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Abstract. Application domains, such as robotics and computer vision
(actually, any sensor data processing field), often require from robust
model estimation techniques because of the imprecise nature of sensor
data. In this regard, this paper describes a robust model estimator which
is actually a modified version of RANSAC that takes inspiration from
the notion of fuzzy metric, as a suitable tool for measuring similarities
in the presence of the uncertainty inherent to noisy data. More precisely,
it makes use of a fuzzy metric within the main RANSAC loop to encode
as a similarity the compatibility of each sample to the current hypoth-
esis/model. Further, once a number of hypotheses have been explored
and the winning model has been selected, we make use of the same fuzzy
metric to obtain a refined version of the model. In this work, we consider
two fuzzy metrics that permit us to express the distance between the
sample and the model under consideration as a kind of degree of sim-
ilarity measured relative to a parameter. By way of illustration of the
performance of the approach, we report on the accuracy achieved by the
proposed estimator and other RANSAC variants for a benchmark com-
prising two kinds of perception problems typically encountered in vision
applications, and a large number of datasets with varying proportion of
outliers and different levels of noise. The proposed estimator is shown
able to outperform the classical counterparts considered.

Keywords: Robust model estimation · RANSAC · Fuzzy metric

1 Introduction

The Random Sample Consensus algorithm (RANSAC) [6] is a robust estimation
technique whose most distinctive feature is the use of random sampling and a
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voting scheme to find the optimal set of model parameters to fit/explain a given
dataset comprising both inliers and outliers. RANSAC is widely used nowadays,
so much that it has become of common use in robotics-related algorithms, since,
in this application domain, it is often necessary to solve model estimation prob-
lems whenever a perception task is addressed.

Nowadays, facing this kind of situation requires to cope with new challenges
due to an increased use of potentially poor, low-cost sensors, and the ever grow-
ing deployment of robotic devices which may operate in potentially unknown
environments. In general terms, the underlying algorithms need to be capable of
being robust against, in particular, strong uncertainty levels. In this regard, a
robust estimator is able to correctly find the original model that supposedly the
input data fits to, even when the data is noisy and contains outliers, i.e. data
items which are not consistent with the original model due to an arbitrary bias
affecting them. (See [8] for the details on the concepts, techniques and technical
issues surrounding robust estimation.)

Fuzzy methodologies have been shown to be useful to deal with imprecise
data, targeting on the design of systems that are able to cope with uncertainty
one way or another and even degrade gracefully if needed [9]. In this work, we
propose a variant of RANSAC which avoids discriminating between inliers and
outliers but makes use of a fuzzy metric, in the sense of I. Kramosil and J.
Michalek [11], to associate to every sample a degree of compatibility with regard
to the current model. The aforesaid fuzzy metric is besides used in a final model
refinement step that runs after the main hypothesis selection loop.

The rest of the paper is organized as follows: Section 2 overviews RANSAC;
Section 3 introduces two fuzzy metrics of relatively distinct nature though ori-
ented to be embedded within the main RANSAC loop, while Section 4 details
the RANSAC variation that incorporates these fuzzy metrics; Section 5 reports
on a number of experiments to illustrate the performance achieved; Section 6
concludes the paper.

2 Brief review of the RANSAC approach for robust
model estimation

Regarding model estimation, a common measure of estimation robustness is the
breakdown point (BDP), defined as a percentage threshold on the outlier rate
beyond which the technique under consideration is no longer robust to outliers.
RANSAC is one of those robust estimators with BDP higher than fifty per-
cent. Fifty percent is the limit of the Least Median of Squares (LMedS) [20],
another robust estimator that has also enjoyed high popularity as a high BDP
technique. Least Trimmed Squares (LTS) and Minimum Probability of Random-
ness (MINPRAN) are other high-BDP algorithms [Olu16], although less popular
than RANSAC and LMedS. The BDP for others, such as the M-estimators fam-
ily [HR11], is below 50%. Applications in statistics typically require less than
fifty percent BDP, since outliers in this context are anomalies or exceptions in
the data. However, the case is often different in robotics and computer vision ap-
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plications, where outliers are defined with respect to the best among competing
models, each describing well a fraction of the input data.

