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Abstract. Robust model estimation is a recurring problem in applica-
tion areas such as robotics and computer vision. Taking inspiration from
a notion of distance that arises in a natural way in fuzzy logic, this pa-
per modifies the well-known robust estimator RANSAC making use of a
Fuzzy Metric (FM) within the estimator main loop to encode the com-
patibility of each sample to the current model/hypothesis. Further, once
a number of hypotheses have been explored, this FM-based RANSAC
makes use of the same fuzzy metric to refine the winning model. The
incorporation of this fuzzy metric permits us to express the distance
between two points as a kind of degree of nearness measured with re-
spect to a parameter, which is very appropriate in the presence of the
vagueness or imprecision inherent to noisy data. By way of illustration
of the performance of the approach, we report on the estimation accu-
racy achieved by FM-based RANSAC and other RANSAC variants for
a benchmark comprising a large number of noisy datasets with varying
proportion of outliers and different levels of noise. As it will be shown,
FM-based RANSAC outperforms the classical counterparts considered.

Keywords: Model estimation · RANSAC · Fuzzy metric · 2D straight
line estimation

1 Introduction

Solving model estimation problems is a fundamental component of numerous
applications in robotics, specially when addressing perception tasks. Nowadays,
facing this kind of problem requires to cope with new challenges due to an
increased use of potentially poor, low-cost sensors, and the ever growing deploy-
ment of robotic devices which may operate in potentially unknown environments.
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In general terms, the underlying algorithms need to be capable of being robust
against, in particular, strong uncertainty levels. In this regard, a robust estimator
is able to correctly find the original model that supposedly the input data fits to,
even when the data is noisy and contains outliers, i.e. data items which are not
consistent with the original model due to an arbitrary bias affecting them. (For
the interested reader, [7] details the concepts, techniques and technical issues
surrounding robust estimation.)

The Random Sample Consensus algorithm (RANSAC) [4] is one of these ro-
bust estimation techniques. Given a dataset comprising both inliers and outliers,
the most distinctive feature of RANSAC is the use of random sampling and a
voting scheme to find the optimal set of model parameters. RANSAC is widely
used nowadays, so much that it has become common in fields such as robotics
and computer vision.

Fuzzy methodologies (together with other soft computing paradigms, such as
probabilistic methods, machine learning, evolutionary computing and swarm in-
telligence) have been used since their birth to deal with imprecise data, targeting
on the design of systems that are able to cope with uncertainty one way or an-
other and even degrade gracefully if needed [8]. As already mentioned, robotics,
and in general perception, is one of the areas where this capability achieves more
relevance, particularly when autonomy is a distinctive feature.

In this work, we propose a variant of RANSAC which avoids discriminating
between inliers and outliers by means of the use of a Fuzzy Metric (FM) in the
sense of I. Kramosil and J. Michalek [10] that provides a degree of compatibility
for each data sample with regard to the current model. The aforesaid fuzzy
metric is besides used in a final model refinement step that is incorporated after
the main hypothesis selection loop.

In the following, Section 2 overviews RANSAC, Section 3 introduces a fuzzy
metric for RANSAC, Section 4 describes our approach based on the previous
fuzzy metric, while Section 5 reports on a number of experiments to illustrate
the performance achieved, and Section 6 concludes the paper.

2 Overview of RANSAC and some variants

Regarding model estimation, a common measure of estimation robustness is the
breakdown point (BDP), defined as a percentage threshold on the outlier rate
beyond which the technique under consideration is no longer robust to outliers.
RANSAC is one of those robust estimators with BDP higher than fifty per-
cent. Fifty percent is the limit of the Least Median of Squares (LMedS) [18],
another robust estimator that has also enjoyed high popularity as a high BDP
technique. Least Trimmed Squares (LTS) and Minimum Probability of Random-
ness (MINPRAN) are other high-BDP algorithms [Olu16], although less popular
than RANSAC and LMedS. The BDP for others, such as the M-estimators fam-
ily [HR11], is below 50%. Applications in statistics typically require less than
fifty percent BDP, since outliers in this context are anomalies or exceptions in
the data. However, the case is often different in robotics and computer vision ap-



Fuzzy Metric-based RANSAC 3

plications, where outliers are defined with respect to the best among competing
models, each describing well a fraction of the input data.

