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Abstract—Different approaches to obtain a notion of metric in
the context of fuzzy setting can be found in the literature. In this
paper, we deal with the concept due to George and Veeramani,
which is defined by means of continuous triangular norms.
Different authors have addressed the study of such a concept
from a theoretical point of view. In this paper, we provide a new
methodology to induce fuzzy metrics which generalize the cele-
brated standard fuzzy metric. The aforementioned methodology
allows us to approach some questions related to the continuous
triangular norms from which such fuzzy metrics are defined.
Morever, we show the applicability of the new fuzzy metrics to an
engineering problem. More specifically, we address successfully
robust model estimation through a variant of the well-known
estimator RANSAC. By way of illustration of the performance
of the approach, we report on the accuracy achieved by the
new estimator and other RANSAC variants for a benchmark
involving a specific model estimation problem and a large number
of datasets with varying proportion of outliers and different levels
of noise. The resulting estimator is shown able to outperform the
classical counterparts considered.

Index Terms—Fuzzy metric; continuous t-norm; Dombi t-
norm; standard fuzzy metric; model estimation; RANSAC

I. INTRODUCTION AND PRELIMINARIES

In 1965, L. A. Zadeh introduced the notion of fuzzy
set in [1]. Since then, such a concept has constituted the
grounds of many lines of research in different fields, such as
Mathematics, Computer Science, Economics. In Mathematics
and, in particular, in Topology, an interesting issue consists
in providing a notion of metric, in the fuzzy setting, in
accordance with the essence of the classical concept. With this
aim, in [2], I. Kramosil and J. Michalek introduced a notion
of fuzzy metric space by adapting the concept of statistical
metric due to Menger (see [3]) to the fuzzy context. Later
on, in [4], A. George and P. Veeramani slightly modified the
notion of Kramosil and Michalek with the aim of obtaining a
more faithful adaptation to the fuzzy setting of the classical
concept of metric. In both cases, the concept of fuzzy metric
is defined by means of continuous t-norms (see [5] to find
a deep treatment on t-norms). Following [4], a fuzzy metric
space is a triplet (X,M, ∗) where X is a non-empty set, ∗ is
a continuous t-norm and M is a fuzzy set on X×X,×]0,∞[
satisfying, for each x, y, z ∈ X and t, s ∈]0,∞[, the following:
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(GV1)M(x, y, t) > 0;
(GV2)M(x, y, t) = 1 if and only if x = y;
(GV3)M(x, y, t) = M(y, x, t);
(GV4)M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);
(GV5) The assignment Mx,y :]0,∞[→]0, 1] is a continuous

function.
As usual, we say that (M, ∗), or simply M if no confusion
arises, is a fuzzy metric on X .

On account of the previous definition, the value of
M(x, y, t) can be interpreted as a degree of nearness between
the point x and y of X with respect to the parameter t ∈]0,∞[.
Then, the closer to 1 is such a value, the nearer the points x and
y with respect to t are. Contrarily, values close to 0 indicate a
lower degree of nearness. Thus, in this notion of fuzzy metric,
1 plays a similar role to 0 for the classical case, whereas 0
can be seen as ∞ in classical metrics. So, axiom (GV1) is
justified by the fact that the degree of nearness with respect
to a parameter never can be zero, just as in the classical case
the distance between two points cannot become ∞.

One can easily identify (GV2), (GV3) and (GV4) as fuzzy
versions of the axioms of, respectively, separation, symmetry
and transitivity, which altogether define the notion of classical
metric. Concretely, (GV2) means that, on the one hand, the
degree of nearness between two points with respect to an
arbitrary parameter only can be 1 whenever both points are
the same. On the other hand, the degree of nearness between
a point and itself is 1, with respect to an arbitrary parameter.
Finally, (GV5) ensures that no drastic changes arise in the
degree of nearness due to slight modifications of the parameter
with respect to which it is being measured.

An immediate consequence of (GV4), which was pointed
out by M. Grabiec for fuzzy metrics in the sense of Kramosil
and Michaleck (see [6]), is that the degree of nearness between
two points does not decrease when the parameter for which
such a degree is relative increases, i.e. for each x, y ∈ X ,
we have that M(x, y, t) ≥M(x, y, s) for each t, s]0,∞[ with
t > s.