By randomly generating hypotheses on the model parameters, RANSAC tries
to achieve a maximum consensus in the input dataset in order to deduce the
inliers. Once the inliers are discriminated, they are used to estimate the parame-
ters of the underlying model by regression. In more detail, instead of using every
sample in the dataset to perform the estimation as in traditional regression tech-
niques, RANSAC tests in turn many random sets of samples. Since picking an
extra point decreases exponentially the probability of selecting an outlier-free
sample [5], RANSAC takes the Minimum Sample Set size (MSS) to determine a
unique candidate model, thus increasing its chances of finding an all-inlier sam-
ple set. This model is assigned a score based on the cardinality of its consensus
set. Finally, RANSAC returns the hypothesis that has achieved the highest con-
sensus, and the corresponding model is refined through a last minimization step
that only involves the inliers found.

Searching for an all-inlier sample, RANSAC typically runs for N iterations:

N =
log (1− ρ)

log (1− (1− ω)s)
(1)

where ρ is the desired probability of success, i.e. at least one of the considered
random sets is outlier-free, s is the size of the MSS for the problem at hand and
ω is the ratio of outliers. (See [6] for the details on Eq. (1).)

There have been a number of efforts aiming at enhancing the standard
RANSAC algorithm, e.g. MSAC, MLESAC, MAPSAC, PROSAC, R-RANSAC,
LO-RANSAC and U-RANSAC [4], since it, while robust, has its drawbacks re-
garding accuracy, efficiency, stability and response time [17, 19]. Among these
variants, there is a very reduced set adopting fuzzy methodologies [12, 23]. In
both cases, the authors address a homography fitting problem, which, in [12],
is solved by discriminating data samples into the good, bad and vague fuzzy
sets using a fuzzy classifier, while [23] defines a triangle-type membership func-
tion for the set of inliers and combines this with a Monte Carlo method for
sample selection. It must be pointed out that the two aforementioned variants
of RANSAC differ significantly from the one described in this paper, which is
based on distance fuzzification.

3 Fuzzy metrics for robust model estimation

Two mathematical tools can be found in the related literature with regard to
the measurement of the degree of nearness between two points with respect to a
parameter. On the one hand, we have the so-called modular metrics [2]. In this
regard, we recall that a function w :]0,∞[×X ×X → [0,∞] is a modular metric
on a non-empty set X if, for each x, y, z ∈ X and each θ, µ > 0, the following is
satisfied:

(MM1) w(θ, x, y) = 0 for all θ ⇔ x = y;
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(MM2) w(θ, x, y) = w(θ, y, x);
(MM3) w(θ + µ, x, z) ≤ w(θ, x, y) + w(µ, y, z).

This kind of generalized metrics has been typically used in modeling problems
that arise in classical Newtonian mechanics where the numerical value w(θ, x, y)
is interpreted as the velocity of a body traveling from location x to location y in
time θ. However, in general terms, w(θ, x, y) can be thought of as a dissimilarity
measurement between objects x and y relative to the value θ of a parameter.
Hence, the smaller the value, the closer the points x and y are, with respect to
θ. (We refer the reader to [3], and references therein, for a recent account of the
theory.) From now on, the value w(θ, x, y) will be denoted by wθ(x, y).

On the other hand, we have the notion of fuzzy metric. This type of metric
tool arises with the aim of extending to the fuzzy framework the notion of
statistical metric due to K. Menger. In the sequel, we assume that the reader
is familiar with the basics of fuzzy sets and t-norms. (An outstanding general
reference on these topics is [10].)

According to [11], a fuzzy metric space is a triplet (X,M, ∗) where X is a
non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X ×X×]0,∞[
satisfying, for each x, y, z ∈ X and θ, µ ∈]0,∞[, the following:

(KM1) M(x, y, θ) = 1 for all θ if and only if x = y.
(KM2) M(x, y, θ) = M(y, x, θ).
(KM3) M(x, z, θ + µ) ≥M(x, y, θ) ∗M(y, z, µ).
(KM4) The assignment Mx,y :]0,∞[→ [0, 1] is a left-continuous function, where

Mx,y(θ) = M(x, y, θ) for each θ ∈]0,∞[.

The value M(x, y, θ) can be understood as a degree of similarity between two
points x, y ∈ X relative to the value θ ∈]0,∞[ of a parameter. Thus, the larger
the value of M(x, y, θ), the closer the points x and y are with respect to θ.

