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S1. Taxon selection 23 

Data were collected for all sauropodomorph taxa for which >20% of the aforementioned 24 

characters could be measured. Taxa known only from teeth were excluded, as was the nomen 25 

dubium Astrodon, as the referral of material to this taxon is based largely on assumed 26 

provenance (D’Emic, 2013). Yimenosaurus was also omitted as its phylogenetic position 27 

within Sauropodomorpha is currently unknown. Panphagia, Eoraptor and Pampadromaeus 28 

have been interpreted as basal sauropodomorphs (Martínez & Alcober, 2009; Cabreira et al., 29 

2011; Martínez et al., 2011, 2013) or basal theropods/basal saurischians (Sereno et al., 1993; 30 

Martínez & Alcober, 2009; Ezcurra, 2010; Apaldetti et al., 2011, 2013, 2014; Cabreira et al., 31 

2011; Martínez et al., 2013; Otero & Pol, 2013; McPhee et al., 2014). Whatever their 32 

relationships, they will be informative of the plesiomorphic sauropodomorph condition and 33 

were therefore included herein. Diplodocid skulls were classified after Whitlock (2011a) and 34 

Tschopp & Mateus (2013); however it should be noted that diplodocid cranial material can be 35 

very difficult to diagnose to species, or even genus, level (Tschopp et al. 2015). 36 

This resulted in a sample of 67 taxa. The full taxon-character matrix is given in the supporting 37 

data SD1. Clade definitions as used in this study are given in table S1. 38 

S2. Biomechanical character selection 39 

Twenty-nine craniodental characters, which quantify the emergent functional properties of the 40 

feeding apparatus, were selected and measured from representative sauropodomorph taxa. This 41 

represents an expanded version of the dataset of Button et al. (2014), which measured only 20 42 

characters and was restricted to Sauropoda. A comparison of the characters used herein with 43 

those utilized by Button et al. (2014) is given in table S2.  44 

 45 

 46 
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Clade Definition Source(s) 

Sauropodomorpha (Huene 1932) The most inclusive clade containing Saltasaurus 

loricatus but not Tyrannosaurus rex. 

Taylor et al. (in press) 

Plateosauria (Tornier 1913) The least inclusive clade containing both Plateosaurus 
engelhardti and Jingshanosaurus xinwaensis. 

Galton & Upchurch (2004) 

Plateosauridae (Marsh 1895) The most inclusive clade containing Plateosaurus 

englehardti, but not Massopsondylus carinatus or 

Saltasaurus loricatus. 

Sereno (2007), Yates (2007a) 

Massopoda (Yates 2007b) The most inclusive clade containing Saltasaurus 

loricatus but not Plateosaurus engelhardti. 

Yates (2007a, b) 

Riojasauridae (Yates 2007b) The least inclusive clade containing both Riojasaurus 

incertus and Eucnemosaurus fortis. 

Yates (2007b) 

Massospondylidae (Huene 1914) The most inclusive clade containing Massospondylus 

carinatus but not Saltasaurus loricatus or Plateosaurus 

englehardti. 

Sereno (2007) 

Sauropodiformes (McPhee et al. 2014) The most inclusive clade containing Saltasaurus 
loricatus but not Massospondylus carinatus. 

McPhee et al. (2014) 

Sauropoda (Marsh 1878) The least inclusive cade including Vulcanodon 

karibaensis and Saltasaurus loricatus. 

Salgado et al. (1997); Langer et 

al. (2010) 

Eusauropoda (Upchurch 1995) The least inclusive clade including both Shunosaurus lii 
and Saltasaurus loricatus. 

Upchurch et al. (2004) 

Mamenchisauridae (Young & Zhao 

1972) 

The most inclusive clade that includes Mamenchisaurus 

constructus but not Saltasaurus loricatus. 

Naish & Martill (2007) 

Neosauropoda (Bonaparte 1986) The least inclusive clade containing both Diplodocus 
longus and Saltasaurus loricatus. 

Wilson & Sereno (1998) 

Diplodocoidea (Marsh 1884) The most inclusive clade containing Diplodocus longus 

but not Saltasaurus loricatus. 

Wilson & Sereno (1998) 

Rebbachisauridae (Bonaparte 1997) The most inclusive clade containing Rebbachisaurus 

garasbae but not Diplodocus longus. 

Upchurch et al. (2004); 

Whitlock, 2011b. 

Limaysaurinae (Whitlock 2011b) The most inclusive clade containing Limaysaurus 

tessonei but not Nigersaurus taqueti. 

Whitlock (2011b) 

Nigersaurinae (Whitlock 2011b) The most inclusive clade containing Nigersaurus 

taqueti but not Limaysaurus tessonei. 

Whitlock (2011b) 

Flgaellicaudata (Harris & Dodson 

2004) 

The least inclusive clade containing both Dicraeosaurus 

hansemanni and Diplodocus longus. 

Harris & Dodson (2004) 

Dicraeosauridae (Huene 1927) The most inclusive clade containing Dicraeosaurus 

hansemanni but not Diplodocus longus. 

Whitlock (2011b) 

Diplodocidae (Marsh 1884) The most inclusive clade containing Diplodocus longus 

but not Dicraeosaurus hansemanni. 

Whitlock (2011b) 

Diplodocinae (Janensch 1929) The most inclusive clade containing Diplodocus longus 

but not Apatosaurus ajax. 

Taylor & Naish (2005) 

Macronaria (Wilson & Sereno 1998) The most inclusive clade containing Salatasaurus 

loricatus but not Diplodocus longus. 

Wilson & Sereno (1998) 

Titanosauriformes (Salgado et al. 

1997) 

The least inclusive clade containing both Brachiosaurus 

altithorax and Saltasaurus loricatus. 

Salgado et al. (1997) 

Brachiosauridae (Riggs 1904) The most inclusive clade containing Brachiosaurus 

altithorax but not Saltasaurus loricatus. 

Wilson & Sereno (1998) 

Somphospondyli (Wilson & Sereno 

1998) 

The most inclusive clade containing Saltasaurus 

loricatus but not Brachiosaurus altithorax. 

Wilson & Sereno (1998) 

Euhelopodidae (Romer 1956) The most inclusive clade including Euhelopus zdanskyi 

but not Neuquensaurus australis. 

D’Emic (2012) 

Titanosauria (Bonaparte & Coria 1993) The least inclusive clade containing both Andesaurus 

delgadoi and Saltasaurus loricatus. 

Wilson & Upchurch (2003) 

Lithostrotia (Wilson & Upchurch 
2003) 

The least inclusive clade containing both Malawisaurus 
dixeyi and Saltasaurus loricatus. 

Wilson & Upchurch (2003) 

Saltasauridae (Bonaparte & Powell 

1980) 

The least inclusive clade containing both 

Opisthocoelicaudia skarzynskii and Saltasaurus 

loricatus. 

Wilson & Upchurch (2003) 

 47 

Table S1: Clade definitions as used in this study.  48 
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Character 
Character number in Button et al. 

(2014) 

Continuous characters 

(C1) Gape length C1 

(C2) Anterior mechanical advantage C2 

(C3) Posterior mechanical advantage C3 

(C4) Jaw articular offset/jaw length C4 

(C5) Quadrate condyle length/articular glenoid length C13 

(C6) Maximum mandible height3/mandible length C6 

(C7) Average mandible height3/mandible length C7 

(C8) Upper toothrow length/skull length C5 

(C9) Lower toothrow length/mandible length C5 

(C10) Maximum symphyseal length/mandible length C8 

(C11) Symphysis angle NA 

(C12) Adductor fossa length/mandible length C9 

(C13) Supratemporal fenestra length/skull length C10 

(C14) Supratemporal fenestra breadth/skull width C11 

(C15) Temporal muscle angle C12 

(C16) External mandibular fenestra area/mandible lateral area NA 

(C17) Retroarticular process length/mandible length NA 

(C18) Premaxillary diverenge angle C14 

(C19) Tooth angle C15 

(C20) Tooth slenderness index C16 

Binary characters 

(C21) Heterodont dentition NA 

(C22) Denticulate dentition NA 

(C23) Recurved teeth NA 

(C24) Overlapping tooth crowns NA 

(C25) Tooth-tooth wear facets C17 

(C26) Interdigitating occlusion C18 

(C27) Precise occlusion C19 

(C28) Lateral plates NA 

(C29) Self-supporting tooth battery C20 

 49 

Table S2: Summary of the characters used in this study and the overlap with those employed by Button et al. 50 

(2014). 51 

Similar studies have often focused on the mandible alone (e.g. Anderson, 2009; Anderson et 52 

al., 2011, 2013; Stubbs et al., 2013; MacLaren et al., in press) both to increase taxon coverage 53 

