TiO2 NANOTUBES FOR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE
Creators
- 1. Technical University of Moldova, 168, Stefan cel Mare Bd., Chisinau, Republic of Moldova
Description
Titanium dioxide remains one of the most studied semiconductor for photocatalytic applications due to its low cost production, reduced toxicity, ability to break down the organic pollutants and possibility to achieve complete mineralization. In this work, we report on results of the photocatalytic activity of titanium dioxide nanotubes fabricated by electrochemical anodization technique in an electrolyte solution containing a mixture of hydrofluoric acid, ethylene glycol and phosphoric acid. The morphology and crystallinity of the obtained nanotubes were investigated by means of electron microscopy and it was found that nanotubes have a constant outer diameter of 200 nm and an internal conical shape where the diameter gradually decreases from 120 nm at the wide end to 50 nm at the narrow end. The transmission electron microscopy investigation defined two different phases of titanium dioxide obtained after annealing of amorphous TiO2 in air at 650 °C and 850 °C. Photocatalytic activity of the samples have been evaluated in methylene blue solution in the presence of dispersed nanotubes under visible and UV irradiation by means of UV/Vis spectroscopy. Anatase phase TiO2 shows the best performance degrading 85 % of dye in 25 min under UV illumination, while rutile phase with anatase inclusions shows the best results with a 50 % decay of dye concentration in 25 min under visible light illumination.
Files
10.52326jes.utm.2021.28(1).01.pdf
Files
(954.7 kB)
Name | Size | Download all |
---|---|---|
md5:37f0f4666169c20de9340ff3bb46f769
|
954.7 kB | Preview Download |
Additional details
Funding
References
- Asghar M.I., Miettunen K., Halme J., Vahermaa P., Toivola M., Aitola K., Lund P. Review of stability for advanced dye solar cells. In: Energy and Environmental Science, 2010, 3(4), pp:418–426.
- Zhu K., Neale N.R., Miedaner A., Frank A.J. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. In: Nano Letters, 2007, 45(1), pp:10623–10631.
- Qu Y., Zhou W., Pan K., Tian C., Ren Z., Dong Y., Fu H. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: An effective candidate for dye-sensitized solar-cells. In: Physical Chemistry Chemical Physics, 2010, 12(32), pp:9205–9212.
- Grosjean R., Delacroix S., Gouget G., Beaunier P., Ersen O., Ihiawakrim D., Kurakevych O., Portehault D. Progress in TiO2 nanotube coatings for biomedical applications: A review. In: Journal of Materials Chemistry B, 2018, 13(23), pp:1862–1886.
- Shrestha N.K., Macak J.M., Schmidt-Stein F., Hahn R., Mierke C.T., Fabry B., Schmuki P. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. In: Angewandte Chemie - International Edition, 2009, 48(5), pp:969–972.
- Enachi M., Guix M., Postolache V., Ciobanu V., Fomin V.M., Schmidt O.G., Tiginyanu I. Light-Induced Motion of Microengines Based on Microarrays of TiO2 Nanotubes. In: Small, 2016, 12(39), pp:5497–5505.
- Li Z., Zhang H., Zheng W., Wang W., Huang H., Wang C., MacDiarmid A.G., Wei Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. In: Journal of the American Chemical Society, 2008, 130(15), pp:5036–5037.
- Jiang Z., Yang F., Luo N., Chu B.T.T., Sun D., Shi H., Xiao T., Edwards P.P. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis. In: Chemical Communications, 2008, 1(47), pp:6372–6374.
- Enachi M., Guix M., Braniste T., Postolache V., Ciobanu V., Ursaki V., Schmidt O.G., Tiginyanu I. Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots. In: Surface Engineering and Applied Electrochemistry, 2015, 51(1), pp: 3–8.
- Vakili M., Rafatullah M., Salamatinia B., Abdullah A.Z., Ibrahim M.H., Tan K.B., Gholami Z., Amouzgar P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. In: Carbohydrate Polymers, 2014, 113, pp:115–130.
- Pan Y., Wang J., Sun C., Liu X., Zhang H. Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: A lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples. In: Journal of Hazardous Materials, 2016, 309, pp:65–76.
- Zheng L., Wang X., Wang X. Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening. In: Journal of Cleaner Production, 2015, 108, pp:525–533.
- Chatzisymeon E., Xekoukoulotakis N.P., Coz A., Kalogerakis N., Mantzavinos D. Electrochemical treatment of textile dyes and dyehouse effluents. In: Journal of Hazardous Materials, 2006, 137(2), pp:998–1007.