At this point, it is worth noting that fuzzy metrics have been shown to
be a very appropriate similarity measure when working with data affected by
vagueness or imprecision, like noisy data; e.g. see [1, 7, 14–16] for successful ap-
plications to image filtering and to the study of perceptual colour differences.
Despite the applicability of fuzzy metrics, it must be pointed out the lack of
examples in the literature and the fact that this becomes a handicap in order to
expand the number of fields in which new applications can be generated.

At a glance, the exposed axiomatics of both notions of metrics are in essence
dual. Motivated by this fact and by the aforementioned lack of examples, the
intuitive duality relationship was formally proved with the aim, among others,
of introducing new methods for generating fuzzy metrics and, thus, overcome
the aforesaid handicap [13]. Specifically, the next result was proved.

Theorem 1. Let ∗ be a continuous t-norm with additive generator f∗ : [0, 1]→
[0,∞]. If w is a modular metric on X, then the triplet (X,Mw,f∗ , ∗) is a fuzzy
metric on X, where the fuzzy set Mw,f∗ : X×X×]0,∞[ is defined, for all x, y ∈
X, by Mw,f∗(x, y, θ) = f

(−1)
∗ (w̃θ(x, y)), where w̃θ(x, y) = inf0<λ<θ wλ(x, y) and

f
(−1)
∗ is the pseudo-inverse of an additive generator f∗ of ∗.
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Within the framework of the aforementioned metrics, we are now concerned
on obtaining a suitable metric tool for RANSAC; that is to say, a metric that
is suitable as a measurement in presence of noise and, in addition, it is able to
encode the compatibility of each sample to the current model/hypothesis. In this
regard, next we introduce, applying Theorem 1, two fuzzy metrics, induced from
modular metrics and the use of, on the one hand, the Luckasievicz t-norm and,
on the other hand, the Aczél-Alsina t-norms. To this end, we recall first a few
pertinent facts that will play a central role in our subsequent discussion.

On the one hand, the Luckasievicz t-norm ∗L and the family of Aczél-Alsina
t-noms (∗αAA)α∈]0,∞[ are given, for all x, y ∈ X, as follows [10]: x∗L y = max{x+

y−1, 0} and x∗αAA y = e−((− log(x))α+(− log(y))α)
1
α . Moreover, additive generators

f∗L , f∗αAA : [0, 1] → [0,∞] of ∗L and ∗αAA, respectively, are given for all x ∈
[0, 1] by f∗L(x) = 1 − x and f∗αAA(x) = (− log(x))

α
. Hence the pseudo-inverses

f
(−1)
∗L , f

(−1)
∗αAA : [0,∞] → [0, 1] are given for all x ∈ [0,∞] by f

(−1)
∗L (x) = max{1 −

x , 0} and f
(−1)
∗αAA (x) = e−(x

α).

On the other hand, given a metric space (X, d), the function wd(θ, x, y) :
]0,∞[×X × X → [0,∞] is a modular metric, where wd(θ, x, y) is defined by

wd(θ, x, y) = d(x,y)
θ for all x, y ∈ X and for all θ ∈]0,∞[ [3].

In view of the exposed facts, we construct two new fuzzy metrics, (Md
1,n, X, ∗L)

and (Md
2,n, X, ∗nAA), aiming at, among others, encoding the compatibility of each

sample to the current hypothesis within the framework of a RANSAC-based
model estimator. Notice that n ∈ N and that N denotes the set of positive in-
teger numbers. To this end, given a metric space (X, d), consider the modular
metric wd(θ, x, y) on X and notice that w̃dθ(x, y) = wdθ(x, y) for al x, y ∈ X and
for all θ ∈]0,∞[.

Next, we induce the fuzzy metric based on the t-norm ∗L. Define the fuzzy

set Mwdθ ,f∗L on X×X×]0,∞[ by Mwdθ ,f∗L (x, y, θ) = f
(−1)
∗L (wdθ(x, y)) = max{1−

d(x,y)
θ , 0}. By Theorem 1, we deduce that (Mwdθ ,f∗ , X, ∗L) is a fuzzy metric. On

account of [18, Theorems 4.15] and [21], (F∗P (Mwdθ ,f∗L , . . . ,Mwdθ ,f∗L ), X, ∗L) is
a fuzzy metric, ∗P is the product t-norm and the function F∗P : [0, 1]n → [0, 1]
is defined by F∗P (a1, . . . , an) = a1 ∗P a2 ∗P . . . ∗P an (n ∈ N). It follows that

(Md, X, ∗L) is a fuzzy metric such thatMd(x, y, θ) = F∗P (Mwdθ ,f∗L , . . . ,Mwdθ ,f∗L )

(x, y, θ) = (1 − d(x,y)
θ )n if d(x, y) ≤ θ, and 0 otherwise. Notice that the same

arguments can be used to show that (Md
1,n, X, ∗L) is a fuzzy metric, where

Md
1,n(x, y, θ) = (1 − d(x,y)

nθ )n if d(x, y) ≤ nθ, and 0 otherwise. (Note that d(x,y)
nθ

is again a modular metric.)