(Anderson et al., 2011, 2013) and due to potential compromise in signal from the skull due its 54 

multiple roles (Anderson, 2009; Anderson et al., 2011, 2013; Stubbs et al., 2013; MacLaren et 55 

al., in press). However, characters from both the skull and mandible were measured here, as 56 

the entire cranium was of interest in order to more fully capture feeding morphology, and to 57 

increase taxon coverage. A combination of 20 continuous metrics and nine binary characters 58 
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that show variation within Sauropodomorpha were measured. Although most disparity studies 59 

have focused on continuous metrics such combined datasets do have precedence (Anderson et 60 

al., 2011; Button et al., 2014). Characters were measured in ImageJ (Rasband 1997–2012, 78 61 

http://rsb.info.nih.gov/ij/) from a combination of personal photographs of fossil material and 62 

CT scan data where possible, and from figures in the literature; sources are given in the 63 

supplementary data. Measurements were performed in standard lateral view except where 64 

indicated otherwise, with the ventral edge of maxilla/dorsal edge of the dentary orientated 65 

horizontally. 66 

Binary characters 67 

(C1) Gape length 68 

This character was taken as the length from the anterior tip of the toothrow to the jaw 69 

articulation, representing a measure of gape size (figure S1). This character was chosen over 70 

total skull length as it could be measured from either the skull or mandible in taxa preserving 71 

either element. Additionally, the size of the gape is more relevant to feeding behavior than 72 

overall skull length, and the two become relatively decoupled in sauropod taxa due to marked 73 

anteroventral rotation of the braincase in some taxa, especially in diplodocids. 74 

Size is an important factor in feeding ecology. Gape size in herbivores dictates the maximum 75 

bite-size volume and the size of acceptable food items. Sauropodomorphs performed minimal 76 

oral processing (Christiansen, 1999; Upchurch & Barrett, 2000; Barrett & Upchurch, 2007; 77 

Barrett et al., 2011; Hummel & Clauss, 2011; Sander et al. 2011), with the loss of cheeks within 78 

Sauropoda cited as an adaptation towards increasing gape and permitting the use of the entire 79 

toothrow for cropping (Upchurch & Barrett, 2000; Barrett & Upchurch, 2007; Upchurch et al., 80 

2007). As a result, bite volume would represent the primary constraint acting upon 81 

sauropodomorph feeding rate (Christiansen, 1999; Hummel & Clauss, 2011; Sander, 2011). 82 

http://rsb.info.nih.gov/ij/
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 83 

Figure S1: Illustration of the measurement of character C1, the gape length, demonstrated on the skull (lateral 84 

view) and mandible (medial view) of Camarasaurus lentus. From Button et al. (2014). 85 

 (C2) Anterior mechanical advantage 86 

The mandible can be approximated as a third-order lever, with the input force (the pull of the 87 

adductor musculature) lying between the output force (exerted at the biting tooth) and the 88 

fulcrum (the jaw joint) (Hildebrand, 1982; Westneat, 1994, 2003; Wainwright & Richard, 89 

1995). The efficiency of a jaw is hence described by the mechanical advantage (MA), the ratio 90 

of the inlever to the outlever (Westneat, 1994). The MA of a jaw is the inverse of the speed 91 

factor, so that the value of MA represents a trade-off between jaw closure power and speed 92 

(Westneat, 1994, 2003; Wainwright & Richard, 1995). Herbivores are freed from the necessity 93 

of a rapid, snapping, bite for prey capture, and so are generally expected to exhibit relatively 94 

high MA values versus faunivorous outgroups (particularly those carnivores that feed on small 95 

prey requiring no processing) (Hildebrand, 1982; Stayton, 2006). This is observed in lizards, 96 

where multiple herbivorous lineages show convergence towards greater MA values (Stayton, 97 

2006). 98 
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However, it should be noted that vertebrate jaw action is more complicated in reality, involving 99 

variable activation patterns of multiple muscle groups (Gans, 1974; Westneat, 2003). 100 

Nevertheless, MA correlates with diet in extant fish (Westneat, 1994, 2003; Wainwright & 101 

Richard, 1995) and lizards (Stayton, 2006), and is commonly used in investigations of extinct 102 

animal feeding behavior (e.g. Janis, 1995; Anderson, 2009; Anderson et al., 2011, 2013), 103 

including those on archosaurs (Sakamoto, 2010; Stubbs et al., 2013; Button et al).   104 

In- and outlevers were measured as parallel to the long axis of the jaw; with the vector of 105 

adductor muscle forces approximated as lying perpendicular to this line for the sake of 106 

simplicity. Although the moment arm from the jaw joint to the biting tooth will vary throughout 107 

the biting cycle a single measurement – in the horizontal position – was taken in order to avoid 108 

character tautology. 109 

The inlever was measured as the distance from the articular glenoid to the midpoint of the area 110 

of attachment of the m. adductor mandibulae externus muscle group (figure S2a). This 111 

attachment site is present in sauropodomorphs along the dorsal edge of the surangular 112 

(Holliday, 2009); a smooth region marking the attachment of the m. adductor mandibulae 113 

externus superficialis is usually obvious in lateral view (Holliday, 2009). Inlevers for the m. 114 

adductor profundus, m. psueudotemporalis and m. pterygoideus groups (as in Sakamoto, 2010) 115 

were not measured. This was partially to avoid saturation of the character set with potentially 116 

interdependent characters relating to jaw shape, with the external adductor group chosen for 117 

mechanical advantage measurements due to its relative importance in Sauropodomorpha 118 

(Button et al., 2014). Additionally, the insertion sites for these other muscle groups are only 119 

visible in medial view, and so could not be reliably measured in specimens for which only 120 

lateral views of the mandible were available.  121 
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The outlever was then taken as the distance from the articular glenoid to the midpoint of the 122 

alveolar margin of the anteriormost biting tooth (figure S2a). This represents the longest 123 

outlever – and so the lowest MA – possible along the toothrow. This measurement was used 124 

rather than the distance from the glenoid to the tooth tip to permit evaluation in specimens with 125 

missing or damaged teeth. 126 

 127 

Figure S2: Illustration of character C2, anterior mechanical advantage of the mandible (a) and C3, posterior 128 

mechanical advantage of the mandible (b), on the jaw of C. lentus in lateral view. From Button et al. (2014). 129 

(C3) Posterior MA 130 

Conversely, the MA at the posteriormost biting tooth will represent the highest possible MA 131 

along the toothrow. For this character the inlever was identical to that of C2, with the outlever 132 

then measured as the distance from the articular glenoid to the midpoint of the alveolar margin 133 

of the final tooth (figure S2b).  134 

(C4) Articular offset of the jaw/jaw length 135 

An offset of the jaw articulation relative to the toothrow is commonly observed in herbivorous 136 

taxa (Janis, 1995; Reisz & Sues, 2000; Sues, 2000). This increases the leverage of the jaw 137 

muscles (Janis, 1995; Greaves, 1995) and simultaneous occlusion across the toothrow (Janis, 138 

1995), as necessary for processing vegetation. An offset jaw joint is considered as indicative 139 

of herbivory in fossil taxa (Reisz & Sues, 2000; Sues 2000), and is also highly variable between 140 

sauropodomorph taxa (Upchurch & Barrett, 2000; Barrett & Upchurch, 2007). 141 
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To measure this character, a line was drawn level with the dorsal margin of the dentary. This 142 

was used, rather than a line level with the tooth apices, to allow inclusion of taxa preserving 143 

incomplete toothrows. The length of a line drawn perpendicular to this to the level of the 144 

articular glenoid was then measured (figure S3a). Finally, in order to correct for size, this length 145 

was divided by total mandibular length to yield the C4 value. In taxa lacking a preserved 146 

mandible an alternative but equivalent measurement was taken by projecting a line at the level 147 

of the ventral maxillary margin, and measuring the offset of the quadrate condyle perpendicular 148 

to this (figure S3b). This measurement was then divided by total skull length. 149 

 150 

Figure S3: Illustration of the measurement of character C4, articular offset of (a) the mandible, and (b) the skull. 151 

The latter measurement was taken in instances where the mandible was not adequately preserved. Both illustrated 152 

using elements of Plateosaurus engelhardti. 153 

 (C5) Quadrate condyle length/articular glenoid length 154 

Anteroposterior movements of the jaw (propaliny), permitted by an anteroposterior expansion 155 

of the articular glenoid relative to the quadrate condyle, are important in many herbivores 156 

(Reisz & Sues, 2000; Sues 2000). Diplodocids, in particular, exhibit marked elongation of the 157 

articular (Barrett & Upchurch, 1994; Upchurch & Barrett, 2000), and propaliny is inferred to 158 

have been important in ‘branch-stripping’ behaviors (Barrett & Upchurch, 1994; Upchurch & 159 

Barrett, 2000; Young et al. 2012). 160 
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Here, the anteroposterior length of the quadrate condyle was divided by the anteroposterior 161 

length of the articular glenoid to give a measure of the potential degree of propaliny (S4). 162 