This kind of fuzzy metric spaces has been studied by
several authors from the mathematical point of view. Besides,
they have been used successfully in engineering problems
such as colour image filtering or perceptual colour difference
(see [7]–[11]). Indeed, fuzzy metrics show some advantages
with respect to the classical ones. On the one hand, the
parameter t allows the fuzzy metric to be better adapted to
context in which it is to be used. On the other hand, fuzzy
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metrics match perfectly with the employment of other fuzzy
techniques, since the value given by a fuzzy metric, as pointed
out before, can be directly interpreted as a fuzzy degree of
nearness. So, providing useful techniques for generating fuzzy
metrics becomes an interesting issue in order to provide a
wider range of measurement tools in such a way that the fuzzy
metric that best fits the problem being studied can be applied
to solve it.

A celebrated example of fuzzy metric is the so-called
standard fuzzy metric, which is defined from a classical metric
(see [4]). Indeed, let (X, d) be a metric space and define the
fuzzy set Md on X ×X×]0,∞[ as follows:

Md(x, y, t) =
t

t+ d(x, y)
, for each x, y ∈ X, t ∈]0,∞[.

(1)
The standard fuzzy metric on X deduced from d is the pair
(Md, ∗M ), where ∗M denotes the minimum t-norm (i.e. a∗M
b = min{a, b} for each a, b ∈ [0, 1]).

Observe that (X,Md, ∗) is also a fuzzy metric space for
each continuous t-norm ∗, since ∗M is the largest t-norm.
Indeed, given a continuous t-norm ∗, the inequality a ∗M b ≥
a ∗ b is satisfied for each a, b ∈ [0, 1].

From the topological point of view, the standard fuzzy
metric enjoys outstanding properties. The topologies generated
from the standard fuzzy metric and from the classical metric,
from which it is induced, coincide. Besides, it fulfils some
interesting properties which do not make sense in the classical
context but they do in the fuzzy context. Among others, it
should be stressed the property of being strong (see [12]). Let
us recall that a fuzzy metric space (X,M, ∗) is said to be
strong if, in addition, M satisfies, for each x, y, z ∈ X and
t ∈]0,∞[, the next inequality:

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t). (2)

Observe that the preceding inequality is stronger than that
given in the axiom (GV4).

It is a well-known fact that, given a metric space (X, d),
then the standard fuzzy metric space (X,Md, ∗P ) is strong,
where ∗P denotes the usual product t-norm, i.e. a ∗P b =
a · b for each a, b ∈ [0, 1]. Nevertheless, (X,Md, ∗M ) is not a
strong fuzzy metric space in general, as pointed out in [12]. In
view of the preceding fact, an interesting question arises: there
exists a continuous t-norm ∗, different from ∗P , with ∗ ≥ ∗P
and such that (X,Md, ∗) is a strong fuzzy metric space for
each metric space (X, d)?

In [13], a generalization of the fuzzy set Md given by (1)
was introduced defining, for each x, y ∈ X and t ∈]0,∞[, the
next fuzzy set:

Mg,m
d (x, y, t) =

g(t)

g(t) +m · d(x, y)
, (3)

where m ∈]0,∞[ and g :]0,∞[→]0,∞[ is a non-decreasing
continuous function. According to [13], (X,Mg,m

d , ∗P ) is a
strong fuzzy metric space. Nevertheless, an extra condition on
g is required so that (X,Mg,m

d , ∗M ) is a fuzzy metric space
for any arbitrary metric space (X, d). Indeed, if the function g

is not superadditive, i.e. g(t+ s) ≥ g(t) + g(s) for each t, s ∈
]0,∞[, then (X,Mg,m

d , ∗M ) is not, in general, a fuzzy metric
space. Again, similar to the case of the standard fuzzy metric,
it seems natural to wonder whether there exits a continuous t-
norm, different from ∗P , with ∗ ≥ ∗P such that (X,Mg,m

d , ∗)
is a fuzzy metric space for each metric space (X, d) without
requiring any extra condition on g.