Finally, we induce the fuzzy metric based on the t-norms ∗αAA. Define the

fuzzy set M
wdθ ,f∗αAA on X ×X×]0,∞[ by M

wdθ ,f∗αAA (x, y, θ) = f
(−1)
∗αAA (wdθ(x, y)) =

e−( d(x,y)θ )
α

.

Theorem 1 guaranteess that (Mwdθ ,f∗ , X, ∗αAA) is a fuzzy metric. Now set
α = n. Then (Md

2,n, X, ∗nAA) (n ∈ N) is a fuzzy metric with Md
2,n(x, y, θ) =

e−( d(x,y)θ )
n

.
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4 Fuzzy metric-based model scoring and refinement for
RANSAC

As already described, RANSAC adopts a hypothesize-and-verify approach to
fit a model to data contaminated by random noise and outliers: i.e. for every
hypothesis/model considered, data samples are classified into inliers and outliers
by comparing the fitting error with a threshold τI related to data noise, and that
model accumulating the largest number of inliers is the one finally chosen as
solution of the estimation problem. This simple approach has been systematically
used for robust estimation of model parameters in the presence of arbitrary noise,
although, along the years, alternative implementations have been proposed to
counteract the misbehaviours and shortcomings that have been detected.

In this work, we focus on three facets of RANSAC: (1) samples classification
into inliers and outliers, in which we prevent the estimator from explicitly, and
prematurely, deciding which samples are relevant; (2) model scoring, for which we
replace the pure cardinality of the inlier set of plain RANSAC by an expression
involving the individual fitting errors, similarly to what MSAC and MLESAC
do [22]; and (3) model refinement once the main hypothesis-checking loop has
finished, for which we adopt an iterative re-weighting scheme that makes use of
all the available data samples without any distinction between inliers and out-
liers, contrarily to plain RANSAC, and other variants, that adopt least squares
regression only for the set of inliers (notice that the distinction between inliers
and outliers depends on the current model under consideration, and thus changes
with every model).

Algorithm 1 describes formally the RANSAC variant that is proposed in this
work. The details regarding points (1)-(3) above can be found next:

1. Samples classification. As already mentioned, no distinction is made be-
tween inliers and outliers, but we make use of a fixed fuzzy metric Mw,f∗

generated by the technique in Theorem 1 to obtain a compatibility value
φ ∈ [0, 1] between each sample xj and the current modelMΘ̂k

, given the fit-
ting error ε(xj ;MΘ̂k

). Observe that the compatibility value obtained from
the fuzzy metric depends on the set of parameters (d, Φ) with Φ = (n, θ)
when either Md

1,n or Md
2,n are under consideration. From now on, such a

value will be denoted by φi(ε;Φ) with the aim of making clear that such a
value refers to the fitting error ε and that such a value comes from the fuzzy
metric Md

i,n (i ∈ {1, 2}). Since we contemplate the use of a single, specific
distance d, i.e. the one related to the fitting error, we will denote both fuzzy
metrics as Mi,n (i ∈ {1, 2}) eliminating the allusion to metric d.

2. Model scoring. The individual compatibility values φi(ε;Φ) are aggregated
by simple summation to obtain the model score (step 6 in Algorithm 1) and
hence the so-far-the-best-model is given by the maximum score found up to
the current iteration (steps 7 - 9 of Algorithm 1).