 163 

Figure S4: Illustration of the measurement of character C5, the ratio between the quadrate condyle length 164 

(bottom, illustrated on the skull of C. lentus in ventral view) and the length of the articular glenoid (illustrated 165 

on the mandible of C. lentus in dorsal view). From Button et al. (2014). 166 

 (C6) Maximum mandible height3/mandible length 167 

This character was used as a proxy for the second-moment of area (I) of the jaw, a measurement 168 

of the distribution of material about the centroid of a shape. The second-moment of area of the 169 

cross-section of a beam is proportional to its flexural rigidity (equaling the product of I and the 170 

Young’s modulus of the beam material), and so deflection and induced stress under loading 171 

(Wainwright et al., 1976; Vogel, 2003). I has been used in functional studies upon multiple 172 

groups, including those on archosaurs (e.g. Metzger et al., 2005; Cuff & Rayfield, 2013). 173 

However, data on the cross-sectional area of the jaw are unavailable for most of the taxa in this 174 

study, many of which are figured only in lateral view. As the primary feeding-related forces 175 

will act upon the mandible in the dorsoventral plane, the height of the mandible can be used to 176 

derive a proxy measure for I (Anderson et al., 2013; Stubbs et al., 2013).  However, it should 177 

be noted that ideally such a comparison would be made between jaws of similar mediolateral 178 

thickness (Anderson et al., 2013), so that, for example, the exceptionally thin cranial bones of 179 

Nigersaurus make this measurement potentially problematic for that taxon. 180 
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To derive this character, the maximum height of the jaw was taken and cubed, then divided by 181 

the mandible length (figure S5). It is noteworthy that this measurement is not size independent; 182 

nevertheless, size is an important factor in biomechanical performance and so this character 183 

was considered useful herein. 184 

 185 

Figure S5: Illustration of the measurements taken for character C6, on the mandible of C. lentus in lateral view. 186 

From Button et al. (2014). 187 

(C7) Average mandible height3/mandible length 188 

For this character the average height of the mandible (obtained by measuring the area of the 189 

mandible and dividing that by the length) was cubed and divided by the total mandible length, 190 

as above, to give a second proxy for I, as also used in Anderson et al. (2013) and Stubbs et al. 191 

(2013). 192 

(C8) Upper toothrow length/skull length 193 

The length of the toothrow dictates the tooth area available for cropping/processing. A longer 194 

toothrow will also exhibit more functional variance, with a range of MA across the jaw. A 195 

longer snout, and so toothrow, is thus important in faunivorous taxa requiring fast, weak, 196 

snapping bites for prey capture (e.g. Iordansky, 1964), but more forceful, slower posterior bites 197 

for dispatch/processing. Herbivores, particularly taxa exhibiting only limited processing, have 198 

more uniform requirements along the toothrow. Indeed, herbivorous taxa often exhibit 199 

relatively shortened snouts and toothrows compared with faunivorous outgroups (Reisz & 200 

Sues, 2000; Sues 2000). 201 
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However, although sauropods exhibit occluding upper and lower toothrows of equal length, 202 

the non-occluding dentitions of more basal sauropodomorphs typically exhibit significantly 203 

longer upper than lower toothrows. In order to maximize the data obtained and taxon coverage, 204 

the relative sizes of the upper and lower toothrows were recorded as separate characters. For 205 

character C8 the anteroposterior length of the upper toothrow was divided by the total 206 

anteroposterior length of the skull (figure S6a). 207 

(C9) Lower toothrow length/mandible length 208 

Character C9 is the anteroposterior length of the lower toothrow divided by the total length of 209 

the mandible (figure S6b).  210 

 211 

Figure 6: Measurements taken for character C8, relative upper toothrow length (a), and for C9, relative lower 212 

toothrow length (b), illustrated on the skull and mandible of Plateosaurus englehardti. 213 

(C10) Maximum symphyseal length/mandible length 214 

The mandibular symphysis needs to accommodate the range of bending, shear and torsional 215 

stresses incurred during different phases of the bite cycle (Hylander, 1984, 1985) different 216 

feeding behaviors (Walmsley et al., 2013) and in transferring forces from the working to the 217 

balancing side during unilateral biting (Porro et al., 2011). Sauropodomorphs are relatively 218 

conservative in terms of mandibular symphyseal morphology, with all taxa retaining the 219 

abutting, unfused plates plesiomorphic for archosaurs (Holliday & Nesbitt, 2013). However, 220 
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sauropods exhibit prominent dorsoventral expansion of the symphysis relative to more basal 221 

sauropodomorph taxa (Upchurch & Barrett, 2000; Barrett & Upchurch, 2007), which has been 222 

inferred to accommodate greater stresses as a result of a shift to bulk-feeding (Upchurch & 223 

Barrett, 2000). 224 

Although the symphysis has to resist a variety of complex stress environments, its behavior 225 

can be predicted from relatively simple linear measurements (Walmsley et al., 2013). The 226 

maximum length of the symphysis was measured (after Anderson et al., 2013), and divided by 227 

total mandibular length (figure S7a). A caveat associated with this symphysis measurement is 228 

that the axis along which this length is measured is not identical in all taxa, due to differences 229 

in the symphysis angle (see below). 230 

(C11) Symphysis angle 231 

The angle of the symphysis was measured from a vertical line drawn perpendicular to the long 232 

axis of the jaw, defined as the plane of its greatest anteroposterior length when in the closed 233 

position (figure S7b). 234 

 235 

Figure S7: Illustration of the measurements taken for character C10, symphysis length:jaw length (a) and character 236 

C11, symphysis angle, shown on the mandible of C. lentus, in medial view.  237 

(C12) Adductor fossa length/mandible length 238 
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The anteroposterior length of the adductor fossa was used as a proxy for the area of muscle 239 

attachment on the mandible. Ideally this was measured in medial view (figure S8), but could 240 

be estimated from the length of attachment of m. adductor mandibulae superficialis in lateral 241 

view. It was then divided by the total mandible length in order to correct for size. 242 

 243 

Figure S8: Illustration of the measurements taken for character C12, adductor fossa length/jaw length, 244 

demonstrated on both a lateral (left) and medial (right) view of the mandible of C. lentus. From Button et al. 245 

(2014). 246 

(C13) Supratemporal fenestra length/skull length 247 

The dimensions of the supratemporal fenestra were measured as a proxy for the attachment 248 

area of the temporal muscles (the m. adductor externus and m. pseudotemporalis groups) on 249 

the bones bordering the fenestra. Although the size of the subtemporal fenestra serves as the 250 

ultimate constraint on the size of the adductor chamber, this measurement was not taken as 251 

only a small number of sauropodomorph taxa have been adequately figured in ventral view. 252 

The supratemporal fenestrae of sauropodomorphs are elliptical, but variable in shape (e.g. 253 

Upchurch et al., 2004), necessitating measurements of both the anteroposterior and 254 

lateromedial axes to adequately express shape variance. For character C13 the anteroposterior 255 

length of the supratemporal fenestra was taken, and divided by the total length of the skull to 256 

correct for size (figure S9a).  257 
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This character was chosen over the dorsal measurement of supratemporal fenestra area used as 258 

it could be measured in specimens figured only in lateral view, thereby increasing taxon 259 

coverage. 260 

 (C14) Supratemporal fenestra breadth/skull width 261 

For this character the lateromedial width of the supratemporal fenestra, perpendicular to the 262 

anteroposterior axis, was measured and divided by the width of the skull, as measured across 263 

the midpoint of the postorbital bar (figure S9b). This character was used in combination with 264 

character C13, rather than a single measurement of area, as it can be measured in taxa 265 

preserving only the skull roof, and can also be estimated from the posterior view where figures 266 

of the dorsal view are unavailable. 267 

 268 

Figure S9: Illustration of the measurements taken for character C13, stf length/skull length (a) and character C14, 269 

stf breadth/skull breadth, illustrated on the skull of C. lentus in dorsal view. From Button et al. (2014). 270 

(C15) Temporal muscle angle 271 

 The line of action of the temporal musculature varies markedly within Sauropodomorpha. In 272 

basal sauropodomorphs and ‘broad-crowned’ sauropods the line of action may lie at close to 273 

vertical, whereas in other forms like Diplodocus it is orientated at a low-angle from the skull 274 

long axis. 275 
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The vertical resultant force provided by the adductor musculature varies with the cosine of its 276 

angle from the vertical. As a result, muscles orientated closer to the vertical will be more 277 

efficient in terms of the proportion of input force translated to bite force, whereas those closer 278 

to the horizontal will be more effective at producing propalinal movements. 279 

To measure this character a line was drawn between the midpoint of the temporal musculature 280 

origination area on the skull (the midpoint of the supratemporal fenestra) and the midpoint of 281 

the adductor muscle attachment along the dorsal margin of the surangular. The angle of this 282 

line to the vertical (perpendicular to the ventral margin of the skull) was then measured (figure 283 