By randomly generating hypotheses on the model parameters, RANSAC tries
to achieve a maximum consensus in the input dataset in order to deduce the
inliers. Once the inliers are discriminated, they are used to estimate the parame-
ters of the underlying model by regression. In more detail, instead of using every
sample in the dataset to perform the estimation as in traditional regression tech-
niques, RANSAC tests in turn many random sets of samples. Since picking an
extra point decreases exponentially the probability of selecting an outlier-free
sample [3], RANSAC takes the Minimum Sample Set size (MSS) to determine a
unique candidate model, thus increasing its chances of finding an all-inlier sam-
ple set. This model is assigned a score based on the cardinality of its consensus
set. Finally, RANSAC returns the hypothesis that has achieved the highest con-
sensus, and the corresponding model is refined through a last minimization step
that only involves the inliers found.

Searching for an all-inlier sample, RANSAC typically runs for N iterations:

N =
log (1− ρ)

log (1− (1− ω)s)
(1)

where ρ is the desired probability of success, i.e. at least one of the considered
random sets is outlier-free, s is the size of the MSS for the problem at hand and
ω is the ratio of outliers. (See [4] for the details on Eq. (1).)

There have been a number of efforts aiming at enhancing the standard
RANSAC algorithm, e.g. MSAC, MLESAC, MAPSAC, PROSAC, R-RANSAC,
LO-RANSAC and U-RANSAC [2], since it, while robust, has its drawbacks re-
garding accuracy, efficiency, stability and response time [16, 17]. Among these
variants, there is a very reduced set adopting fuzzy methodologies [11, 20]. In
both cases, the authors address a homography fitting problem, which, in [11], is
solved by discriminating data samples into the good, bad and vague fuzzy sets
using a fuzzy classifier, while [20] defines a triangle-type membership function
for the set of inliers and combines this with a Monte Carlo method for sam-
ple selection. It must be pointed out that the two aforementioned variants of
RANSAC differ significantly from the one described in this paper.

3 On fuzzy metrics and RANSAC

In [10], a notion of fuzzy metric was introduced by adapting to the fuzzy approach
the concept of statistical metric due to Menger. From now on, we assume that
the reader is familiar with the basic notions of fuzzy sets and t-norms. (We refer
the reader to [9] for a deep treatment on them.)

Nowadays, by a fuzzy metric space, in the sense of Kramosil and Michalek
(see [12]), we are referring to a triple (X,M, ∗) where X is a non-empty set, ∗ is
a continuous t-norm and M is a fuzzy set on X ×X×]0,∞[ satisfying, for each
x, y, z ∈ X and θ, µ ∈]0,∞[, the axioms below:
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(KM1) M(x, y, θ) = 1 for each θ ∈]0,∞[ if and only if x = y.
(KM2) M(x, y, θ) = M(y, x, θ).
(KM3) M(x, z, θ + µ) ≥M(x, y, θ) ∗M(y, z, µ).
(KM4) The assignment Mx,y :]0,∞[→ [0, 1] is a left-continuous function, where

Mx,y(θ) = M(x, y, θ) for each θ ∈]0,∞[.

On account of the previous concept, the value M(x, y, θ) can be interpreted
as a degree of nearness between two points x, y ∈ X with respect to a parameter
θ ∈]0,∞[. The larger the value of M(x, y, θ), the closer the points x and y are,
with respect to θ. Observe that, for two distinct points x, y ∈ X, the degree of
nearness can be 1 for some θ0 ∈]0,∞[, but such a degree can only be 1 for all
θ ∈]0, 1[ whenever x and y are the same point.