Coming back to the applicability of fuzzy metrics, in
most problems, we are interested in measuring some kind
of difference or similarity between objects. Therefore, fuzzy
metrics can be good candidates to evaluate such a measure-
ment. Concretely, the fuzzy set M is used to provide the
aforementioned difference or similarity. However, the t-norm
that defines M as a fuzzy metric does not play any role in
the way in which such a measure is provided and, thus, it
does not contribute anything that can make the fuzzy metric
better fit for the problem under consideration. Since the fuzzy
set Mg,m

d given by expression (3) depends on more elements
than the standard fuzzy metric Md, Mg,m

d allows to get more
flexibility to obtain a measurement tool that fits better to
the problem under consideration than Md. So, providing a
fuzzy set that generalizes expression (3) could improve the
potential applicability of fuzzy metrics, even though such a
generalization does not become a fuzzy metric for the same
class of t-norms for which Mg,m

d is so.
In the light of the exposed facts, the aim of this paper is

twofold. On the one hand, we focus our efforts on obtaining
a fuzzy set that generalizes expression (3) and on finding a
family of continuous t-norms for which this new fuzzy set
becomes a fuzzy metric. Moreover, we are interested in the
study of those continuous t-norms for which this new fuzzy
metric fulfils the property of being strong. Such a study allows
us to approach the two questions posed above. On the other
hand, we address a model estimation problem as an example
of engineering application to illustrate the applicability of the
new fuzzy metric proposed in Section II.

II. THE GENERALIZED STANDARD FUZZY METRIC

In this section, we build a new fuzzy metric which gener-
alizes, in some sense, the standard fuzzy metric and the fuzzy
metric given by expression (3). To this end, we recall a well-
known family of continuous t-norms introduced by J. Dombi
in [14].

Given λ ∈]0,∞[ the t-norm ∗λDom is defined, for each a, b ∈
[0, 1], by the following expression:

a ∗λDom b =

 0, if a = b = 0
1

1+
(
( 1−a

a )
λ

+(( 1−b
b )

λ
) 1
λ

otherwise (4)

The construction of the promised fuzzy metric can be found
in the next result:

Theorem 2.1: Let (X, d) be a metric space, m,n ∈]0,∞[
and g :]0,∞[→]0,∞[ be a non-decreasing continuous func-
tion. Define the fuzzy set Mm,n,g

d on X ×X×]0,∞[ as:

M̃g,m,n
d (x, y, t) =

g(t)

g(t) +m · dn(x, y)
, (5)



where dn(x, y) denotes (d(x, y))
n. Then, (X, M̃g,m,n

d , ∗) is
a fuzzy metric space for each continuous t-norm ∗ satisfying
∗ ≤ ∗

1
n

Dom.
Proof.

Let ∗ be a continuous t-norm such that ∗ ≤ ∗
1
n

Dom. It is not
hard to check that M̃g,m,n

d satisfies axioms (GV1), (GV2),
(GV3) and (GV5). It remains to prove that (GV4) also holds.

Let x, y, z ∈ X and t, s ∈]0,∞[. We will see that

M̃g,m,n
d (x, z, t+ s) ≥ M̃g,m,n

d (x, y, t) ∗ M̃g,m,n
d (y, z, s).

Set α = max{g(t), g(s)}. Observe that

M̃g,m,n
d (x, z, t+ s) ≥ α

α+m · dn(x, z)
,

M̃g,m,n
d (x, y, t) ≤ α

α+m · dn(x, y)

and
M̃g,m,n
d (y, z, s) ≤ α

α+m · dn(y, z)
.

So, since ∗ ≤ ∗
1
n

Dom, we have that

M̃g,m,n
d (x, y, t) ∗ M̃g,m,n

d (y, z, s) ≤

≤ M̃g,m,n
d (x, y, t) ∗

1
n

Dom M̃g,m,n
d (y, z, s) ≤

≤ α

α+m · dn(x, y)
∗

1
n

Dom

α

α+m · dn(y, z)
=

=
1

1 + m·(d(x,y)+d(y,z))n

α

=
α

α+m · (d(x, y) + d(y, z))n
≤

≤ α

α+m · dn(x, z)
≤ M̃g,m,n

d (x, z, t+ s).