S10).  284 

In Nigersaurus the closed supratemporal fenestra, and the strong bend in the quadrate, render 285 

the position of the temporal musculature unclear (Sereno et al., 2007) and this measurement 286 

problematical (Button et al., 2014). This musculature was reconstructed as arising from the 287 

quadrate (after Sereno et al., 2007) (figure S10). 288 

 289 

Figure S10: Illustration of the measurement taken for character C15, temporal muscle angle, from C. lentus (left) 290 

and Nigersaurus (right), in lateral view. From Button et al. (2014). 291 

(C16) External mandibular fenestra area/mandible lateral area 292 
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The external mandibular fenestra is present in most archosaurs, where it increases the 293 

attachment area and accommodates the lateral bulging of the m. adductor profundus and m. 294 

pseudotemporalis muscles that attach within the mandibular fossa (Holliday, 2009). However, 295 

it also reduces the overall mass, and so robustness, of the mandible (Stubbs et al., 2013). 296 

Although large in many ‘prosauropods’, basal sauropods show a reduction in external 297 

mandibular fenestra size, and neosauropods close it altogether (Upchurch et al., 2004) 298 

(although this is then reversed in Nigersaurus: Sereno et al., 2007). To quantify external 299 

mandibular fenestra size the open area in lateral view was measured, and divided by the total 300 

lateral area of the mandible in order to account for size (figure S11). 301 

 302 

Figure S11: Illustration of the measurements taken for character C16, the relative area of the external mandibular 303 

fenestra, on the jaw of P. engelhardti in lateral view. Blue: the area of the external mandibular fenestra, in lateral 304 

view, which was divided by the total lateral area of the mandible (minus the teeth). 305 

(C17)  Retroarticular process length/mandible length 306 

A longer retroarticular process results in a larger area of attachment for the m. depressor 307 

mandibulae musculature, which open the jaw. More rapid jaw opening may be important in 308 

faunivores, where multiple snapping bites may be important, but is of lesser importance in 309 

herbivores. Many ‘prosauropod’ taxa (e.g. Jingshanosaurus) possess elongate retroarticular 310 

processes. Additionally, a longer retroarticular process can accommodate an expanded articular 311 

glenoid, so this character can also serve as a proxy for propaliny potential for taxa in which the 312 

articular region is not preserved. Diplodocids show elongation of the retroarticular process 313 

associated with anteroposterior expansion of the articular. By contrast, most other sauropods 314 
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have very short retroarticular processes. For this character, the length of the retroarticular 315 

process (measured as the length of the jaw posterior to the articulation with the quadrate) was 316 

measured in lateral view, then divided by the total length of the jaw (figure S12). 317 

 318 

Figure S12: Illustration of the measurements taken for character C17, retroarticular process (“r.p. process”) 319 

length/mandible length, shown on the mandible of P. engelhardti, in lateral view. 320 

(C18) Premaxillary divergence angle (PMDA) 321 

Snout shape is one of the most widely used proxies for diet in studies of both extant (e.g. Boue’, 322 

1970; Bell, 1971; Janis & Ehrhardt 1988; Gordon & Illius, 1989; Spencer, 1995) and extinct 323 

taxa (e.g. Solounias et al., 1988; Solounias & Moelleken, 1993; Dompierre & Churcher, 1996; 324 

Carrano et al., 1999), including studies on sauropods (Whitlock, 2011a). Although its success 325 

rate in distinguishing finer dietary categories is relatively low (Fraser & Theodor, 2011), it still 326 

serves as a reliable indicator between the two broad end-members of selective browsers and 327 

unselective grazers, which possess narrower and broader muzzles, respectively (Fraser & 328 

Theodor, 2011). 329 

The PMDA is measured by drawing a line level with the midline tip of the snout, perpendicular 330 

to the long axis of the skull. The angle is then taken between this line and another drawn from 331 

the midline tip of the skull to the lateral edge of the premaxilla-maxilla suture, in dorsal view 332 

(figure S13). 333 
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 334 

Figure S13: Illustration of the measurement of the character C18, the PMDA, on the snout of C. lentus in dorsal 335 

view. From Button et al. (2014). 336 

A variety of metrics exist for the quantification of snout shape (see discussion in Whitlock, 337 

2011a), but the PMDA was chosen as it can be measured from the premaxilla alone in the case 338 

of incomplete material, and calculated from anterior and lateral views if a dorsal view is absent. 339 

Additionally, in taxa from which only the mandible is known, the PMDA can be estimated 340 

from the position of the fourth dentary tooth (which would occlude with the final tooth of the 341 

premaxilla) relative to the anterior tip of the dentary.  342 

(C19) Tooth angle 343 

The orientation of the apical axes of the teeth varies considerably within Sauropodomorpha. 344 

Basal sauropodomorphs and some sauropods (e.g. Nigersaurus, Titanosauriformes) exhibit 345 

vertically orientated crowns (Barrett & Upchurch, 2007; Sereno et al., 2007), many other 346 

sauropods show moderate procumbency of the teeth (e.g. Upchurch et al., 2004), and most 347 

diplodocoids have highly procumbent dentitions (Barrett & Upchurch, 1994; Upchurch & 348 

Barrett, 2000). The orientation of the teeth influences cropping; vertically orientated teeth will 349 

be more efficient at force delivery and accommodation during static biting (Button et al., 2014). 350 

Procumbent dentitions are often observed in herbivores (Reisz & Sues, 2000), and would be 351 

more suitable for raking or plucking behaviors (Barrett & Upchurch, 1994; Upchurch & 352 

Barrett, 2000; Whitlock, 2011a; Young et al., 2012; Button et al., 2014). 353 
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Tooth angle was measured here as the angle between the apicobasal axes of the tooth crowns 354 

and a horizontal line drawn level with the maxillary/dentary alveolar margin (figure S14).  355 

(C20) Tooth slenderness index 356 

The ratio of tooth crown height to width, the slenderness index (SI) was developed as a 357 

phylogenetic character (Upchurch, 1998) but has since been used to classify sauropodomorphs 358 

into functional grades (Barrett & Upchurch 2005; Chure et al., 2010). The breadth of the crown 359 

will control the area available for shredding or processing plant matter at each tooth and shows 360 

a negative correlation with tooth replacement rate within Sauropoda (D’Emic et al., 2013). 361 

Also, in sauropods, more robust broad crowns are associated with taxa with greater bite forces 362 

and interdigitating occlusion, whereas narrow-crowns are typical of taxa exhibiting more 363 

precise nipping behaviors or lacking occlusion (Upchurch & Barrett, 2000). The slenderness 364 

index of each tooth was measured as the apicobasal height of each tooth crown, divided by its 365 

maximum breadth. This was performed across all preserved teeth from each specimen, with 366 

the mean value taken as the score for this character. 367 

 368 

Figure S14: Illustration of the measurements taken for character C19, tooth angle, on the skull and jaws of C. 369 

lentus in lateral view. From Button et al. (2014). 370 
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Binary characters 371 

(C21) Heterodont dentition: absent (0)/present (1) 372 

Sauropod dentitions are homodont, although tooth size decreases posteriorly (Upchurch et al., 373 

2004). Most basal sauropodomorphs, in contrast, exhibit moderate heterodonty, where the 374 

premaxillary and often the anterior dentary teeth (Galton & Upchurch, 2004) and occasionally 375 

the anteriormost maxillary teeth (Prieto-Márquez & Norell, 2011) are conical, whereas the 376 

remaining maxillary and dentary teeth are smaller and lanceolate (Galton & Upchurch, 2004; 377 

figure). Heterodonty increases dental complexity and reflects the number and disparity of roles 378 

the dentition is required to perform. Whereas the entire toothrow in sauropods was utilized for 379 

cropping (Christiansen, 1999; Upchurch & Barrett, 2000), in basal taxa the larger anterior 380 

dentition would have been used for plucking and the posterior teeth for pulping/shredding 381 

(Barrett & Upchurch, 2007). 382 

Heterodonty was scored simply as present or absent in all taxa, on the basis of whether or not 383 

they showed distinctive variance between the anteriormost teeth and the remainder of the 384 

dentition. 385 

(C22) Denticulate dentition: absent (0)/present (1) 386 

The teeth of extant herbivorous iguanines bear coarse denticles, arranged obliquely to the long 387 

axis of the crown (Throckmorton, 1976; Barrett, 2000), which assist in tearing plant matter 388 

(Throckmorton, 1976). Similarly denticulate teeth are often taken as a general correlate of 389 

herbivory in fossil taxa (Reisz & Sues, 2000; Sues 2000).  390 

Almost all basal sauropodomorphs, and the majority of non-neosauropod sauropods, bear 391 

similar coarse, oblique denticles on the mesiodistal tooth margins (Galton, 1984, 1985a, b; 392 