This notion of fuzzy metric has been studied extensively from a mathematical
point of view in the literature. Besides, it is worth mentioning that such a kind
of measurement has been shown to be useful, for instance, in image filtering and
in problems related to perceptual colour difference. For a thorough treatment,
we refer the reader to [1, 6, 13–15] and references therein.

A celebrated example of fuzzy metric is the so-called standard fuzzy met-
ric [5], which is induced from a classical metric. Let us recall that, given a met-
ric space (X, d), the triple (X,Md,min) constitutes the standard fuzzy metric
space, where min denotes the minimum t-norm and Md is the fuzzy set defined
on X ×X×]0,∞[ given by

Md(x, y, θ) =
θ

θ + d(x, y)
, for each x, y ∈ X, θ ∈]0,∞[.

Note that for the standard fuzzy metric, the degree of nearness between two
points x, y ∈ X only can be 1, for some θ0 ∈]0,∞[, whenever x and y are the
same point. Moreover, the degree of nearness between two points can never be
0.

With the aim of proposing a fuzzy metric that can be a useful tool for
RANSAC, and that is to encode the compatibility of each sample to the current
model/hypothesis, we introduce, in Theorem 1, a general technique to generate
fuzzy metrics from classical metrics. To this end, let us denote by N the set
of positive integer numbers and let us recall that the family of Yager t-norms
(∗λY )λ∈[0,∞] is given as follows [9]:

x ∗λY y =


x ∗D y, if λ = 0;
min{x, y}, if λ =∞;

max
{

1−
(
(1− x)λ + (1− y)λ

) 1
λ , 0

}
, otherwise.

Theorem 1. Let (X, d) be a metric space and let n ∈ N. Then (X,Mn
d , ∗

1
n

Y ) is

a fuzzy metric space, where ∗
1
n

Y denotes the Yager t-norm for λ = 1
n and Mn

d is
defined by

Mn
d (x, y, θ) =

{
1− dn(x,y)

θn , if x, y ∈ X, θ ∈]0,∞[ such that d(x, y) ≤ θ;
0, otherwise.

(2)
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Proof. Next we show that axioms (KM1)-(KM4) are satisfied, for each x, y, z ∈
X and θ, µ ∈]0,∞[.

(KM1) Let x, y ∈ X and suppose that Md(x, y, θ) = 1 for all θ ∈]0,∞[. We

have that d(x, y) ≤ θ and dn(x,y)
θn = 0 for all θ ∈]0,∞[. It follows that

d(x, y) = 0. The fact that d is a metric on X gives that x = y. Contrarily,
assume that x = y. Since d is a metric on X, we obtain that d(x, y) = 0,
whence d(x, y) ≤ θ for all θ ∈]0,∞[. Moreover, Mn

d (x, y, θ) = 1− 0
θn = 1 for

all θ ∈]0,∞[.
(KM2) It is obvious due to the symmetry of d, i.e. d(x, y) = d(y, x) for all

x, y ∈ X.
(KM3) Let x, y, z ∈ X and θ, µ ∈]0,∞[. We are going to prove that

Mn
d (x, z, θ + µ) ≥M(x, y, θ) ∗

1
n

Y M(y, z, µ).

To this end, observe that d(x, z) ≤ d(x, y) + d(y, z) for all x, y ∈ X.
We distinguish two possible cases:

Case 1. Suppose that d(x, z) ≤ θ+µ. Observe that Mn
d (x, y) ≤ 1− dn(x,y)

θn ≤
1− dn(x,y)

(θ+µ)n and Mn
d (y, z) ≤ 1− dn(y,z)

µn ≤ 1− dn(x,y)
(θ+µ)n . Moreover, we have that

Mn
d (x, z, θ + µ) = 1− dn(x,z)

(θ+µ)n . Therefore,

Mn
d (x, z, θ + µ) ≥ 1− (d(x, y) + d(y, z))n

(θ + µ)n
≥

1−

((
1−

(
1− dn(x, y)

(θ + µ)n

)) 1
n

+

(
1−

(
1− dn(y, z)

(θ + µ)n

)) 1
n

)n
=

(
1− dn(x, y)

(θ + µ)n

)
∗

1
n

Y

(
1− dn(y, z)

(θ + µ)n

)
≥Mn

d (x, y, θ) ∗
1
n

Y Md(y, z, µ).

