinct NN input
size ynt for each user n. The cost would be again an
increased action space, namely zt = (x1:Nt, y1:Nt, w1:Nt).
Furthermore we can introduce assignment variables to allo-
cate multiple users to multiple GPUs and/or Access Points
(AP). In specific, consider that the server has K available
GPUs and the users can connect to it through J APs,
resulting in a joint GPU/AP assignment decision vector, i.e.
zt = (x1:Nt, y1:Kt, w1:Nt, v1:Nt), where vnt is the associa-
tion decision for user n, i.e. a tuple (j, k) that denotes n is
served by AP j and GPU k. This way we can support high
frame rates for the users since the resource availability scales.
We evaluate these scenarios in Sec. VII.

Implementation issues. In many settings some of the
algorithm’s parameters might be unknown. For instance, an

0 10 20 30 40 50
Slot

0
20
40
60
80

100
120
140
160

Sa
fe
 se

t s
ize # of safe actions

B=2
B=5
B=10

(a)

δ=0.1 δ=0.30
5

10
15
20
25
30
35

Co
ns

tra
in
t V

io
la
tio

ns
 (%

) B=2
B=5
B=10

(b)

Fig. 6: (a) Safe set expansion during the first stage of Algorithm
1. (b) Constraint violation percentage for different values of B, δ.

upper bound for the norms of f, gn is difficult to compute
with no/incomplete data. The same is true regarding the
Lipschitz constants Mn. In practice, we can compute the
former during a small initialization period, or rely on historic
data. For the latter we can use a modified rule for the
expansion stage [48], where we replace (12), (13) with:

St =
⋂
n∈N
{z ∈ Z | unt (z) ≤ 0}

et(z) =
∣∣∣ ⋂
n∈N
{z′ ∈ Z\St | lnt (z) ≤ 0}

∣∣∣,
where we simply use the upper/lower confidence bounds. The
drawback is that we need to calculate the posteriors for all
z ∈ Z , not just the ones already in St.

Another important aspect is that the execution duration (in
slots) of both the expansion and optimization stages cannot be
set a-priori; hence, a stopping criterion should be employed
in practice. The expansion stage can be terminated if the
safe set does not increase for, e.g., 10 consecutive slots
with a hard cap of 30 slots, as discussed also in [48]. The
optimization stage can be terminated if we do not observe a
further increase in the reward for a fixed number of, e.g., 10
slots. Clearly, these rules depend also on how fast the server
can actually execute the algorithm iterations, where each one
needs to be completed within ∆ seconds, i.e., before applying
the next configuration. The complexity of Algorithm 1 is
dominated by the inversion operation of the GPs, which is
in the order of O(N3) for N data points [16]. Hence, as
time evolves these computations become more cumbersome.
Our experiments show that a typical server can execute them
well-before the ∆ secs window expires (see Sec. VII), while
this delay can be tuned with the above termination rules.

VII. PERFORMANCE EVALUATION

We consider the sets X ={25, 50, 75, 100}, and
Y = {128, 192, . . . , 576}, and provide the respective
measurements obtained from our testbed in [21]. We
quantize the time allocation decisions wnt so that our
configuration space Z is finite. In specific, we define
W = {.1, .2, .3, .4, .5, .6, .7, .8, .9} and ∆ = 5 sec, so that
wnt=0.5 means that the time allocated to device n during t
is 2.5 sec. For the construction of the initial safe set S0, we
only use configurations that include the lowest NN size and
encoding rate, i.e. 128 and 25% respectively, since if the

0 50 100 150 200
Slot

0.5

1.0

1.5

2.0

2.5

3.0

Re
gr
et

Convergence

(a)

0 50 100 150 200
Slot

1.0

1.5

2.0

2.5

Cu
m
ul
at
iv
e
Co

nf
id
en

ce

20

25

30

Fr
am

e
Ra

te
 (f
ps

)

User 1
User 2

(b)

Fig. 7: (a) The average regret of Algorithm 1. (b) Cumulative
Confidence and frame rate of 2 users with λ1 = 10, λ2 = 20.

0 50 100 150 200
Slot

0
10
20
30
40
50
60
70

Ite
ra
tio

n
de

la
y
(Δ
Δ
) N=2

N=3
N=4
N=5

(a)

6 8 10 12 140

100

200

M
ax

 d
el
ay

 (Δ

Δ
)

6 8 10 12 14
Users

0

100

200

Co
nv

er
ge

nc
e

 S
lo
t

(b)

Fig. 8: (a) Average iteration delay of Alg. 1. (b) Maximum iteration
delay and convergence time in slots.

problem is feasible, these parameters will definitely satisfy
the constraints. We combined the above measurements with
the model of Sec. IV to evaluate Algorithm 1 in finding the
optimal configuration of a multi-user system with diverse
frame rate constraints. The channel bandwidth is W =40
MHz and each user’s mean SNR is selected from a uniform
distribution in [10, 35] dB. This mean is then used to sample
the SNR hnt at each slot from a Gaussian distribution.