Barrett, 2000; Upchurch & Barrett, 2000; Galton & Upchurch, 2004; Upchurch et al., 2004; 393 
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Barrett & Upchurch, 2007; figure 5.6a-c), although in older, worn, teeth they will be replaced 394 

by wear facets (e.g. Allain & Aquesbi, 2008; He et al., 1988: fig. 17).  395 

Turiasaurians (Royo-Torres & Upchurch, 2012) lack denticles. In neosauropods denticles are 396 

generally absent (Upchurch & Barrett,  2000; Galton & Upchurch, 2004; figure 5.6d-f), apart 397 

from Brachiosaurus and Giraffatitan, which occasionally show the incipient development of 398 

small, apically restricted denticles (Janensch, 1935-6; Carpenter & Tidwell, 1998; Upchurch 399 

& Barrett, 2000; Galton & Upchurch, 2004), and small denticles may be present in rare cases 400 

in Camarasaurus (Upchurch & Barrett, 2000). Similarly, the titanosaur Tapuiasaurus 401 

demonstrates the incipient development of crenulations along the tooth carinae (Zaher et al., 402 

2011). However, as in the latter cases denticles are rarely developed, small and quickly replaced 403 

by apical wear facets following use, they were considered functionally absent for the purposes 404 

of this study. 405 

(C23) Recurved teeth: absent (0)/present (1) 406 

Recurved teeth are associated with carnivory, where their shape helps to prevent the escape of 407 

pierced prey items (Reisz & Sues 2000). The basalmost sauropodomorphs, such as Eoraptor 408 

(Sereno et al., 1993, 2013), and some more derived ‘prosauropods’, such as Jingshanosaurus 409 

(Zhang & Yang, 1994: fig. 9), possess recurved teeth in the dentition, whereas most 410 

sauropodomorphs lack widespread tooth recurvature. 411 

(C24) Overlapping tooth crowns: absent (0)/present (1) 412 

The majority of basal sauropodomorphs (Galton & Upchurch, 2004) and ‘broad-crowned’ 413 

sauropods (Upchurch et al., 2004) demonstrate en echelon tooth arrangement of the maxillary 414 

and dentary teeth; with overlap between the mesiodistally expanded tooth crowns. This 415 

arrangement results in a more continuous cutting surface across the length of the toothrow for 416 
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shredding plant matter.  Tooth overlap was scored as present or absent on the basis of whether 417 

the majority of maxillary and dentary teeth demonstrate an imbricate arrangement or not. 418 

(C25) Tooth-tooth wear facets: absent (0)/present (1) 419 

Although lost in some lineages (such as Diplodocoidae: Barrett & Upchurch, 1994; Upchurch 420 

& Barrett, 2000; Young et al., 2012) the presence of well-developed wear facets, resulting from 421 

shearing, static occlusion, is a synapomorphy of Sauropoda (Barrett & Upchurch, 2007). 422 

Tooth-tooth wear facets are absent in all more basal sauropodomorphs (Barrett & Upchurch, 423 

2007), which instead would have limited to orthal pulping of fodder, via puncture-crushing by 424 

individual tooth crowns. A possible exception to this is Adeopapposaurus, where 425 

complimentary facets occur on the third and fourth premaxillary teeth and the opposing first 426 

and second dentary teeth (Martínez, 2009). However, wear facets are absent in the rest of the 427 

dentition (Martínez, 2009), so a shearing bite functionally analogous to that of most sauropods 428 

was not present. As a result, occlusion was scored as “absent” in Adeopapposaurus. This 429 

character was included in addition to the following characters detailing occlusal pattern as it 430 

was considered that two taxa sharing tooth-tooth occlusion, even if demonstrating different 431 

occlusal styles, would be more functionally similar than another taxon which lacked tooth-432 

tooth occlusion entirely. 433 

(C26) Interdigitating tooth occlusion: absent (0)/present (1) 434 

‘Broad-crowned’ sauropods all demonstrate the development of mesiodistal wear facets on the 435 

apical “shoulders” of the teeth, as a result of each tooth occluding between the apices of two 436 

others on the opposite jaw (Upchurch & Barrett, 2000; Upchurch et al., 2004; Barrett & 437 

Upchurch, 2005).  438 

(C27) Precise tooth occlusion: absent (0)/present (1) 439 
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Brachiosaurids (Calvo, 1994; Upchurch & Barrett, 2000; Barrett & Upchurch, 2005), 440 

titanosaurs (Calvo, 1994; Upchurch & Barrett, 2000; Barrett & Upchurch, 2005), 441 

dicraeosaurids (at least in Dicraeosaurus [Janensch, 1935-6; Upchurch, 1999; Chrisitansen, 442 

2000; Upchurch & Barrett, 2000; Barrett & Upchurch, 2005] and cf. Amargasaurus 443 

[Apesteguía, 2007]) and rebbachisaurids (at least in Nigersaurus [Sereno & Wilson, 2005; 444 

Sereno et al., 2007; figure 5.6e] and Limaysaurus [Salgado et al., 2004]) show apical wear 445 

facets, as a result of each tooth contacting a single other tooth on the opposing jaw (Calvo, 446 

1994; Upchurch & Barrett, 2000; Barrett & Upchurch, 2005; contra Christiansen, 2000).  447 

Giraffatitan (Calvo, 1994; Upchurch & Barrett, 2000) Dicraeosaurus (Christiansen, 2000), 448 

Nemegtosaurus (Wilson, 2005), Tapuiasaurus (Zaher et al., 2011) and some other titanosaurs 449 

(García & Cerda, 2010) show the rare development of v-shaped mesiodistal wear facets. 450 

However, given their scarcity relative to apical facets, ‘precision-shear’ is taken as the 451 

dominant occlusion pattern in these cases, with mesiodistal wear the product either of mismatch 452 

resulting from dental aberrations (García & Cerda, 2010), or being formed only late in tooth 453 

ontogeny (Wilson, 2005; Zaher et al., 2011; Button et al., 2014). Similarly, the presence of 454 

both labial and lingual facets in diplodocoid teeth (Barrett & Upchurch, 1994; Upchurch & 455 

Barrett, 2000; Christiansen, 2000; Sereno & Wilson, 2005) and some titanosaurs (García & 456 

Cerda, 2010) is taken as a result of either tooth-food wear (Barrett & Upchurch, 1994; 457 

Upchurch & Barrett, 2000; Christiansen, 2000; Sereno & Wilson, 2005) or as a result of dental 458 

mismatch during the tooth replacement cycle (García & Cerda, 2010). 459 

(C28) Lateral plates: absent (0)/present (1) 460 

The ‘lateral plates’ are marginal extensions of the tooth-bearing bones that cover the basal third 461 

of the tooth crowns labially (Upchurch, 1998) and are thought to have braced the teeth against 462 

laterally-oriented forces during cropping (Barrett & Upchurch, 1994; Upchurch & Barrett, 463 
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2000). Aardonyx (Yates et al., 2010) and more derived taxa possess premaxillary, maxillary 464 

and dentary lateral plates. The distribution of this character is slightly problematical; Aardoynx 465 

possesses premaxillary, maxillary and dentary lateral plates (Yates et al., 2010), whereas lateral 466 

plates are entirely absent in Melanorosaurus (Yates, 2007). Chinshakiangosaurus (Upchurch 467 

et al., 2007) and “Kunmingosaurus” (Barrett & Upchurch, 2007) each possess dentary lateral 468 

plates, suggesting that they appeared first (Barrett & Upchurch, 2007). However, the absence 469 

of other cranial material in the latter two taxa makes this difficult to assess, and separate 470 

characters for the occurrence of lower and upper lateral plates would differ only by two 471 

unknown entries for the scoring of the maxillary lateral plates in both taxa. As a result, only a 472 

single lateral plate character was included, with plates scored as present in those taxa showing 473 

any indication of them along either the lower or upper toothrow. 474 

(C29) Self-supporting tooth battery: absent (0)/present (1) 475 

Nigersaurus shows the development of a sophisticated dental battery, featuring extremely high 476 

tooth replacement rates and increased tooth numbers, housed in an anteroposteriorly short but 477 

laterally expanded toothrow (Sereno & Wilson, 2005; Sereno et al., 2007). Wear facets cross 478 

multiple teeth, which would have erupted and functioned as a single broad blade during 479 

cropping (Sereno & Wilson, 2005; Sereno et al., 2007). This morphological complex was 480 

deemed sufficiently functionally derived to be scored for an independent category here. The 481 

general paucity of rebbachisaurid cranial remains makes the distribution of this character 482 

difficult to assess; its absence in Demandasaurus (Fernández-Baldor et al., 2011), a closely 483 

related nigersaurine (Fanti et al., 2013), suggests that it was unique to Nigersaurus. 484 