Case 2. Suppose that d(x, z) > θ+µ. In such a case, observe that Md(x, z, θ+
µ) = 0 Moreover, either d(x, y) > θ or d(y, z) > µ. Indeed, if d(x, y) ≤ θ
and d(y, z) ≤ µ, then d(x, z) ≤ d(x, y) + d(y, z) ≤ θ + µ < d(x, z), which
is a contradiction. Therefore, either Mn

d (x, y) = 0 or Md(y, z) = 0. Thus

0 = Mn
d (x, y, θ)∗

1
n

YMd(y, z, µ). SoMd(x, z, θ+µ) = Mn
d (x, y, θ)∗

1
n

YMd(y, z, µ).
(KM4) Let x, y ∈ X. Then, the assignment (Mn

d )x,y :]0,∞[→ [0, 1] given by

(Mn
d )x,y (θ) = Mn

d (x, y, θ), for each θ ∈]0,∞[, is defined as follows

(Mn
d )x,y (θ) =

{
0, if θ < d(x, y)

1− dn(x,y)
θn , if θ ≥ d(x, y)

,

which, obviously, is (left-)continuous on ]0,∞[.

We conclude that (X,Mn
d , ∗

1
n

Y ) is a fuzzy metric space, as claimed.



6 A. Ortiz, E. Ortiz, J.J. Miñana and O. Valero

It must be stressed that one can find particular cases of metric spaces in
which the degree of nearness between two points provided by the fuzzy metric
in Eq. (2) can be 0. This is a relevant fact, as mentioned before, because the
standard fuzzy metric is not able to achieve it.

4 FM-based RANSAC

As already described, RANSAC adopts a hypothesize-and-verify approach to
fit a model to data contaminated by random noise and outliers: i.e. for every
hypothesis/model considered, data samples are classified into inliers and outliers
by comparing the fitting error with a threshold τI related to data noise, and that
model accumulating the largest number of inliers is the one finally chosen as
solution of the estimation problem. This simple approach has been systematically
used for robust estimation of model parameters in the presence of arbitrary noise,
although, along the years, alternative implementations have been proposed to
counteract the misbehaviours and shortcomings that have been detected.

In this work, we focus on three facets of RANSAC: (1) samples classification
into inliers and outliers, which we avoid to prevent the estimator from explicitly,
and prematurely, deciding which samples are relevant; (2) model scoring, for
which we replace the pure cardinality of the inlier set of plain RANSAC by an
expression involving the individual fitting errors, similarly to what MSAC and
MLESAC do [19]; and (3) model refinement once the main hypothesis-checking
loop has finished, for which we adopt an iterative re-weighting scheme that
makes use of all the available data samples without any distinction between
inliers and outliers, contrarily to plain RANSAC, and other variants, that adopt
least squares regression for the set of inliers (notice that the distinction between
inliers and outliers depends on the current model under consideration, and thus
changes with every model).

Algorithm 1 describes formally the RANSAC variant that is proposed in this
work. The details regarding points (1)-(3) above can be found next:

1. Samples classification. As already mentioned, no distinction is made be-
tween inliers and outliers, but we make use of the fuzzy metric introduced in
Theorem 1 to obtain a compatibility value φ ∈ [0, 1] between each sample xi
and the current model MΘ̂k

, given the fitting error ε(xi; MΘ̂k
). Although the

compatibility value is obtained by means of the aforesaid metric and, thus,
it depends on the set of parameters (d, Φ) with Φ = (n, θ), in the following
we will denote it by φ(ε;Φ) in order to make clear that such a value refers
to the fitting error ε.

2. Model scoring. The individual compatibility values φ(ε;Φ) are aggregated
by simple summation to obtain the model score (step 6 in Algorithm 1) and
hence the so-far-the-best-model is given by the maximum score found up to
the current iteration (steps 7 - 9 of Algorithm 1).