Therefore, for each x, y, z ∈ X and t, s ∈]0,∞[, M̃g,m,n
d

satisfies (GV4) for ∗ and we conclude that (X, M̃g,m,n
d , ∗) is

a fuzzy metric space. �

It must be stressed that (X, M̃g,m,n
d , ∗) is not a fuzzy metric

space, in general, when ∗ does not satisfy the condition ∗ ≤
∗

1
n

Dom, as the next example shows.
Example 2.2: Let (R, du) be the metric space where du is

the Euclidean metric on R, i.e. du(x, y) = |x−y|. Consider the
non-decreasing continuous function g1 :]0,∞[→]0,∞[ given
by g(t) = 1, for each t ∈]0,∞[, and m = n = 1. Then, the
fuzzy set M̃g1,1,1

du
is given by expression (5) as follows:

M̃g1,1,1
du

(x, y, t) =
1

1 + du(x, y)
, for each x, y ∈ R, t ∈]0,∞[.

Let ∗ be a continuous t-norm such that ∗ � ∗1Dom. Then,
there exists a, b ∈]0, 1[ such that a ∗ b > a ∗

1
n

Dom b.
Consider x = a−1

a , y = 0, z = 1−b
b and t, s ∈]0,∞[. Then,

M̃g1,1,1
du

(x, z, t+ s) =
1

1 + 1−a
a + 1−b

b

= a ∗1Dom b,

M̃g1,1,1
du

(x, y, t) = a and M̃g1,1,1
du

(y, z, s) = b.

Therefore, M̃g1,1,1
du

(x, y, t)∗M̃g1,1,1
du

(y, z, s) = a∗b > a∗1Dom
b = M̃g1,1,1

du
(x, z, t + s), and so M̃g1,1,1

du
does not satisfy

(GV4).
On account of Theorem 2.1 and the preceding example,

we conclude that ∗
1
n

Dom is the largest (continuous) t-norm for
which M̃g,m,n

d is a fuzzy metric on X , for each arbitrary
metric space (X, d), each non-decreasing continuous function
g :]0,∞[→]0,∞[ and each m,n ∈]0,∞[. Such a conclusion
allows us to approach the two questions posed in Section I.

On the one hand, Theorem 2.1 introduces a generalization
of the fuzzy set given by expression (3). Indeed, such a
fuzzy set is obtained by considering n = 1 in the fuzzy
set defined by expression (5), i.e. Mg,m

d = M̃g,m,1
d . Besides,

the aforementioned theorem establishes that Mg,m
d is a fuzzy

metric on X for each t-norm ∗ with ∗ ≤ ∗1Dom. This fact
allows us to answer in affirmative way one of the questions
that we wondered in Section I, which is whether there exists
a continuous t-norm ∗ ≥ ∗P such that (X,Md, ∗) is a fuzzy
metric space for each metric space (X, d) without requiring
any extra condition on g.

First, observe that, for each a, b ∈]0, 1], we have that

a ∗1Dom b =
1

1 + 1−a
a + 1−b

b

=
ab

a+ b− ab
.

Now,

ab

a+ b− ab
≥ a · b⇔ 1 ≥ a+ b− ab = a(1− b) + b.

Taking into account that a ≤ 1 we have that 1 = 1− b+ b ≥
a(1− b) + b. So, a ∗1Dom b ≥ a ∗P b for each a, b ∈]0, 1]. Thus
∗1Dom ≥ ∗P for each a, b ∈ [0, 1], since a∗1Dom b = 0 = a∗P b
whenever a = 0 or b = 0.

Hence, we have found a continuous Archimedean t-norm
greater that the product t-norm ∗P for which Mg,m

d is a
fuzzy metric on X , for each arbitrary metric space (X, d),
each non-decreasing continuous function g :]0,∞[→]0,∞[
and each m ∈]0,∞[. Furthermore, on account of Example 2.2
we conclude that ∗1Dom is the largest t-norm for which
(X,Mg,1, ∗1Dom) is a fuzzy metric space, in general.

On the other hand, M̃g,m,n
d becomes the standard fuzzy met-

ric when we consider the non-decreasing continuous function
g(t) = t and m = n = 1. Under this remark and, based on the
argument exposed in the proof of Theorem 2.1, we prove the
next result which will be useful to answer the first question
about the standard fuzzy metric set out in Section I.

Theorem 2.3: Let (X, d) be a metric space, m,n ∈]0,∞[
and g :]0,∞[→]0,∞[ be a non-decreasing continuous func-
tion. Then the fuzzy metric space (X, M̃g,m,n

d , ∗), where
M̃g,m,n
d is given by (5), is strong for each continuous t-norm

satisfying ∗ ≤ ∗
1
n

Dom.
Proof.

