– An R package of High-resolution Informatics Toolbox for Maldi-imaging Proteomics
This is an tutorial for use of HiTMaP (An R package of High-resolution Informatics Toolbox for Maldi-imaging Proteomics). To access the software use the installation codes as below:
Now the HiTMaP is upon running. You could build the candidate list of your target proteome and perform image identification by using the function as below:
#creat candidate list
library(HiTMaP)
#set project folder that contains imzML, .ibd and fasta files
wd=paste0(file.path(path.package(package="HiTMaP")),"/data/")
#set a series of imzML files to be processed
datafile=c("Bovin_lens")
imaging_identification(
#==============Choose the imzml raw data file(s) to process make sure the fasta file in the same folder
datafile=paste0(wd,datafile),
threshold=0.005,
ppm=5,
#==============specify the digestion enzyme specificity
Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",
#==============specify the range of missed Cleavages
missedCleavages=0:1,
#==============Set the target fasta file
Fastadatabase="uniprot-bovin.fasta",
#==============Set the possible adducts and fixed modifications
adducts=c("M+H"),
Modifications=list(fixed=NULL),
#==============The decoy mode: could be one of the "adducts", "elements" or "isotope"
Decoy_mode = "isotope",
use_previous_candidates=F,
output_candidatelist=T,
#==============Set the parameters for image segmentation
spectra_segments_per_file=5,
spatialKMeans=TRUE,
Smooth_range=1,
Virtual_segmentation=FALSE,
Virtual_segmentation_rankfile=NULL,
#==============Set the Score method for hi-resolution isotopic pattern matching
score_method="SQRTP",
peptide_ID_filter=2,
#==============Summarise the protein and peptide features across the project the result can be found at the summary folder
Protein_feature_summary=TRUE,
Peptide_feature_summary=TRUE,
Region_feature_summary=TRUE,
#==============The parameters for Cluster imaging. Specify the annotations of interest, the program will perform a case-insensitive search on the result file, extract the protein(s) of interest and plot them in the cluster imaging mode
plot_cluster_image_grid=FALSE,
ClusterID_colname="Protein",
componentID_colname="Peptide",
Protein_desc_of_interest=c("Crystallin","Actin"),
Rotate_IMG=NULL,
)
In the above function, You have performed proteomics analysis of the sample data file. It is a tryptic Bovin lens MALDI-imaging file which is acquired on an FT-ICR MS. The function will take the selected data files’ root directory as the project folder. In this example, the project folder will be:
library(HiTMaP)
wd=paste0("D:\\GITHUB LFS\\HiTMaP-Data\\inst","/data/Bovinlens_Trypsin_FT/")
#set a series of imzML files to be processed
datafile=c("Bovin_lens")
wd
## [1] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT/"
After the whole identification process, we will get two types of sub-folders in the project folder:
## [1] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT//Bovin_lens ID"
## [2] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT//Summary folder"
Now we could visualize the result by the following functions:
To check the segmentation result over the sample, you need got to each data file ID folder and find the “spatialKMeans_image_plot.png” (if you are using the spatial K-means method for segmentation.)
## Linking to ImageMagick 6.9.9.14
## Enabled features: cairo, freetype, fftw, ghostscript, lcms, pango, rsvg, webp
## Disabled features: fontconfig, x11
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 1024 2640 sRGB FALSE 30726 72x72
The pixels in image data now has been categorized into five regions according to the initial setting of segmentation (spectra_segments_per_file=5). The rainbow shaped bovine lens segmentation image (on the left panel) shows a unique statistical classification based on the mz features of each region (on the right panel).
The identification will take place on the mean spectra of each region. To check the peptide mass fingerprint (PMF) matching quality, you could locate the PMF spectrum matching plot of each individual region.
library(magick)
p_pmf<-image_read(paste0(wd,datafile," ID/Bovin_lens 3PMF spectrum match.png"))
print(p_pmf)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 1980 1080 sRGB FALSE 17664 72x72
list of Peptides and proteins of each region has also been created so that you may check each individual region’s result.