3. Model refinement. Once a sufficient number of hypotheses/models have
been considered, we re-estimate the winning model using iterative weighted
least squares, where the compatibility values φi(ε;Φ), calculated for the fit-
ting errors resulting from the current model, are used as weights for the
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Algorithm 1 FM-based RANSAC

Input: D - dataset comprising samples {xj}
φi(ε ; Φ) - FM-based compatib. function for fitting error ε and parameters Φ
kmax - maximum number of iterations of the main loop, as given by Eq. (1)
tmax - maximum number of iterations of the refinement stage

Output: MΘ̂ - estimated model, whose parameters are compactly represented by Θ̂

1: k := 0, ϕmax := −∞
2: for k := 1 to kmax do . find maximum consensus model MΘ̂

3: select randomly a minimal sample set Sk of size s from D
4: estimate model MΘ̂k

from Sk
5: calculate fitting errors ε(xj ;MΘ̂k

), ∀xj ∈ D
6: find model score ϕk :=

∑
xj∈D φi( ε(xj ;MΘ̂k

) ; Φ )

7: if ϕk > ϕmax then
8: ϕmax := ϕk, M0

Θ̂
:=MΘ̂k

9: end if
10: end for
11: t := 0
12: repeat . refine model MΘ̂

13: calculate fitting errors ε(xj ;Mt
Θ̂

), ∀xj ∈ D

14: estimate model Mt+1

Θ̂
using weights φi(ε(xj ;Mt

Θ̂
) ; Φ )

15: t := t+ 1
16: until convergence or t ≥ tmax

17: returnMt
Θ̂

new, refined model (steps 12 - 16 of Algorithm 1). The loop iterates until

changes in the estimated parameters of the model Θ̂ are negligible (or after
a maximum number of iterations).

5 Experimental results

In this section, we illustrate the performance of the RANSAC variant proposed
in Section 4, using either M1,n or M2,n, for a number of experiments that:

– Consider two model fitting problems, namely straight line fitting and ellipse
fitting. The former is for 2D lines described by parameters Θ = (a, b, c),
corresponding to a straight line in general form ax+ by + c = 0. The latter
case is for ellipses expressed as ax2+by2+2cxy+2dx+2ey+f = 0 and hence
Θ = (a, b, c, d, e, f). The respective dimensionalities are clearly different.

– Compare with plain RANSAC and MSAC (their computational requirements
are similar to ours).

5.1 Experimental setup

For testing purposes, we generate 500 synthetic datasets for the straight line
estimation problem and 200 synthetic datasets for the ellipse estimation prob-
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lem. Each dataset contains a total of 300 points which comprise both inliers
and outliers, the latter in a proportion equal to ω. The respective samples stem
from either 2D lines in random orientations and positions or ellipses with ran-
dom axes lengths and orientations. Given a random point p = (x, y) over the
respective curve and the normal vector ~n at p, an inlier pI of the dataset is
generated by shifting p along ~n using a zero-mean Gaussian distribution with
standard deviation σ, i.e. pI = p + N (0, σ) · ~n. In both cases, outliers pO are
uniformly generated within a rectangular area containing the ellipse or a part of
the straight line, ensuring that outliers lie out of a ±3σ stripe along the curve.
Every combination (σ, ω) gives rise to a different dataset.

Regarding hypothesis generation within the main loop, in all experiments, the
size of the MSS is always set to the minimum, i.e. s = 2 for straight lines and s =
5 for ellipses (Θ is normalized to unit norm). Besides, the number of iterations
kmax is calculated according to Eq. (1), with ρ = 99%. The parameters of φi(ε;Φ),
Φ = (θ, n), are set as follows: θ = κ · σ, as well as τI for RANSAC/MSAC,
considering different values for κ; n = 1 or 2, as indicated for each experiment.
Finally, to compare properly RANSAC, MSAC and our estimator, we make use
of the same sequence of MSS’s to avoid the effect of randomness.

5.2 Results and discussion

In the following, to measure the estimation accuracy:

– For the straight line fitting problem, we make use of the average µ[ε] of the
angle ε between the true and the estimated normal vector for straight lines.

– For the ellipse fitting problem, we make use of the average µ[ε] of the max-
imum relative error ε between the true p∗ and the estimated p̂ vector of
coefficients (a, b, c, d, e, f), calculated as:

ε = max
pi∈{a,b,c,d,e,f}

{
|p̂i − p∗i |

p∗i

}
× 100 .

– For both cases, we also report on the average number of iterations spent
during model refinement µ[t].