Nevertheless, this character was scored as “?” in the rebbachisaurid Limaysaurus due to the 485 

absence of comparable material from Limaysaurinae.  486 
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S3. Multivariate analysis 487 

Taxon scores for the continuous metrics were z-transformed. This corrects for differences in 488 

size and variability by scaling each measurement to have a mean value of 0 and standard 489 

deviation of 1. The transformed data were then subjected to principle coordinate analysis 490 

(PCO), conducted in PAST (Hammer et al., 2001), utilizing the Gower dissimilarity index 491 

(Gower, 1971). Gower dissimilarity was chosen as it can be applied to mixed datasets 492 

containing both continuous and categorical data. The Mardia (1978) correction was applied to 493 

negative eigenvalues.  494 

The first two axes strongly capture the functional variation present within the clade, accounting 495 

for >50% of the observed variance. After this variance scores quickly tail off to <1% in PC 496 

axes 12 and above. The strength of character loading on each axis was tested through linear 497 

correlations and calculation of the Spearman’s Rank Correlation Coefficient, performed in 498 

PAST. Results are given in table S3. 499 

The plot of PC axes 1 & 2 is shown in more detail in figure S15, with all the positions of all 500 

taxa labelled. Variance along PC axis 3 is illustrated in figure S16. The taxonomic content of 501 

each of the sauropodomorph groups using during plotting is given in Table S4. 502 

  503 
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 r values and r2 values p- values 

 PC1 PC2 PC1 PC2 

C1 – Gape length 

-0.475 

0.225 

0.478 

0.228 

2.607E-07 1.879E-04 

C2 – Anterior MA 

-0.295 

0.087 

0.460 

0.2116 

0.022 1.6648E-06 

C3 – Posterior MA 

0.057 

3.301E-03 

0.582 

0.339 

0.838 2.237E-09 

C4 – Articular offset 

-5.671E-03 

3.216E-05 

0.270 

0.073 

0.609 6.973E-03 

C5 – Quadrate:articular 

0.351 

0.123 

0.233 

0.054 

9.033E-04 0.299 

C6 – Max jaw depth:length 

-0.486 

0.236 

0.237 

0.056 

9.228E-07 4.921E-03 

C7 – Average jaw depth:length 

-0.507 

0.257 

0.430 

0.185 

8.995E-09 5.344E-05 

C8 – Toothrow:skull length 

0.558 

0.311 

0.219 

0.048 

2.464E-11 0.323 

C9 – Toothrow:jaw length 

0.460 

0.211 

0.426 

0.181 

7.371E-04 1.164E-04 

C10 – Symphysis:jaw length 

-0.428 

0.184 

0.487 

0.237 

1.533E-08 4.779E-04 

C11 – Symphysis:jaw angle 

-0.382 

0.146 

0.124 

0.015 

4.523E-05 0.145 

C12 – Adductor fossa:jaw length 

0.186 

0.035 

0.275 

0.076 

0.143 0.016 

C13 – Stf length:skull length 

0.608 

0.370 

-0.071 

5.044E-03 

1.358E-14 0.901 

C14 – Stf breadth:skull breadth 

0.328 

0.107 

0.320 

0.103 

7.548E-03 3.534E-04 

C15 – Muscle angle 

0.413 

0.171 

0.135 

0.018 

2.607E-07 0.436 

C16 – e.m.f.:jaw area 

0.543 

0.295 

-0.279 

0.0780 

1.33E-14 0.026 

C17 – Retroarticular process length:jaw 

length 
0.155 -0.378 0.041 3.551E-03 
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0.024 0.143 

C18 – PMDA 

0.674 

0.455 

0.341 

0.116 

6.739E-15 0.029 

C19 – Tooth angle 

0.366 

0.134 

0.017 

2.728E-04 

5.254E-03 0.561 

C20 – SI 

-0.750 

0.562 

-0.411 

0.169 

3.366E-11 0.016 

C21 – Heterodont dentition 

0.835 

0.697 

-0.190 

0.036 

4.989E-16 0.358 

C22 – Tooth denticles 

0.856 

0.733 

0.153 

0.024 

2.665E-18 0.228 

C23 – Recurved teeth 

0.343 

0.118 

-0.273 

0.075 

1.638E-03 0.017 

C24 – Overlapping teeth 

0.750 

0.563 

0.405 

0.164 

3.364E-12 1.284E-03 

C25 – Occlusion 

-0.690 

0.476 

0.630 

0.396 

2.434E-11 9.479E-08 

C26 – Interdigitating occlusion 

-0.029 

8.275E-04 

0.844 

0.712 

0.912 2.908E-11 

C27 – Precise occlusion 

-0.737 

0.543 

-0.123 

0.015 

1.138E-12 0.612 

C28 – Lateral plate 

-0.824 

0.679 

0.336 

0.113 

3.993E-17 0.017 

C29 – Dental battery 

-0.172 

0.030 

-0.129 

0.017 

0.149 0.217 

 504 

Table S3: Character loadings on the first two PC axes. Quoted r and r2 values are from linear regressions of 505 

scores for each character against PC axes scores, p-values are from Spearman’s rank correlation of character 506 

scores with PC axis scores. 507 

  508 
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 Group Definition Taxa 
“P

ro
sa

u
ro

p
o

d
a”

 

“Basalmost 

Sauropodomorphs” 
Non-plateosaurian sauropodomorphs. 

Panphagia protos, Eoraptor lunensis, 
Pampadromaeus barberenai, Pantydraco 

caducus, Arcusaurus pereirabdolorum, 

Thecodontosaurus antiquus, Efraasia minor 

“Basal Plateosaurians” Non-sauropodiform plateosaurians. 

Unaysaurus tolentinoi, Plateosaurus 
engelhardti, P. erlenbergiensis, Riojasaurus 

incertus, Sarahsaurus aurifontanalis, 

Massospondylus carinatus, M. kaalae, 
Adeopapposaurus mognai, Leyesaurus 

marayensis, Lufengosaurus huenei, 

Coloradisaurus brevis 

“Basal Sauropodiformes” Non-sauropod sauropodiforms. 

Jingshanosaurus xinwaensis, 

Yunnanosaurus huangi, Chuxiongosaurus 
lufengensis, Anchisaurus polyzelus, 

Mussaurus patagonicus, Aardonyx celestae, 

Melanorosaurus readi,“Kunmingosaurus” 
wudingensis, Lamplughsaura dharamensis, 

Chinshakiangosaurus chunghoensis 

“Basal Sauropoda” 
Non-diplodocoid and non-titanosauriform 

sauropods. 

Tazoudasaurus naimi, Shunosaurus lii, 

Patagosaurus fariasi, Mamenchisaurus 
youngi, M. jingyanensis, M. sinocanadorum, 

Omeisaurus tianfuensis, Omeisaurus 

maoianus, Turiasaurus riodevensis, Jobaria 
tiguidensis, Atlasaurus imelakei, 

Camarasaurus lentus, Camarasaurus 

grandis 

D
ip

lo
d

o
co

id
ea

 

Rebbachisauridae 
The most inclusive clade including 
Rebbachisaurus garasbae but not Diplodocus 

longus (Whitlock 2011). 

Demandasaurus darwini, Nigersaurus 

taqueti, Limaysaurus tessonei 

Dicraeosauridae 

The most inclusive clade including 

Dicraeosaurus hansemanni and not 

Diplodocus longus (Whitlock 2011). 

Suuwassea emilieae, Dicraeosaurus 
hansemanni, Amargasaurus cazaui 

Diplodocidae 
The most inclusive clade including Diplodocus 
longus but not Dicraeosaurus hansemanni 

(Whitlock 2011). 

Apatosaurus louisae, Kaatedocus sineri, 
Tornieria africana, Diplodocus carnegii, D. 

longus 

Brachiosauridae 

The most inclusive clade including 

Brachiosaurus altithorax but not Saltasaurus 

loricatus (Wilson & Sereno 1998). 

Europasaurus holgeri, Brachiosaurus sp., 

Abydosaurus mcintoshi, Giraffatitan 

brancai 

Euhelopodidae 
Neosauropods more closely related to 
Euhelopus zdanskyi than Neuquensaurus 

australis (D’Emic 2012). 

Euhelopus zdanskyi 

Titanosauria 
The least inclusive clade including Andesaurus 
delgadoi and Saltasaurus loricatus (Mannion 

et al. 2013).  