peptide_pmf_result<-read.csv(paste0(wd,datafile," ID/Peptide_segment_PMF_RESULT_3.csv"))
head(peptide_pmf_result)
## # A tibble: 6 x 23
## Protein mz Protein_coverage isdecoy Peptide Modification pepmz formula
## <int> <dbl> <dbl> <int> <fct> <lgl> <dbl> <fct>
## 1 48 1301. 0.0688 0 HLEQFA~ NA 1300. C57H90~
## 2 48 1301. 0.0688 0 QYFLDL~ NA 1300. C60H94~
## 3 48 1325. 0.0688 0 GSKCIL~ NA 1324. C62H94~
## 4 53 1329. 0.0554 0 FKNINP~ NA 1328. C64H98~
## 5 53 1450. 0.0554 0 AVQNFT~ NA 1449. C65H97~
## 6 53 1606. 0.0554 0 AVQNFT~ NA 1605. C71H10~
## # ... with 15 more variables: adduct <fct>, charge <int>, start <int>,
## # end <int>, pro_end <int>, mz_align <dbl>, Score <dbl>, Rank <int>,
## # moleculeNames <fct>, Region <int>, Delta_ppm <dbl>, Intensity <dbl>,
## # peptide_count <int>, desc.x <fct>, desc.y <fct>
protein_pmf_result<-read.csv(paste0(wd,datafile," ID/Protein_segment_PMF_RESULT_3.csv"))
head(protein_pmf_result)
## # A tibble: 6 x 9
## Protein Proscore isdecoy Intensity Score peptide_count Protein_coverage
## <int> <dbl> <int> <dbl> <dbl> <int> <dbl>
## 1 10134 0.139 0 2873903. 1.93 3 0.0672
## 2 10204 0.137 0 380571. 0.794 3 0.185
## 3 10370 0.204 0 1877250. 2.08 4 0.0936
## 4 10659 0.112 0 327352. 0.745 3 0.164
## 5 10888 0.0798 0 532832. 1.24 3 0.0672
## 6 11270 0.107 0 2944154. 1.33 3 0.0745
## # ... with 2 more variables: Intensity_norm <dbl>, desc <fct>
Score in peptide result table shows the isotopic pattern matching score of the peptide. In Protein result table, it shows the intensity weighted peptide spectrum matching score.
\(Score=\log(Observed\_Peak/Theoritical\_peak)-\log(\sqrt{\frac{\sum_{x = 1}^{n} (Theoritical\_intensity_x-Observed\_intensity_x)^2}{\sum_{x = 1}^{n} (Theoritical\_intensity_x)^2(Observed\_intensity_x)^2}}\)
Proscore in the protein result table shows the overall estimation of the protein identification Accuracy
\(Proscore=\frac{\sum_{x = 1}^{n}(Score_x*log(Intensity_x))}{mean(log(Intensity))}*Protein\_coverage*Normalized\_intensity\)
A Peptide_region_file.csv has also been created to summarise all the IDs in this data file:
Identification_summary_table<-read.csv(paste0(wd,datafile," ID/Peptide_region_file.csv"))
head(Identification_summary_table)
## # A tibble: 6 x 23
## Protein mz Protein_coverage isdecoy Peptide Modification pepmz formula
## <int> <dbl> <dbl> <int> <fct> <lgl> <dbl> <fct>
## 1 24 1144. 0.0612 0 GFPGQD~ NA 1143. C51H79~
## 2 24 1685. 0.0612 0 DGANGI~ NA 1684. C72H11~
## 3 24 742. 0.0612 0 GDSGPP~ NA 741. C29H48~
## 4 24 1694. 0.0612 0 LLSTEG~ NA 1693. C72H11~
## 5 24 1882. 0.0612 0 GQPGVM~ NA 1881. C82H12~
## 6 48 1217. 0.0348 0 ASTSVQ~ NA 1216. C51H94~
## # ... with 15 more variables: adduct <fct>, charge <int>, start <int>,
## # end <int>, pro_end <int>, mz_align <dbl>, Score <dbl>, Rank <int>,
## # moleculeNames <fct>, Region <int>, Delta_ppm <dbl>, Intensity <dbl>,
## # peptide_count <int>, desc.x <fct>, desc.y <fct>
The details of protein/peptide identification process has been save to the folder named by the segmentation:
## [1] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT/Bovin_lens ID//1"
## [2] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT/Bovin_lens ID//2"
## [3] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT/Bovin_lens ID//3"
## [4] "D:\\GITHUB LFS\\HiTMaP-Data\\inst/data/Bovinlens_Trypsin_FT/Bovin_lens ID//4"
In the identification details folder, you will find a series of FDR file and plots to demonstrate the FDR model and score cutoff threshold:
## [1] "FDR.CSV"
## [2] "FDR.png"
## [3] "Matching_Score_vs_mz_target-decoy.png"
## [4] "Peptide_1st_ID.csv"
## [5] "Peptide_1st_ID_score_rank_SQRTP.csv"
## [6] "Peptide_2nd_ID_score_rankSQRTP_Rank_above_3.csv"
## [7] "Peptide_Score_histogram_target-decoy.png"
## [8] "ppm"
## [9] "PROTEIN_FDR.CSV"
## [10] "Protein_FDR.png"
## [11] "Protein_ID_score_rank_SQRTP.csv"
## [12] "PROTEIN_Score_histogram.png"
## [13] "Spectrum.csv"
## [14] "unique_peptide_ranking_vs_mz_feature.png"
In this folder, you will find the FDR plots for protein and peptide. The software will take the proscore and its FDR model to trim the final identification result. The unique_peptide_ranking_vs_mz_feature.png is a plot that could tell you the number of peptide candidates have been matched to the mz features in the first round run.You can also access the peptide spectrum match (first MS dimension) data via the “/ppm” subfolder.