Consider a continuous t-norm ∗ such that ∗ ≤ ∗
1
n

Dom. By
Theorem 2.1 we conclude that (X, M̃g,m,n

d , ∗) is a fuzzy
metric space. It remains to show that inequality (2) holds.



Let x, y, z ∈ X and t, s ∈]0,∞[. Then,

M̃g,m,n
d (x, z, t) =

g(t)

g(t) +m · dn(x, z)
≥

≥ g(t)

g(t) +m · (d(x, y) + d(y, z))n
=

= M̃g,m,n
d (x, y, t) ∗

1
n

Dom M̃g,m,n
d (y, z, t) ≥

M̃g,m,n
d (x, y, t) ∗ M̃g,m,n

d (y, z, t).

Hence, (X, M̃g,m,n
d , ∗) is a strong fuzzy metric space. �

As a consequence of the previous theorem, we conclude
that (X,Md, ∗1Dom) is a strong fuzzy metric space. This fact
answers affirmatively the first question lay out in Section I
by providing a continuous t-norm greater that the product t-
norm ∗P for which the standard fuzzy metric is strong for any
arbitrary metric space (X, d).

Even more, on account of Example 2.2 we conclude that
the standard fuzzy metric is just a strong fuzzy metric in
general for continuous t-norms less than ∗1Dom. Notice that
the aforementioned example provides that the standard fuzzy
metric (R,Mdu , ∗) is not strong if ∗ � ∗1Dom. Indeed, let
a, b ∈]0, 1[ such that a ∗ b > a ∗1Dom b. Then, take x = a−1

a ,
y = 0 and z = 1−b

b . Therefore,

Mdu(x, z, 1) =
1

1 + 1−a
a + 1−b

b

= a ∗1Dom b < a ∗ b =

= Mdu(x, y, 1) ∗Mdu(y, z, 1).

III. APPLICATION CASE: ROBUST MODEL ESTIMATION

Solving model estimation problems is a fundamental com-
ponent of numerous applications involving perception tasks.
Nowadays, facing this kind of problem requires to cope with
new challenges due to an increased use of poor, low-cost
sensors, and the ever growing deployment of robotic devices
which may operate in potentially unknown environments.
Generally speaking, the underlying algorithms have to be
robust against uncertain data that besides may be corrupted
by outliers, i.e. data items which are not consistent with the
original model due to an arbitrary bias affecting them. A robust
estimator is able to correctly find the original model that
supposedly the input data fits to under the aforementioned
conditions [15]. The Random Sample Consensus algorithm
(RANSAC) [16] is one of these robust estimation techniques,
which is widely used nowadays, so much that it has become
common in robotics and computer vision.

Briefly speaking, RANSAC tries to achieve a maximum
consensus in the input dataset in order to deduce the inliers
by generating random hypotheses on the model parameters
through a hypothesize-and-verify approach. That is to say,
instead of using every sample in the dataset to perform the
estimation as in traditional regression techniques, RANSAC
tests many random sets of samples and outputs the one leading
to the best fitting. Since picking an extra point decreases

exponentially the probability of selecting an outlier-free sam-
ple [17], RANSAC takes the Minimum Sample Set size (MSS)
to determine a unique candidate model, thus increasing its
chances of finding an all-inlier sample set. This model is
assigned a score based on the cardinality of its consensus set.
Finally, RANSAC returns the hypothesis that has achieved the
highest consensus and the set of inliers, which are used next
to estimate the ultimate model by regression.

Searching for an all-inlier sample, RANSAC typically runs
for N iterations:

N =
log (1− ρ)

log (1− (1− ω)s)
(6)

where ρ is the desired probability of success, i.e. at least one
of the considered random sets is outlier-free, s is the size of
the MSS for the problem at hand and ω is the ratio of outliers.
See [16] for the details on Eq. (6).

Algorithm 1 outlines FM-based RANSAC, a variant of
RANSAC described in [18] that avoids discriminating between
inliers and outliers by means of the use of a fuzzy metric that
encodes as a similarity the compatibility of each sample to the
currently hypothesized model. In this work, we particularize
FM-based RANSAC for the fuzzy metric Mg,m,n

d introduced
as Eq. (5) in Section II. Mg,m,n

d is also incorporated into
the final model refinement step that follows the main hy-
pothesis selection loop. Finally, in Section IV, we report on
the accuracy achieved by FM-based RANSAC for a specific
model estimation problem when using Mg,m,n

d for different
values of m and n. The assessment involves a comparison
with RANSAC and MSAC [19] for a benchmark comprising
a large number of datasets with varying proportion of outliers
and different levels of noise.