Malawisaurus dixeyi, Karongasaurus 

gittelmani, Ampelosaurus atacis, 

Antarctosaurus wichmannianus, 
Brasilotitan nemophagus, Bonitasaura 

salgadoi, Quaesitosaurus orientalis, 

Nemegtosaurus mongoliensis, Tapuiasaurus 
macedoi, Rapetosaurus krausei 

 509 

Table S4: The groups by which taxa were plotted in the biomechanical morphospace plots. 510 

 511 
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Figure S15: Breakdowns of the first two PC axes of the biomechanical morphospace, with the positions of all taxa 513 

labelled. Abbreviated genus names as follows: P. = Plateosaurus, Ad. = Adeopapposaurus, Ma. = 514 

Massospondylus, Ch. = Chuxiongosaurus, Ma. = Mamenchisaurus, O. = Omeisaurus, C. = Camarasaurus, D. = 515 

Diplodocus. a) Full plot of PC axes one and two, with the regions focussed upon in b-d) indicated. b) Distribution 516 

of ‘prosauropod taxa. c) Distribution of ‘broad-crowned’ sauropods and Brachiosaurids. d) Distribution of 517 

‘narrow-crowned’ taxa.     518 

 519 

Figure S16: Biomechanical morphospace plot of PC axes one versus three. 520 

S4. Disparity analysis additional results 521 

Sauropods and ‘prosauropods’ exhibit similar overall levels of craniodental functional 522 

disparity, regardless of the metric used (figure S17a-d). Comparison of the three main 523 

craniodental functional grades demonstrates that ‘broad-crowned’ sauropods exhibit lower 524 

disparity than either ‘narrow-crowned’ or ‘prosauropod’ taxa (figure S17e-h). However, 525 

‘prosauropods’ only demonstrate significantly greater levels of disparity than ‘broad-crowned’ 526 

taxa under variance-based metrics (figure S17e-f). The taxonomic content of these three 527 

functional grades is given in Table S5.  528 
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 529 

Figure S17: Comparisons of craniodental functional disparity calculated from scores on the first 29 PC axes for 530 

a-d) “prosauropods” vs. sauropods and e-h) the three functional grades (“prosauropod”, “broad-crowned” 531 

sauropods [including Euhelopus] and “narrow-crowned” sauropods). Brachiosaurids were omitted from the 532 

analysis comparing the three functional grades. 95% confidence intervals calculated from bootstrapping with 1000 533 

replicates given. The following metrics are reported: a, e) Sum of Variances, b, f) Product of Variances, c, g) Sum 534 

of Ranges, d, h) Product of Ranges. 535 
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Functional grade Description Taxa 

“Prosauropoda” 

Non-sauropod sauropodomorphs Panphagia protos, Eoraptor lunensis, Pampadromaeus 

barberenai, Pantydraco caducus, Arcusaurus 

pereirabdolorum, Thecodontosaurus antiquus, Efraasia 

minor, Unaysaurus tolentinoi, Plateosaurus engelhardti, P. 

erlenbergiensis, Riojasaurus incertus, Sarahsaurus 

aurifontanalis, Massospondylus carinatus, M. kaalae, 

Adeopapposaurus mognai, Leyesaurus marayensis, 

Lufengosaurus huenei, Coloradisaurus brevis, 

Jingshanosaurus xinwaensis, Yunnanosaurus huangi, 

Chuxiongosaurus lufengensis, Anchisaurus polyzelus, 

Mussaurus patagonicus, Aardonyx celestae, 

Melanorosaurus readi, “Kunmingosaurus” wudingensis, 

Lamplughsaura dharamarensis, Chinshakiangosaurus 

chunghoensis 

“Broad-crowned sauropods” 

Non-neosauropod sauropods, 

Camarasaurus, Euhelopodidae 

Tazoudasaurus naimi, Shunosaurus lii, Patagosaurus 

fariasi, Mamenchisaurus youngi, M. jingyanensis. M. 

sinocanadorum, Omeisaurus tianfuensis, O. maoianus, 

Turiasaurus riodevensis, Jobaria tiguidensis, Atlasaurus 

imelakei, Camarasaurus lentus, Camarasaurus grandis, 

Euhelopus zdanyski 

“Narrow-crowned 

sauropods” 

Diplodocoidea, lithostrotian titanosaurs Demandasaurus darwini, Nigersaurus taqueti, 

Limaysaurus tessonei, Suuwassea emilieae, Dicraeosaurus 

hansemanni, Amargasaurus cazaui, Apatosaurus louisae, 

Kaatedocus siberi, Tornieria africana, Diplodocus 

carnegii, D. longus, Malawisaurus dixeyi, Karongasaurus 

gittelmani, Ampelosaurus atacis, Antarctosaurus 

wichmannianus, Brasilotitan nemophagus, Bonitasaura 

salgadoi, Quaesitosaurus orientalis, Nemegtosaurus 

mongoliensis, Tapuiasaurus macedoi, Rapetosaurus 

krausei 

 536 

Table S5. The taxonomic content of the three primary craniodental morphological and functional grades 537 

observed within Sauropodomorpha.  538 
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 539 

Figure S18: Sauropodomorph craniodental functional disparity through time, as calculated from scores on the first 540 

29 PC axes. Bars refer to 95% confidence intervals, calculated from bootstrapping with 1000 replicates. The 541 

following metrics are reported: a) Sum of Variances, b) Product of Variances, c) Sum of Ranges, d) Product of 542 

ranges.  543 
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Patterns of total craniodental functional disparity through time are also broadly robust to the 544 

disparity metric used (figure S18). No significant differences between time bins are observed 545 

with the exception of the Middle Jurassic, which shows significantly lower disparity than the 546 

Early Jurassic and Late Jurassic under product of variances (figure S18b). However, this result 547 

is observed under product of variances only; no significant differences between time bins are 548 

observed for other disparity metrics (figure S18). 549 

S5. Phylogeny 550 

A single taxon–character matrix including the majority of sauropodomorph taxa does not exist. 551 

Instead, an informal supertree of the 117 taxa represented by PC axis and/or body mass data 552 

(figures S19, S20) was constructed based upon published topologies: primarily after Benson et 553 

al. (2014), with additional input from other sources for basal sauropodomorphs (Apaldetti et 554 

al., 2011, 2013, 2014; Otero & Pol, 2013; McPhee et al., 2014), basal sauropods (Allain & 555 

Aquesbi, 2008; Wilson & Upchurch, 2009; Royo-Torres & Upchurch 2012), Diplodocoidea 556 

(Whitlock, 2011b; Fanti et al., 2013), and Macronaria (Gallina & Apesteguía, 2011; Zaher et 557 

al., 2011; D’Emic, 2012; Mannion et al., 2013; Gorscak et al., 2014; Lacovara et al., 2014), 558 

with the position of Brasilotitan nemophagus based upon the comparisons of Machado et al. 559 

(2013).  560 



36 

 

 561 

Figure S19: Informal supertree of the Sauropodomorpha, as used in this study, based primarily on Benson et al. 562 

(2014). Neosauropod interrelationships are given in figure 5.8. Taxa are colored as in the biomechanical 563 

morphospace plots (figures 2-5). Higher-order clades are labelled, abbreviations as follows: PLAT. – Plateosauria; 564 

MASS. – Massopoda; SPF. – Sauropodiformes. Numbered nodes refer to the following families: 1- 565 

Plateosauridae, 2- Riojasauridae, 3- Massospondylidae, 4- Mamenchisauridae. Tree plotted using the Strap 566 

package (Bell & Lloyd, 2015) in R. 567 
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 568 

 Figure S20: Neosauropod topology of the informal supertree used in this study, based primarily on Benson et al. 569 

(2014) (see text). Taxa are DIP. – Diplodocoidea; MAC. – Macronaria; TF. – Titanosauriformes. Numbered nodes 570 

refer to the following families: 5 – Rebbachisauridae; 6 – Dicraeosauridae; 7 – Diplodocidae; 8 – Brachiosauridae; 571 

9 – Euhelopidae; 10 – Saltasauridae. Tree plotted using the Strap package (Bell & Lloyd, 2015) in R.  572 

  573 
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S6. Craniodental evolution analyses 574 

Scores of taxa on the first two pc axis scores (together accounting for >50% of the total 575 

variance) were modelled as continuous characters in analyses of trait evolution. These were 576 

mapped onto 1000 randomly resolved and dated trees, pruned to only contain taxa known from 577 

PC data. In order to compare the evolution of craniodental biomechanical characters with the 578 

results of Benson et al. (2014) on the mode of evolution of body mass, the following models 579 

were then fitted across these trees, using the “fitContinuous” function of the Geiger R package 580 

(Harmon et al. 2008): 581 

Brownian motion (BM): a model where trait divergence is a result only of drift according to a 582 

random walk. Univariate Brownian motion was taken as the null model, against which other 583 

models were tested.  584 

Ornstein-Uhlenbeck (OU), or Hanson, model: unlike BM, an OU model includes both drift and 585 

selection. OU models fit a random walk with attraction towards an optimum value (Felsenstein 586 