3. Model refinement. Once a sufficient number of hypotheses/models have
been considered, we re-estimate the winning model using iterative weighted
least squares, where the compatibility values φ(ε;Φ), calculated for the fitting
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Algorithm 1 FM-based RANSAC

Input: D - dataset comprising samples {xi}
φ(ε ; Φ) - FM compatibility value for fitting error ε and parameters Φ
kmax - maximum number of iterations of the main loop, as given by Eq. (1)
tmax - maximum number of iterations of the refinement stage

Output: MΘ̂ - estimated model, whose parameters are compactly represented by Θ̂

1: k := 0, ϕmax := −∞
2: for k := 1 to kmax do . find maximum consensus model MΘ̂

3: select randomly a minimal sample set Sk of size s from D
4: estimate model MΘ̂k

from Sk
5: calculate fitting errors ε(xi; MΘ̂k

), ∀xi ∈ D
6: find model score ϕk :=

∑
xi∈D φ( ε(xi; MΘ̂k

) ; Φ )
7: if ϕk > ϕmax then
8: ϕmax := ϕk, M0

Θ̂
:= MΘ̂k

9: end if
10: end for
11: t := 0
12: repeat . refine model MΘ̂

13: calculate fitting errors ε(xi; Mt
Θ̂

), ∀xi ∈ D

14: estimate model Mt+1

Θ̂
using weights φ(ε(xi; Mt

Θ̂
) ; Φ )

15: t := t+ 1
16: until convergence or t ≥ tmax

17: return Mt
Θ̂

errors resulting from the current model, are used as weights for the new,
refined model (steps 12 - 16 of Algorithm 1). The loop iterates until changes
in Θ are negligible (or after a maximum number of iterations).

5 Experimental results

In this section, we report on the performance of FM-based RANSAC for a num-
ber of experiments that include a comparison with plain RANSAC and MSAC
(their computational requirements are similar to ours). For illustration purposes,
all experiments involve the estimation of 2D lines described by Θ = (a, b, c), cor-
responding to a straight line in general form ax+ by + c = 0.

5.1 Experimental setup

For testing purposes, we generate synthetic datasets with points stemming from
2D lines in different orientations and positions. Each dataset contains a total of
300 points which comprise both inliers and outliers, the latter in a proportion
equal to ω. Given a random point p over a line Θ = (a, b, c), i.e. apx+bpy+c = 0,
whose normal vector is ~n, an inlier pI of the dataset is generated by shifting p
along ~n using a 0-mean Gaussian distribution with standard deviation σ, i.e.
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Table 1: Estimation accuracy and number of iterations of the refinement stage
for (a) different outlier ratios ω, (b) different noise magnitudes σ and (c) different
settings for τI , θ = κ · σ. Whenever they are kept constant, σ = 1, ω = 0.4 and
κ = 3. Lighter background means higher performance.

(a)

µ[ε] (◦)
ω RANSAC MSAC ours

n=1
ours
n=2

0.60 4.43 3.14 1.51 1.55
0.50 3.03 2.33 1.02 1.07
0.40 2.13 1.81 0.86 0.88
0.20 1.58 1.53 0.67 0.66

µ[t]
ω ours

n=1
ours
n=2

0.60 11.83 10.81
0.50 9.63 8.43
0.40 8.55 7.23
0.20 7.64 6.12

(b)

σ RANSAC MSAC ours
n=1

ours
n=2

2.00 6.76 6.87 3.76 3.78
1.00 2.13 1.81 0.86 0.88
0.50 1.32 0.89 0.39 0.44
0.25 1.05 0.62 0.23 0.29

σ ours
n=1

ours
n=2

2.00 21.02 17.68
1.00 8.55 7.23
0.50 5.65 5.04
0.25 4.60 4.31

(c)

κ RANSAC MSAC ours
n=1

ours
n=2

4.00 2.85 2.09 1.01 1.10
3.00 2.13 1.81 0.86 0.88
2.50 2.03 1.88 0.82 0.81
2.00 2.18 2.18 0.85 0.82
1.00 3.60 3.58 1.82 1.82

κ ours
n=1

ours
n=2

4.00 7.75 6.88
3.00 8.55 7.23
2.50 9.56 7.91
2.00 12.22 10.04
1.00 33.16 27.79

pI = p +N (0, σ) · ~n. Outliers pO are uniformly generated within a rectangular
area containing the straight line, ensuring that they lie out of a ±3σ stripe along
the line. For every combination (σ, ω), we generate a total of 500 datasets.