We detail next the features of FM-based RANSAC:
1) Samples classification. In the original RANSAC, for

every model considered, data samples are classified
into inliers and outliers by comparing the fitting error
with a threshold τI related to data noise. As already
mentioned, FM-based RANSAC does not distinguish
between inliers and outliers, but makes use of a com-
patibility value φ ∈ [0, 1] between each sample xj
and the current model MΘ̂k

, given the fitting error
ε(xj ;MΘ̂k

). Such compatibility value derives from the
fuzzy metric Mg,m,n

d once parameterized by (d,Φ) with
Φ = (n,m, g). Since in the following we contemplate
the use of an only, specific distance d, i.e. the Euclidean
metric, and g is set to the constant function θn as a
reference of noise scale1, we denote the fuzzy metric as
Mm,n eliminating the allusion to d and g. From now
on, the value of Mm,n will be denoted by φ(ε; Φ).

2) Model scoring. The individual compatibility values
φ(ε; Φ) are aggregated by simple summation to obtain
the model score (step 6 in Alg. 1) and hence the so-far-
the-best-model is given by the maximum score found up
to the current iteration (steps 7 - 9 of Alg. 1).

1In this regard, we refer to the form Mg,m,n
d (x, y) = 1

1+m·(d(x,y)/θ)n .



Algorithm 1 FM-based RANSAC

Input: D - dataset comprising samples {xj}
φ(ε ; Φ) - FM compatibility value for fitting error
kmax - maximum number of iterations of the main loop
tmax - maximum number of iterations of the refinement

stage
Output: MΘ̂ - estimated model

1: k := 0, ϕmax := −∞
2: for k := 1 to kmax do . find best consensus model MΘ̂
3: select randomly a minimal sample set Sk of size s
4: estimate model MΘ̂k

from Sk
5: calculate fitting errors ε(xj ;MΘ̂k

),∀xj ∈ D
6: find model score ϕk :=

∑
xj∈D φ( ε(xj ;MΘ̂k

) ; Φ )
7: if ϕk > ϕmax then
8: ϕmax := ϕk, M0

Θ̂
:=MΘ̂k

9: end if
10: end for
11: t := 0
12: repeat . refine model MΘ̂
13: calculate fitting errors ε(xj ;Mt

Θ̂
),∀xj ∈ D

14: estimate modelMt+1

Θ̂
using weights φ(ε(xj ;Mt

Θ̂
) ; Φ )

15: t := t+ 1
16: until convergence or t ≥ tmax
17: return Mt

Θ̂

3) Model refinement. Once a sufficient number of models
have been considered, we re-estimate the winning model
using iterative weighted least squares, where the com-
patibility values φ(ε; Φ), calculated for the fitting errors
resulting from the current model, are used as weights for
the new, refined model (steps 12 - 16 of Alg. 1). The
loop iterates until changes in the estimated parameters
of the model Θ̂ are negligible (or after tmax iterations).

IV. EXPERIMENTAL RESULTS

A. Experimental setup

For testing purposes, we consider a hyperplane model
estimation problem for 2D (straight lines), 3D (planes) and
10D, the latter as a case of higher dimensionality. To this end,
we generate synthetic datasets stemming from hyperplanes in
random orientations and positions: 500 for 2D/3D hyperplanes
and 250 for 10D hyperplanes. Given a 2D/3D/10D random
point p belonging to a hyperplane with normal vector ~n, an
inlier pI is generated by shifting p along ~n using a zero-
mean Gaussian distribution with standard deviation σ, i.e.
pI = p + N (0, σ) · ~n. Outliers pO are uniformly generated
within a rectangular area containing part of the hyperplane,
ensuring that they lie out of a 3σ stripe at both sides of the
hyperplane. Every pair (σ, ω) gives rise to a different dataset.