1988; Hansen 1997; Butler & King 2004). In microevolutionary studies such a model is taken 587 

as evidence of stabilization selection about a common adaptive peak, whereas in 588 

macroevolutionary scenarios it is instead seen as stabilization within a common adaptive zone 589 

(sensu Simpson [1944]) (Hunt & Carrano 2010; Ingram & Mahler 2013; Mahler et al. 2013). 590 

The value α is proportional to the strength of the attraction towards this optimum, a value of 0 591 

(no attraction) will refer simply to Brownian motion (Butler & King 2004). Model performance 592 

was compared using the size-corrected Akaike information criterion (AICc). 593 

Early burst (EB) (Harmon et al. 2010; see also Blomberg et al. 2003 & Freckleton & Harvey 594 

2006): this models the rate of evolution as time dependant, decreasing exponentially through 595 

time (Harmon et al. 2010). This model is was designed to test for the presence of adaptive 596 

radiations sensu Simpson (1944, 1953), where the majority of differentiation in a character will 597 
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occur early within a clade’s history, with rates then slowing as niches are filled (Simpson 1944; 598 

Foote 1994; Schluter 2000; Blomberg et al. 2003; Harmon et al. 2010).  599 

Lambda (Pagel 1999): Pagel (1999) introduced λ as a measure of character covariance with 600 

phylogeny, in order to control for the non-independence of taxa (see also Pagel 1994; 601 

Freckleton et al. 2002). Values range between 0 and 1, providing a measure of the phylogenetic 602 

signal in the character(s); values of 0 refer to complete phylogenetic independence, whereas a 603 

value of 1 refers to variance as expected from a random walk over the given tree topology, 604 

equivalent to a single-rate Brownian motion model (Pagel 1999).  605 

Delta (Pagel 1999): similar to the EB model, this provides a measure of how evolutionary rate 606 

has varied through the history of a clade. Node depths are raised to the power of delta; values 607 

<1 refer to diversification in the trait(s) being concentrated early on in the history of the clade, 608 

whereas values >1 mean that diversification has been concentrated more recently (Pagel 1999). 609 

The Kappa model (Pagel 1999) was not fitted to trees due to the ambiguity of interpreting such 610 

a model in fossil datasets (Harmon et al. 2008). 611 

Full results from fitting these models are given in supplementary data SD2.  612 

Full results from fitting of multiple evolutionary rate models utilizing the transformPhylo.ML 613 

function of the ‘Motmot’ package are given in supplementary data SD3.  614 

S7. Body mass data 615 

Body mass estimates were taken from Benson et al. (2014), where they were calculated from 616 

stylopodial circumferences using the scaling relationship of Campione & Evans (2012). Mass 617 

estimates were added for the following taxa utilizing the same regression (Campione & Evans, 618 

2012), based on published stylopodial dimensons: Thecodontosaurus antiquus (Benton et al., 619 

2000), Coloradisaurus brevis (Apaldetti et al., 2013), Mussaurus patagonicus (Otero & Pol, 620 
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2013), Aardonyx celestae (Yates et al., 2010), Melanorosaurus readi (Galton et al., 2005), 621 

Lamplughsaura dharmarensis (Kutty et al., 2007), Tazoudasaurus niami (Allain & Aquesbi, 622 

2008), Mamenchisaurus jingyangensis (Zhang et al., 1998, with comparison to M. 623 

constructus), Camarasaurus supremus (Osborn & Mook, 1921) and Ampelosaurus atacis (Le 624 

Loeuff, 2005). See supplementary data SD1 for body masses. Thecodontosaurus, 625 

Coloradisaurus, Mussaurus and Aardonyx were treated as habitual bipeds (Bonnan & Senter, 626 

2007; Yates et al., 2010; Otero & Pol, 2013; Benson et al., 2014), although there is potential 627 

for facultative quadrupedalism in these taxa (Yates et al., 2010; Benson et al., 2014; McPhee 628 

et al., 2014). The mass estimate reported by Benson et al. (2014) for Camarasaurus lentus was 629 

based upon measurement of a juvenile specimen (CM 11338); here, the mass was re-calculated 630 

based upon the dimensions of an adult C. lentus (Osborn & Mook, 1921; Carrano, 2006). 631 

Finally, the mass estimate for Dreadnoughtus schrani calculated by Lacovara et al. (2014) was 632 

included, it too being derived from the regression of Campione & Evans (2012). This resulted 633 

in body mass data for 96 taxa, of which 46 are also represented by PC axis scores. It should be 634 

noted that the mass calculations derived from such scaling relationships often differ from those 635 

calculated from volumetric reconstructions (Brassey et al., 2015; Bates et al., 2015) and are 636 

highly sensitive to ontogenetic stage (Brassey et al. 2015). Although infant and young juvenile 637 

specimens were omitted, masses derived from subadult material were included for some taxa 638 

from which adult material is unknown. In particular, the least massive taxon, Pantydraco 639 

caducus, is known only from immature remains (Yates, 2003; Galton et al., 2007). However, 640 

inclusion of Pantydraco does not significantly increase the total range observed in body mass, 641 

with masses calculated from adult specimens of related taxa such as Pampadromaeus being 642 

similar.  643 
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S8. SURFACE additional results 644 

The full list of observed instances of convergence across the 100 trees analyses using 645 

SURFACE, with the poorly-known Tornieria omitted, is given in table S6. Full results are 646 

given in supplementary data SD4. 647 

In addition, a sensitivity analysis was conducted omitting other poorly-known taxa: 648 

Thecodontosaurus, Arcusaurus, “Kunmingosaurus”, Chinshakiangosaurus, Patagosaurus, 649 

Atlasaurus, Demandasaurus, Limaysaurus, Amargasaurus, Suuwassea, Ampelosaurus, 650 

Karongasaurus, and Brasilotitan. These results in lower overall AICc scores (mean -348.25, 651 

mean ΔAICc improvement versus a single optimum OU model 95.4). Results are given in 652 

supplementary data SD5. Broad results are similar, with 96% of trees demonstrating a regime 653 

shift between the base of the Sauropodiformes and the base of the Sauropoda. A shift is 654 

observed in the Neosauropoda in 88% of trees, Riojasaurus in 67%, Camarasaurus in 38% and 655 

Diplodocidae in 39%. Diplodocoids and titanosaur taxa here occupy a common regime in 63% 656 

of trees, but this is only a result of independent shifts, rather than plesiomorphic inheritance, in 657 

34%.   658 
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Convergent tips/clades % trees which show convergence 

Sauropodiformes-Riojasaurus 5 

Yunnanosaurus-Riojasaurus 23 

[Chuxiongosaurus+Sauropoda]-[Pantydraco+Plateosauria] 1 

[Chuxiongosaurus+Sauropoda]-[Efraasia+Plateosauria] 1 

Kunmingosaurus-Sauropodomorpha 1 

Kunmingosaurus-Sauropodiformes 2 

Sauropoda-Chinshakiangosaurus 3 

[Atlasaurus+Sauropodomorpha]-Riojasaurus 17 

[Atlasaurus+Neosauropoda]-Sauropodiformes 1 

Dicraeosauridae-Rebbachisauridae 2 

Diplodocidae-Riojasaurus 17 

Diplodocidae-Yunnanosaurus 16 

Diplodocinae-Riojasaurus 2 

Diplodocinae-Yunnanosaurus 3 

Diplodocus-Macronaria 1 

Macronaria-Sauropoda 2 

Camarasaurus-[Mussaurus+Sauropoda] 2 

Camarasaurus-[Aardonyx+Sauropoda] 6 

Camarasaurus-[Melanorosaurus+Sauropoda] 1 

Camarasaurus-Chinshakiagnosaurus 1 

Camarasaurus-[Chinshakiangosaurus+Sauropoda] 5 

Camarasaurus-Sauropoda 33 

Euhelopus-Sauropoda 3 

Euhelopus-Camarasaurus 3 

Titanosauria-Dicraeosauridae 1 

Karongasaurus-Suuwassea 1 

Table S6: List of observed incidences of convergence across the 100 observed trees, with the % of trees in which 659 

they are recovered given. Clades are defined on the basal node at which the regime shift is observed. Subsequent 660 

shifts mean that this regime may only apply to basally branching members of that clade; convergences are often 661 

observed between more nested members of a clade with basal forms (hence why some convergence names appear 662 

tautologous). Convergences are listed with the temporally latter occurring taxon first. In incidences where multiple 663 

convergences towards the same local optimum was observed, all individual convergences are listed here – e.g., if 664 

Chinshakiangosaurus, the base of the Sauropoda and Camarasaurus all showed a shift towards the same local 665 

optimum, the results would be listed as 1 for all of the following: Sauropoda-Chinshakiagnosaurus, 666 

Camarasaurus-Sauropoda and Camarasaurus-Chinshakiangosaurus. See appendix for the full results. 667 

  668 
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