Regarding hypothesis generation within the main loop, in all experiments, the
size of the MSS is always s = 2 points. Besides, the number of iterations kmax

is calculated according to Eq. (1), with ρ = 99%. The parameters of φ(ε;Φ),
Φ = (θ, n), are set as follows: θ = κ · σ, as well as τI for RANSAC/MSAC,
considering different values for κ; n = 1 or 2, as indicated for each experiment.
Finally, to compare properly RANSAC, MSAC and the FM-based RANSAC, we
make use of the same sequence of MSS’s to avoid the effect of randomness.

5.2 Results and discussion

In the following, to measure the estimation accuracy, we make use of the average
µ[ε] of the angle ε between the true and the estimated normal vector; we as well
report on the average number of iterations spent during model refinement µ[t].

On the one hand, Table 1 shows performance results for several outlier ratios
ω and Gaussian noise magnitudes σ. In sight of these results, it is worth noting
that: (1) the estimation accuracy of the FM-based RANSAC is above that of
plain RANSAC and MSAC in all cases; (2) the most substantial differences are
found for higher values of ω and σ; (3) the value of θ in φ does not seem to be
critical, since very similar errors result for κ = 2 - 4; (4) estimation accuracy
does not differ significantly between n = 1 and n = 2; (5) as for the number of
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(a)

MSAC FM-based RANSAC

φ = 0

φ = 1

ε = 25.6◦ n = 1, ε = 1.1◦ n = 2, ε = 1.2◦

(b)

φ = 0

φ = 1

ε = 0.1◦ n = 1, ε = 2.0◦ n = 2, ε = 2.0◦

Fig. 1: (a) Best and (b) worst estimations found in 500 datasets for FM-based
RANSAC in comparison with MSAC. The true models MΘ∗ are (a) 0.15x −
0.99y+ 0.00 = 0 and (b) 0.60x− 0.80y+ 0.00 = 0. The noise parameters in both
cases are (σ, ω) = (1, 0.4) and κ = 3. The colour code is as follows: true/estimated
model as gray/black lines, MSAC: inliers/outliers as blue/red dots, FM-based
RANSAC: φ(ε(xi; MΘ̂) ; Φ ) coded in gray scale.

iterations of the refinement stage t, it tends to be lower for n = 2 with regard to
n = 1, and the difference becomes larger when the magnitude of noise is higher,
i.e. σ = 2; (6) a correct setting of κ also reduces t.

On the other hand, Fig. 1 reports on the best- and the worst-case estimations
for the FM-based RANSAC in comparison with MSAC for 500 datasets; that
is to say, the best case is the case for which FM-based RANSAC outperforms
MSAC the most, and the worst case is the case in which MSAC outperforms
FM-based RANSAC the most. As can be observed, in both cases, data samples
are correctly scored by the FM-based RANSAC, and the estimated and true
models are almost identical even for the worst case.

6 Conclusions

In this paper, we have introduced a new Fuzzy Metric (FM) and proposed a
variant of RANSAC which avoids discriminating between inliers and outliers by
means of the use of such an FM, which provides a compatibility value for each
data sample with respect to the current model. These compatibility values are
aggregated next to score the model against other hypotheses generated inside
the main RANSAC loop. The output model is refined at the latest stage by
means of an iterated re-weighting least-squares scheme making use of the same
FM. Experimental results show good performance for the FM-based RANSAC
against other implementations of RANSAC, actually outperforming its classical
counterparts.
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