Regarding hypothesis generation within the main loop, in all
experiments, the size of the MSS is always set to the minimum,
i.e. s = 2, s = 3 and s = 10 for respectively 2D, 3D and 10D.
Besides, the number of iterations kmax is calculated according

to Eq. (6), with ρ = 99%. The parameters of φ(ε; Φ), Φ =
(n,m, g), are set as follows: n,m ∈ {1, 2}, as indicated for
each experiment; and g is the constant function θn, where
θ = κ · σ. For RANSAC/MSAC τI = κ · σ. Different values
for κ are considered for both θ and τI . Finally, to compare
properly RANSAC, MSAC and our estimator, we make use of
the same sequence of MSS’s to avoid the effect of randomness.

B. Results and discussion

In the following, to measure the estimation accuracy for
the hyperplane fitting problem, we make use of the average
µ[ε] of the angle ε between the true and the estimated normal
vector. We also report on the average number of iterations
spent during model refinement µ[t].

Table I and Fig. 1 show performance results for the fuzzy
metric Mm,n and several outlier ratios ω and Gaussian noise
magnitudes σ. In sight of these results, it is worth noting
that: (1) the estimation accuracy for M2,2 is above that of
plain RANSAC and MSAC in all cases, while, for the other
configurations of Mm,n, the accuracy is in general better
than the classical counterparts though not in all cases; (2) the
value of θ in Mm,n does not seem to be critical, since the
highest change in µ[ε] for θ with κ ∈ {1, 2, 2.5, 3, 4} is less
than 1◦; (3) the distribution of the average error µ[ε] shows
always larger errors for RANSAC/MSAC than for M2,2 for all
percentiles. As for the number of iterations of the refinement
stage t: (4) in general, µ[t] is similar for every combination
of Mm,n when varying the noise parameters (σ, ω) and
particularly higher for M2,2 when κ is low; (5) lower values of
κ allow the proposed estimator to perform a better refinement
stage in terms of accuracy but at the expense of computational
cost since more iterations are required. Regarding the fuzzy
metric Mm,n, both M2,n and Mm,2 lead in general to higher
accuracy, with a slight increase in the number of refining
iterations for low κ values or higher noise (σ, ω).

V. CONCLUSIONS

This work introduces a methodology to induce fuzzy metrics
that generalizes the celebrated standard fuzzy metric. More-
over, some questions related to the continuous triangular norms
from which such fuzzy metrics are defined have been posed
and answered. A concrete new fuzzy metric induced through
the aforementioned methodology has been succesfully embed-
ded within a revised version of RANSAC. By means of this
metric, we avoid discriminating between inliers and outliers, to
instead make use of a compatibility value to the current model
for each sample. Experimental results show good performance,
actually outperforming two classical counterparts, RANSAC
and MSAC.
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TABLE I
2D/3D/10D HYPERPLANES ESTIMATION ACCURACY AND NUMBER OF

ITERATIONS OF THE REFINEMENT STAGE FOR (TOP) DIFFERENT OUTLIER
RATIOS ω, (MIDDLE) DIFFERENT NOISE MAGNITUDES σ AND (BOTTOM)

DIFFERENT SETTINGS FOR τI , θ = κ · σ. WHEN KEPT CONSTANT: σ = 1,
ω = 0.4, κ = 3. LIGHTER BACKGROUND MEANS HIGHER PERFORMANCE.

2D µ[ε] (◦)

ω RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

0.60 4.43 3.14 4.63 4.10 3.97 3.10
0.50 3.03 2.33 2.61 2.33 2.28 1.88
0.40 2.13 1.81 1.77 1.59 1.57 1.33
0.20 1.58 1.53 0.96 0.88 0.89 0.80

µ[t]

ω
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

0.60 9.11 10.44 10.79 11.05
0.50 7.28 7.93 8.57 8.58
0.40 6.47 6.71 7.68 7.40
0.20 5.68 5.51 6.82 6.32

σ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

2.00 9.82 6.92 4.08 4.62 3.87 4.46
1.00 2.13 1.81 1.77 1.59 1.57 1.33
0.50 0.74 0.71 0.90 0.55 0.73 0.45
0.25 0.37 0.36 0.48 0.20 0.36 0.17

σ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

2.00 7.40 8.38 9.00 9.64
1.00 6.47 6.71 7.68 7.40
0.50 6.20 5.63 7.21 6.29
0.25 6.02 4.93 6.87 5.57

κ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

4.00 2.85 2.09 1.85 1.84 1.65 1.54
3.00 2.13 1.81 1.77 1.59 1.57 1.33
2.50 2.03 1.88 1.71 1.45 1.52 1.23
2.00 2.18 2.18 1.65 1.29 1.47 1.13
1.00 3.60 3.58 1.47 1.04 1.35 1.01