Parameter Analysis. We first study the impact of pa-
rameter βt. The value for B impacts the safe set expansion
stage since it controls how conservative or slack we are in
adding configurations to the safe set. In addition, parameter
δ determines the constraint violation probability which is
related to the correctness of St and how likely it is for
relatively unsafe actions to be selected. Fig. 6a depicts
the size evolution of the safe set over time versus B. We
calculated (offline) that the number of configurations that
satisfy gn(z)≤0, ∀n is 160. We observe that as we increase
B the algorithm becomes more conservative in expanding
the safe set. In specific, we have that |St| for B = 2 is
80.6% of the actual safe set, while for B = 10 it is only
59.4%, meaning that many high reward actions will not be
considered in the optimization stage.

Next, we evaluate the impact of B and δ on the constraints
violation probability. Fig. 6b displays the constraint violation
probability over 200-slot simulations. We consider probabil-
ities 0.1 and 0.3 for δ, and B∈{2, 5, 10}, as before. Notice
that for B = 2 the violation probability increases beyond
10% and 30% respectively, indicating that the selection of B
is too low to satisfy the desired probability. In the following
we select δ = 0.1 and B = 5.

Results. We evaluate the performance of Algorithm 1
using the average regret Regt/t, for a 2-user system where

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Latency:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

0 50 100 150 200 250 300
Slot

3.5
4.0
4.5
5.0
5.5
6.0

Re
wa

rd

Optimal
Achieved

(a) Scenario 1

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Latency:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

0 50 100 150 200 250 300
Slot

6
7
8
9

10
11

Re
wa

rd

Optimal
Achieved

(b) Scenario 2

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Latency:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

0 50 100 150 200 250 300
Slot

2
4
6
8

10
12

Re
wa

rd

Optimal
Achieved

(c) Scenario 3

Fig. 9: Reward of (a): Many GPUs and preassigned users; (b): User-to-GPU assignment; (c): User-to-AP-to-GPU assignment.

λ1 =10, λ2 =20 fps. In Fig. 7a we depict the average regret,
where the light blue shaded area indicates the 1-std area over
100 evaluations. The figure highlights that (after the expan-
sion stage) the algorithm makes high reward actions, resulting
in a continuous decrease of the regret (asymptotically 0). We
impose the stopping criterion discussed before, and observe
that convergence occurs at about 150 slots.

In order to evaluate the performance of each user, we
plot their achieved average CC and frame rate over time
in Fig. 7b. The figure shows 1/t

∑t
k=1 Cnk(zk; onk) and

1/t
∑t
k=1Rnk(zk;hnk), ∀t, n = 1, 2, respectively in each

of the y-axes. Observe that during the expansion stage,
i.e. t ≤ 30, we have a rather random performance since
the goal there is only to locate safe actions. For t > 30
however, the algorithm takes improved actions for both users,
resulting in an increasing CC. These actions are at the edge
of the safe set and hence they are “riskier” resulting in a
controlled drop of the average frame rate, which is always
above each user’s threshold λn. Additionally, the achieved
CC is almost identical for both users, which indicates that the
differentiation in time allocation rather than encoding rate is
what differentiates the users’ frame rates.

Next, we evaluate the algorithm’s scalability by measuring
its average iteration delay, and in particular, the time required
to execute steps 7-19 in our server (see Sec. III for server
specs). Fig. 8a depicts this delay as a fraction of slot duration
∆ for different number of users N . For the first 30 slots
(expansion stage) we clearly see the delay increasing both
with the slot t and users N . The former is because the
updates (6)-(9) increase in complexity with the samples (at
cubic rate), since they involve matrix inversions of size t. The
latter is due to the fact that with more users, there are many
more candidate configurations for the safe set expansion.
After the first stage, we observe a drop of the delay since
(i) the posteriors of the constraint functions no longer require
updates, and (ii) the safe set has been fixed and uft (z) is only
evaluated for z ∈ St. The iteration delay starts increasing
again with t for the same reason as before, but is kept
low until the algorithm converges to an acceptable solution.
Interestingly, the delay for N = 4 is bigger than with N = 5,
which is due to the smaller |St| we get for the latter case.
Namely, the more users we have the harder it gets to satisfy
their frame rate constraints, which in turn might shrink the
safe set and expedite the algorithm.