- Manekar P., Patkar G., Aswale P., Mahure M., Nandy T. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. In: Bioresource Technology, 2014, 157, pp:44–51.
- Guo J., Zhang Q., Cai Z., Zhao K. Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. In: Separation and Purification Technology, 2016, 161, pp:69–79.
- Nakata K., Fujishima A. TiO 2 photocatalysis: Design and applications. In: Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3), pp:169–189.
- Lee G.J., Wu J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review. In: Powder Technology, 2017, 318, pp:8–22.
- Cheng L., Xiang Q., Liao Y., Zhang H. CdS-Based photocatalysts. In: Energy and Environmental Science, 2018, 11(6), pp:1362–1391.
- Mishra M., Chun D.M. α-Fe2O3 as a photocatalytic material: A review. In: Applied Catalysis A: General, 2015, 498, pp:126–141.
- Widiyandari H., Ketut Umiati N.A., Dwi Herdianti R. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method. In: Journal of Physics: Conference Series, 2018, 1025(1).
- Wolff N., Ciobanu V., Enachi M., Kamp M., Braniste T., Duppel V., Shree S., Raevschi S., Medina-Sánchez M., Adelung R., Schmidt O.G., Kienle L., Tiginyanu I. Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. In: Small, 2020, 16(2), pp:1–10.
- Hou C., Hu B., Zhu J. Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. In: Catalysts, 2018, 8(12).
- Ghosh T.B., Dhabal S., Datta A.K. On crystallite size dependence of phase stability of nanocrystalline TiO2. In: Journal of Applied Physics, 2003, 94(7), pp:4577–4582.
- Li G., Li L., Boerio-Goates J., Woodfield B.F. High purity anatase TiO2 nanocrystals: Near room- temperature synthesis, grain growth kinetics, and surface hydration chemistry. In: Journal of the American Chemical Society, 2005, 127(24), pp:8659–8666.
- Enachi M., Lupan O., Braniste T., Sarua A., Chow L., Mishra Y.K., Gedamu D., Adelung R., Tiginyanu I. Integration of individual TiO2 nanotube on the chip : Nanodevice for hydrogen sensing pss. In: Physica Status Solidi - Rapid Research Letters, 2015, 174(3), pp:171–174.
- Hadjiivanov K.I., Klissurski D.G. Surface chemistry of titania (anatase) and titania-supported catalysts. In: Chemical Society Reviews, 1996, 25(1), pp:61–69.
- Beltrán A., Gracia L., Andrés J. Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. In: Journal of Physical Chemistry B, 2006, 110(46), pp:23417–23423.
- Hanaor D.A.H., Sorrell C.C. Review of the anatase to rutile phase transformation. In: Journal of Materials Science, 2011, 46(4), pp:855–874.
- Muscat J., Swamy V., Harrison N.M. First-principles calculations of the phase stability of TiO2. In: Physical Review B - Condensed Matter and Materials Physics, 2002, 65(22), pp:2241121–22411215.
- Pallotti D.K., Passoni L., Maddalena P., Di Fonzo F., Lettieri S. Photoluminescence Mechanisms in Anatase and Rutile TiO2. In: Journal of Physical Chemistry C, 2017, 121(16), pp:9011–9021.
- Huang S.Y., Schlichthörl G., Nozik A.J., Grätzel M., Frank A.J. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. In: Journal of Physical Chemistry B, 1997, 101(14), pp:2576–2582.
- Bacsa R., Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. In: Applied Catalysis B: Environmental, 1998, 16(1), pp:19–29.
- Bickley R.I., Gonzalez-Carreno T., Lees J.S., Palmisano L., Tilley R.J.D. A structural investigation of titanium dioxide photocatalysts. In: Journal of Solid State Chemistry, 1991, 92(1), pp:178–190.
- Banfield J.F., Zhang H. Thermodynamic analysis of phase stability of nanocrystalline titania. In: Journal of Materials Chemistry, 1998, 8(9), pp:2073–2076.
- Rupp F., Scheideier L., Olshanska N., De Wild M., Wieland M., Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. In: Journal of Biomedical Materials Research - Part A, 2006, 76(2), pp:323–334.
- Ohno T., Tokieda K., Higashida S., Matsumura M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. In: Applied Catalysis A: General, 2003, 244(2), pp:383–391.