κ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

4.00 6.05 6.26 7.14 6.81
3.00 6.47 6.71 7.68 7.40
2.50 6.79 7.02 8.03 7.94
2.00 7.14 7.54 8.61 8.78
1.00 8.61 10.65 10.66 13.56

3D µ[ε] (◦)

ω RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

0.60 6.14 4.58 5.11 4.00 4.24 3.04
0.50 4.07 3.48 2.90 2.34 2.46 1.87
0.40 3.13 3.01 1.95 1.61 1.69 1.35
0.20 2.31 2.29 1.07 0.92 0.98 0.84

µ[t]

ω
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

0.60 10.02 10.87 11.69 11.47
0.50 7.55 8.10 9.05 8.83
0.40 6.69 6.91 8.01 7.67
0.20 5.73 5.55 6.87 6.41

σ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

2.00 13.32 9.97 5.21 4.92 4.53 4.32
1.00 3.13 3.01 1.95 1.61 1.69 1.35
0.50 1.11 1.08 0.99 0.57 0.79 0.47
0.25 0.64 0.63 0.52 0.21 0.39 0.18

σ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

2.00 8.68 9.63 10.45 10.66
1.00 6.69 6.91 8.01 7.67
0.50 6.32 5.82 7.43 6.52
0.25 6.15 5.19 7.14 5.91

κ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

4.00 3.71 2.95 2.07 1.87 1.79 1.56
3.00 3.13 3.01 1.95 1.61 1.69 1.35
2.50 3.23 3.22 1.88 1.46 1.63 1.25
2.00 3.75 3.75 1.79 1.31 1.57 1.15
1.00 5.73 5.83 1.57 1.07 1.43 1.06

κ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

4.00 6.23 6.47 7.40 7.04
3.00 6.69 6.91 8.01 7.67
2.50 7.00 7.28 8.45 8.25
2.00 7.40 7.87 9.04 9.17
1.00 9.04 11.25 11.33 14.38

10D µ[ε] (◦)

ω RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

0.60 10.69 10.18 7.46 4.19 5.53 3.00
0.50 8.82 8.77 3.56 2.26 2.83 1.78
0.40 6.92 6.94 2.29 1.54 1.88 1.29
0.20 5.66 5.70 1.17 0.90 1.03 0.84

µ[t]

ω
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

0.60 14.12 14.53 15.61 14.52
0.50 8.85 9.50 10.67 10.34
0.40 7.30 7.60 8.88 8.50
0.20 6.02 5.98 7.28 6.88

σ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

2.00 26.76 20.83 9.83 7.47 7.49 5.52
1.00 6.92 6.94 2.29 1.54 1.88 1.29
0.50 3.03 3.04 1.08 0.55 0.84 0.48
0.25 1.30 1.31 0.56 0.22 0.42 0.20

σ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

2.00 15.13 16.20 16.62 16.38
1.00 7.30 7.60 8.88 8.50
0.50 6.74 6.38 8.00 7.22
0.25 6.45 5.81 7.56 6.63

κ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

4.00 6.26 6.09 2.50 1.85 2.03 1.49
3.00 6.92 6.94 2.29 1.54 1.88 1.29
2.50 7.75 7.86 2.16 1.39 1.80 1.20
2.00 9.03 9.13 2.03 1.26 1.71 1.14
1.00 12.61 12.61 1.71 1.10 1.52 1.12

κ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

4.00 6.96 7.16 8.14 7.74
3.00 7.30 7.60 8.88 8.50
2.50 7.78 8.03 9.28 9.11
2.00 8.14 8.79 10.06 10.06
1.00 10.06 12.41 12.58 15.87
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Fig. 1. (1st, 2nd, 3rd rows) Estimation accuracy for resp. 2D, 3D and 10D
hyperplanes varying (left) the outlier ratio ω, (middle) the noise magnitude
σ and (right) the setting of τI , θ = κ · σ. (4th row) Ratio between the
error of MSAC µ[εMSAC] and the error of FM-based RANSAC for M2,2

µ[εM2,2 ]. (5th row) Comparison between FM-based RANSAC for M2,2 and
RANSAC/MSAC for different percentiles of the estimation error.
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