We consider more users in Fig. 8b where we set a low
frame rate requirement λn = 2, ∀n ∈ N , so that problem P
is feasible. In the top graph we show the maximum value of
the iteration delay within a 200 slots evaluation. Notice that
for N ≥ 12 the delay gets much bigger than the slot duration,
which suggests that we have to either increase ∆ and admit
longer convergence, or reduce the expansion stage duration.
The lower graph in Fig. 8b shows the slot in which (on
average) the stopping criterion discussed in Sec. VI occurs
for different values of N . We observe that the differences
are insignificant and that we can always stop the algorithm
in fewer than 200 slots.

Finally, we evaluate our framework for the settings where
(i) multiple GPUs (K = 2) are available to the server, and a
NN size configuration ynt is selected for each user n (Sce-
nario 1); (ii) the number of users N is higher than the number
of GPUs K (Scenario 2); and (iii) the users can be served by
a number of J APs. In detail we set N = 4,K = 2, J = 1
for Scenario 2, and N = 4,K = 2, J = 2 for Scenario 3. The
achieved and optimal reward of Algorithm 1 for Scenarios
1-3 is displayed in Fig. 9a-9c, along with a small diagram
depicting each setting. Remember that the achieved reward is
simply the added observed CC for all users in each slot. We
can see that in all scenarios the performance of the system
keeps increasing and converging towards the optimal one.
In specific, the observed performance is within only 6%, 4%
and 5% from the optimal in each Scenario, after 200 slots.

VIII. CONCLUSIONS

Using an exemplar prototype, we demonstrated that MEC-
assisted video analytics exhibit volatile and platform/data-
dependent performance. Our framework makes no assump-
tions on the form of objective and constraint functions, and is
inspired by ideas in the area of automated machine learning,
which we extend here in order to configure the network too.
Our solution firstly identifies feasible configurations, and then
finds a sequence of actions that converge to the problem’s
optimal solution. We believe that our work paves the road
for building systems that are fully adaptable and also provide
performance guarantees.

ACKNOWLEDGMENTS

This publication has emanated from research supported
by SFI grants 17/CDA/4760, 16/IA/4610 and 17/NSFC/5224,
and project EC H2020 DAEMON-DLV-101017109.

REFERENCES

[1] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile Aug-
mented Reality Survey: From Where We Are to Where We Go,” IEEE
Access, vol. 5, pp. 6917–6950, 2017.

[2] Microsoft, “Seeing AI,” https://www.microsoft.com/en-us/ai/seeing-ai.
[3] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “Deepface: Closing

the Gap to Human-level Performance in Face Verification,” in Proc. of
IEEE CPVR, 2014.

[4] W. Zhang, B. Han, and P. Hui, “On the Networking Challenges of
Mobile Augmented Reality,” in Proc. of ACM SIGCOMM Workshop
on VR/AR Network, 2017.

[5] Y. C. Hu et al., “Mobile Edge Computing - a Key Technology Towards
5G,” ETSI White Paper, vol. 11, no. 11, pp. 1–16, 2015.

[6] M. Jia, et al., “Cloudlet Load Balancing in Wireless Metropolitan Area
Networks,” in Proc. of IEEE INFOCOM, 2016.

[7] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online Job Dispatching and
Scheduling in Edge-Clouds,” in Proc. of IEEE INFOCOM, 2017.

[8] X. Chen, L. Jiao, W. Li, X. Fu, “Efficient Multi-User Computation
Offloading for Mobile-Edge Cloud Computing,” IEEE/ACM Trans. on
Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[9] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[10] J. Jiang et al., “Chameleon: Scalable Adaptation of Video Analytics,”
in Proc. of ACM SIGCOMM, 2018.

[11] C.-C.Hung,et al., “VideoEdge:Processing Camera Streams Using Hi-
erarchical Clusters,” in Proc. of IEEE/ACM SEC, 2018.

[12] P. Yang et al., “Edge coordinated query configuration for low-latency
and accurate video analytics,” IEEE Trans. on Industrial Informatics,
vol. 16, no. 7, pp. 4855–4864, 2020.

[13] X. Ran et al., “DeepDecision: A Mobile Deep Learning Framework
for Edge Video Analytics,” in Proc. of IEEE INFOCOM, 2018.

[14] H. Zhang et al., “Live Video Analytics at Scale with Approximation
and Delay-Tolerance,” in Proc. of USENIX NSDI, 2017.

[15] A. Galanopoulos, V. Valls, G. Iosifidis, and D. J. Leith, “Measurement-
driven Analysis of an Edge-Assisted Object Recognition System,” in
Proc. of IEEE ICC, 2020.

[16] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine
Learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[17] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proc. of ICML, 2010.

[18] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for
Hyper-Parameter Optimization,” in Proc. of NIPS, 2011.

[19] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined Selection and Hyperparameter Optimization of
Classification Algorithms,” in Proc. of ACM SIGKDD KDD, 2013.