library(magick)
p_peptide_vs_mz_feature<-image_read(paste0(wd,datafile," ID/3/unique_peptide_ranking_vs_mz_feature.png"))
print(p_peptide_vs_mz_feature)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 960 480 sRGB FALSE 11196 72x72
p_FDR_peptide<-image_read(paste0(wd,datafile," ID/3/FDR.png"))
p_FDR_protein<-image_read(paste0(wd,datafile," ID/3/protein_FDR.png"))
p_FDR_peptide_his<-image_read(paste0(wd,datafile," ID/3/Peptide_Score_histogram_target-decoy.png"))
p_FDR_protein_his<-image_read(paste0(wd,datafile," ID/3/PROTEIN_Score_histogram.png"))
p_combined<-image_append(c(p_FDR_peptide,p_FDR_peptide_his,p_FDR_protein,p_FDR_protein_his))
print(p_combined)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 1920 480 sRGB FALSE 0 72x72
you will also find a Matching_Score_vs_mz plots for further investigation on peptide matching quality.
library(magick)
#plot Matching_Score_vs_mz
p_Matching_Score_vs_mz<-image_read(paste0(wd,datafile," ID/3/Matching_Score_vs_mz_target-decoy.png"))
print(p_Matching_Score_vs_mz)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 480 480 sRGB FALSE 47438 72x72
In the project summary folder, you will find four files and a sub-folder:
## [1] "candidatelist.csv" "cluster Ion images" "Peptide_Summary.csv"
## [4] "protein_index.csv" "Protein_Summary.csv"
“candidatelist.csv” and “protein_index.csv” contains the candidates used for this project. They are output after the candidate processing while output_candidatelist set as TRUE, and can be used repeatedly while use_previous_candidates set as TRUE.
“Peptide_Summary.csv” and “Protein_Summary.csv” contains the table of the project identification summary. You could set the plot_cluster_image_grid as TRUE to enable the cluster imaging function. Please be noted that you could indicate Rotate_IMG with a CSV file path that indicates the rotation degree of image files.
Note: 90\(^\circ\), 180\(^\circ\) and 270\(^\circ\) are recommended for image rotation. You may find an example CSV file in the library/HiTMaP/data folder.
library(dplyr)
Protein_desc_of_interest<-c("Crystallin","Actin")
Protein_Summary_tb<-read.csv(paste(wd,"/Summary folder","/Protein_Summary.csv", sep=""),stringsAsFactors = F)
Now you could visualized the interest proteins and their associated peptides’ distribution via cluster imaging function.
p_cluster1<-image_read(paste0(wd,"/Summary folder/cluster Ion images/791_cluster_imaging.png"))
print(p_cluster1)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 1980 849 sRGB TRUE 661169 118x118
p_cluster2<-image_read(paste0(wd,"/Summary folder/cluster Ion images/5027_cluster_imaging.png"))
print(p_cluster2)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 1980 649 sRGB TRUE 503884 118x118
p_cluster3<-image_read(paste0(wd,"/Summary folder/cluster Ion images/5479_cluster_imaging.png"))
print(p_cluster3)
## # A tibble: 1 x 7
## format width height colorspace matte filesize density
## <chr> <int> <int> <chr> <lgl> <int> <chr>
## 1 PNG 1980 359 sRGB TRUE 362007 118x118
you can choose one or a list of modifications from the unimod modification list. Peptide_modification function is used to load/rebuild the modification database into the global enviornment of R. It will be called automatically in the identification work flow. you can use the code_name or record_id to refer the modification (see example data “peptide calibrants” to find more details). The pipeline will select the non-hidden modifications.