Table 1 shows performance results for the straight lines case, for the two
fuzzy metrics M1,n and M2,n and several outlier ratios ω and Gaussian noise
magnitudes σ. In sight of these results, it is worth noting that: (1) the estimation
accuracy for M1,n is above that of plain RANSAC and MSAC in all cases, while
for M2,n the accuracy is in general better than the classical counterparts except
for n = 1 and ω = 0.5 and 0.6, although the difference with MSAC is very small;
(2) M1,n behaves in general better than M2,n; (3) the value of θ in Mi,n does
not seem to be critical, since very similar errors result for κ = 1 - 3, maybe
more variation in performance is observed for M2,1; (4) the estimation accuracy
does not differ significantly for M1,1 and M1,2, while, for M2,n, M2,2 seems to be
better; (5) as for the number of iterations of the refinement stage t, in general,
µ[t] is very similar for n = 1 and n = 2 and for both fuzzy metrics, (6) it grows
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Table 1: Straight line fitting case: estimation accuracy and number of iterations
of the refinement stage for (a) different outlier ratios ω, (b) different noise mag-
nitudes σ and (c) different settings for τI , θ = κ · σ. When they do not change,
σ = 1, ω = 0.4 and κ = 3. Lighter background means higher performance.

(a)

µ[ε] (◦)
ω RANSAC MSAC ours

M1,1

ours
M1,2

ours
M2,1

ours
M2,2

0.60 4.43 3.14 1.55 2.38 4.14 2.68
0.50 3.03 2.33 1.02 1.52 2.35 1.68
0.40 2.13 1.81 0.86 1.13 1.60 1.21
0.20 1.58 1.53 0.67 0.74 0.88 0.76

µ[t]
ω ours

M1,1

ours
M1,2

ours
M2,1

ours
M2,2

0.60 11.62 12.16 12.16 11.33
0.50 9.63 9.48 9.14 8.56
0.40 8.55 8.09 7.71 7.09
0.20 7.64 6.91 6.49 5.79

(b)

σ RANSAC MSAC ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

2.00 9.82 6.92 4.03 5.15 4.50 5.38
1.00 2.13 1.81 0.86 1.13 1.60 1.21
0.50 0.74 0.71 0.31 0.34 0.50 0.34
0.25 0.37 0.36 0.22 0.14 0.16 0.14

σ ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

2.00 12.81 11.89 9.38 10.73
1.00 8.55 8.09 7.71 7.09
0.50 7.24 6.64 6.57 5.53
0.25 6.78 6.05 5.83 4.87

(c)

κ RANSAC MSAC ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

4.00 2.85 2.09 1.01 1.49 1.79 1.64
3.00 2.13 1.81 0.86 1.13 1.60 1.21
2.50 2.03 1.88 0.82 0.99 1.46 1.03
2.00 2.18 2.18 0.85 0.88 1.29 0.91
1.00 3.60 3.58 1.91 1.17 0.94 1.06
0.50 4.51 4.62 4.06 2.69 1.06 2.40

κ ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

4.00 7.75 7.65 7.12 6.87
3.00 8.55 8.09 7.71 7.09
2.50 9.56 8.59 8.13 7.45
2.00 12.21 9.52 8.71 8.18
1.00 23.09 18.35 12.20 15.90
0.50 22.15 24.12 21.23 23.59

with the amount of noise in the data, as expected, and (7) higher values of κ
reduce t, indicating that outliers are nullified within the main loop and therefore
less iterations of refinement are required.

Table 2 reports on the accuracy which has resulted for the ellipse fitting case.
On this occasion: (1) again the behaviour for M1,n is better than that of plain
RANSAC and MSAC in general, with higher accuracy for M1,1, except for some
very particular cases, i.e. ω = 0.60 or σ = 2; (2) M2,n clearly behaves better
for n = 2, also outperforming RANSAC and MSAC; (3) as for the number of
refinement iterations, it is above what is necessary for straight lines, as expected
because of the higher number of model parameters to estimate; (4) it seems the
dependency of µ[t] on a correct selection of κ is also higher for this estimation
problem.

Figures 1 and 2 report on the best- and the worst-case estimations among
the full collection of datasets, for our approach and the two estimation problems
considered with regard to MSAC; that is to say, the best case is the case for
which FM-based RANSAC outperforms MSAC the most, and the worst case is
the case in which MSAC outperforms FM-based RANSAC the most. Besides,
we report on several percentiles of the respective ε for all three methods. In both
figures, the colour code of the left plots is as follows: the true/estimated model
is indicated as gray/black lines; regarding MSAC, inliers/outliers are indicated
as blue/red dots; as for FM-based RANSAC, φi(ε(xj ;MΘ̂) ; Φ ) is coded in gray
scale.