[20] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. d. Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proc. of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[21] A. Galanopoulos et al., “Edge-Dataset Description.” [Online].
Available: https://github.com/apgalano/Edge-Dataset

[22] C. Lo, Y. Su, C. Lee, and S. Chang, “A Dynamic Deep Neural Network
Design for Efficient Workload Allocation in Edge Computing,” in Proc.
of IEEE ICCD, 2017.

[23] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed Deep
Neural Networks Over the Cloud, the Edge and End Devices,” in Proc.
of IEEE ICDCS, 2017.

[24] W. Zhang, B. Han, and P. Hui, “Jaguar: Low Latency Mobile Aug-
mented Reality with Flexible Tracking,” in Proc. of ACM Conference
on Multimedia, 2018.

[25] T. Y.-H. Chen et al., “Glimpse: Continuous, Real-Time Object Recog-
nition on Mobile Devices,” in Proc. of ACM SenSys, 2015.

[26] P. Jain, J. Manweiler, and R. Roy Choudhury, “OverLay: Practical
Mobile Augmented Reality,” in Proc. of ACM MobiSys, 2015.

[27] L. Liu, H. Li, and M. Gruteser, “Edge Assisted Real-time Object
Detection for Mobile Augmented Reality,” in Proc. of ACM MobiCom,
2019.

[28] H. Li et al., “JALAD: Joint Accuracy- and Latency-Aware Deep
Structure Decoupling for Edge-Cloud Execution,” in Proc. of IEEE
ICPADS, 2018.

[29] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “MobiQoR: Pushing
the Envelope of Mobile Edge Computing Via Quality-of-Result Opti-
mization,” in Proc. of IEEE ICDCS, 2017.

[30] Q. Liu, et al., “An Edge Network Orchestrator for Mobile Augmented
Reality,” in Proc. of IEEE INFOCOM, 2018.

[31] T. Tan, and G. Cao, “FastVA: Deep Learning Video Analytics Through
Edge Processing and NPU in Mobile,” in Proc. of IEEE INFOCOM,
2020.

[32] S. Yi et al., “LAVEA: Latency-aware Video Analytics on Edge
Computing Platform,” in Proc ACM/IEEE SEC, 2017.

[33] J. Chen and X. Ran, “Deep Learning With Edge Computing: A
Review,” Proc. of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[34] Q. Liu, and T. Han, “DARE: Dynamic Adaptive Mobile Augmented
Reality with Edge Computing,” in Proc. of IEEE ICNP, 2018.

[35] C. Wang et al., “Joint Configuration Adaptation and Bandwidth Allo-
cation for Edge-based Real-time Video Analytics,” in Proc. of IEEE
INFOCOM, 2020.

[36] J. Meng, et al., “Adaptive User-managed Service Placement for Mobile
Edge Computing: An Online Learning Approach,” in Proc. of IEEE
INFOCOM, 2019.

[37] ——, “Dedas: Online Task Dispatching and Scheduling with Band-
width Constraint in Edge Computing,” in Proc. of IEEE INFOCOM,
2019.

[38] T. Lin et al., “Microsoft COCO: Common Objects in Context,” arXiv,
vol. abs/1405.0312, 2014.

[39] M. Feurer, et al., “Efficient and Robust Automated Machine Learning,”
in Proc. of NIPS, 2015.

[40] O. Alipourfard et al., “CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics,” in Proc. of USENIX
NSDI, 2017.

[41] Q. Liu, and T. Han, “VirtualEdge: Multi-Domain Resource Orchestra-
tion and Virtualization in Cellular Edge Computing,” in Proc. of IEEE
ICDCS, 2019.

[42] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of
the Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 23, pp.
235–256, 2002.

[43] H. Junya and T. Akimichi, “Optimality of Thompson Sampling for
Gaussian Bandits Depends on Priors,” arXiv preprint arXiv:1311.1894,
2013.

[44] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári, “Parametric
Bandits: The Generalized Linear Case,” in Proc. of NIPS, 2010.

[45] Y. Russac, O. Cappé, and A. Garivier, “Algorithms for Non-Stationary
Generalized Linear Bandits,” arXiv preprint arXiv:2003.10113, 2020.

[46] N. Srinivas et al., “Information-Theoretic Regret Bounds for Gaussian
Process Optimization in the Bandit Setting,” IEEE Trans. on Informa-
tion Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[47] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, “Safe Exploration
for Optimization with Gaussian Processes,” in Proc. of ICML, 2015.

[48] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue, “Stagewise Safe Bayesian
Optimization with Gaussian Processes,” in Proc. of ICML, 2018.

[49] S. Amani, M. Alizadeh, and C. Thrampoulidis, “Regret Bounds
for Safe Gaussian Process Bandit Optimization,” arXiv preprint
arXiv:2005.01936, 2020.

[50] S. R. Chowdhury and A. Gopalan, “On Kernelized Multi-Armed
Bandits,” in Proc. of ICML, 2017.