As can be observed, for the straight-lines estimation case, data samples are
correctly scored by our approach, and the estimated and true models are almost
identical even for the worst case, i.e. for the worst estimation, the error is not



10 A. Ortiz, E. Ortiz, J.J. Miñana and O. Valero

Table 2: Ellipse fitting case: estimation accuracy and number of iterations of the
refinement stage for (a) different outlier ratios ω, (b) different noise magnitudes
σ and (c) different settings for τI , θ = κ · σ. When they do not change, σ = 1,
ω = 0.4 and κ = 1.3 †. Lighter background means higher performance.

(a)

µ[ε] (%)
ω RANSAC MSAC ours

M1,1

ours
M1,2

ours
M2,1

ours
M2,2

0.60 4.34 0.84 0.58 0.76 1.16 1.28
0.50 1.58 1.49 0.23 0.31 1.14 0.34
0.40 0.53 0.44 0.28 0.24 0.88 0.28
0.20 0.50 0.70 0.22 0.23 0.54 0.25

µ[t]
ω ours

M1,1

ours
M1,2

ours
M2,1

ours
M2,2

0.60 14.77 18.91 25.84 20.28
0.50 11.42 12.73 25.10 12.45
0.40 10.95 10.43 19.56 9.45
0.20 8.69 7.54 7.96 6.53

(b)

σ RANSAC MSAC ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

2.00 3.41 1.77 0.71 1.65 1.18 1.59
1.00 0.53 0.44 0.28 0.24 0.88 0.28
0.50 0.55 0.34 0.20 0.20 0.20 0.16
0.25 0.36 0.22 0.15 0.10 0.06 0.10

σ ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

2.00 16.02 25.00 17.59 25.12
1.00 10.95 10.43 19.56 9.45
0.50 9.04 7.98 7.60 7.07
0.25 7.81 6.57 5.72 5.66

(c)

κ RANSAC MSAC ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

3.00 2.25 1.16 0.49 1.15 1.09 1.14
2.00 0.88 0.56 0.24 0.55 1.06 0.71
1.50 0.72 0.45 0.30 0.29 0.98 0.34
1.00 0.50 0.52 0.38 0.26 0.58 0.25
0.50 0.95 0.87 0.50 0.41 0.29 0.39
0.25 1.07 1.15 0.96 0.66 0.45 0.61

κ ours
M1,1

ours
M1,2

ours
M2,1

ours
M2,2

3.00 12.15 21.18 13.77 20.22
2.00 9.74 12.68 20.34 13.42
1.50 10.16 10.64 21.18 9.91
1.00 13.36 11.35 14.95 9.96
0.50 22.81 17.80 13.80 16.14
0.25 21.72 23.78 19.68 23.39

† Experimentally, we have determined that, because of the way the ellipse datasets are
generated, 99.7% of the samples are within ±1.3σ instead of ±3σ.

significant. Regarding ellipse estimation and the best case, we can see that the
FM-based RANSAC scores correctly the inliers and hence manages to find the
ellipse, while MSAC cannot identify it correctly. As for the worst case, all three
variants fail to locate correctly the ellipse, though they all produce estimates
of the same quality. The percentile plots included in Fig. 1 and 2 for both es-
timation problems provide more insight on the global performance of all three
methods, showing that M1,n outperforms M2,n in general and that the FM-based
RANSAC leads to significantly lower estimation errors than MSAC.

6 Conclusions

This work introduces two new fuzzy metrics (FM) which have been succesfully
embedded within a revised version of RANSAC, proving thus useful for robust
model estimation. Further, this revised version of RANSAC includes an iterated
re-weighting least-squares stage for model refinement making use of the same
FM. By means of any of the two FMs considered, we avoid discriminating be-
tween inliers and outliers, but make use of a compatibility value with regard
to the current model/hypothesis, provided by the FM itself for each data sam-
ple. These compatibility values are aggregated to score the model against other
models generated inside the main RANSAC loop. Experimental results show
good performance for the two FMs while being part of the FM-based RANSAC,
actually outperforming RANSAC.
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Fig. 1: Straight line fitting case: (top) best and (bottom) worst estimations found
in 500 datasets for FM-based RANSAC in comparison with MSAC; (right) per-
centiles of ε. The true models MΘ∗ are (top) 0.15x − 0.99y + 0.00 = 0 and
(bottom) 0.91x− 0.41y + 0.00 = 0. (σ, ω) = (1, 0.4) and κ = 3 in all cases.
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