HiTMaP:::Peptide_modification(retrive_ID=NULL,update_unimod=F)
modification_list<-merge(unimod.df$modifications,unimod.df$specificity,by.x=c("record_id"),by.y=c("mod_key"),all.x=T)
head(modification_list['&'(modification_list$code_name=="Phospho",modification_list$hidden!=1),c("code_name","record_id","composition","mono_mass","position_key","one_letter")])
## # A tibble: 3 x 6
## code_name record_id composition mono_mass position_key one_letter
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Phospho 21 H O(3) P 79.966331 2 T
## 2 Phospho 21 H O(3) P 79.966331 2 Y
## 3 Phospho 21 H O(3) P 79.966331 2 S
## # A tibble: 2 x 6
## code_name record_id composition mono_mass position_key one_letter
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Amide 2 H N O(-1) -0.984016 4 C-term
## 2 Amide 2 H N O(-1) -0.984016 6 C-term
If a modification occurs on different types of site , you will also need to specify the position of a modifications.
## # A tibble: 6 x 2
## record_id position
## <chr> <chr>
## 1 1 -
## 2 2 Anywhere
## 3 3 Any N-term
## 4 4 Any C-term
## 5 5 Protein N-term
## 6 6 Protein C-term
You can set the Substitute_AA to make the uncommon amino acid available to the workflow: Substitute_AA=list(AA=c(“X”),AA_new_formula=c(“C5H5NO2”),Formula_with_water=c(FALSE))
The Digestion_site allows you to specify a list of pre-defined enzyme and customized digestion rules in regular expression format. You can either use the enzyme name, customized cleavage rule or combination of them to get the enzymatics peptides list.
Cleavage_rules<-Cleavage_rules_fun()
Cleavage_df<-data.frame(Enzyme=names(Cleavage_rules),Cleavage_rules=unname(Cleavage_rules),stringsAsFactors = F)
library(gridExtra)
grid.ftable(Cleavage_df, gp = gpar(fontsize=9,fill = rep(c("grey90", "grey95"))))
The HitMaP comes with a series of Maildi imaging data sets acquired from either FT-ICR or TOF. By the following codes, you can download these raw data set into a local folder.
#install.packages("piggyback")
library(piggyback)
library(HiTMaP)
Sys.setenv(GITHUB_TOKEN="a124a067ed1c84f8fd577c972845573922f1bb0f")
#made sure that this foler has enough space
wd=paste0(file.path(path.package(package="HiTMaP")),"/data/")
setwd(wd)
pb_download("Data.tar.gz", repo = "MASHUOA/HiTMaP", dest = ".")
untar('Data.tar.gz',exdir =".", tar="tar")
#unlink('Data.tar.gz')
list.dirs()
Below is a list of commands including the parameters for the example data sets.
#matrisome
imaging_identification(Digestion_site="(?<=[P]\\w)G(?=\\w)|(?<=[P]\\w)\\w(?=L)",Fastadatabase="matrisome.fasta",spectra_segments_per_file=3)
#Human brain FTICR
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Human_w_cali.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=5)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Human_w_cali.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,ppm=10,missedCleavages=0:5,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"))
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Human.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,ppm=12.5,PMF_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"))
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Human.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,ppm=12.5,PMF_analysis=F,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"))
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Human.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,ppm=10,FDR_cutoff = 0.1,PMF_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"))
#Bovin lens FTICR
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,threshold=0.005)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,peptide_ID_filter=3,threshold = 0.005)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,peptide_ID_filter=3,threshold = 0.005,FDR_cutoff=0.05)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,peptide_ID_filter=3,threshold = 0.005,FDR_cutoff=0.05,PMF_analysis=F,plot_cluster_image_grid=T,Protein_desc_of_interest=c("crystallin","ACTIN"))
#protein calibrant
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="cali.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=5,peptide_ID_filter=1,missedCleavages=0:5)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot_cali.fasta",output_candidatelist=T,spectra_segments_per_file=1,use_previous_candidates=F,ppm=10,Protein_desc_of_interest="Pro_CALI",peptide_ID_filter=3,threshold=0.005)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="3protein_cali.fasta",output_candidatelist=T,spectra_segments_per_file=1,use_previous_candidates=F,ppm=10,Protein_desc_of_interest="Pro_CALI",peptide_ID_filter=3,threshold=0.005)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot_cali.fasta",output_candidatelist=T,spectra_segments_per_file=1,use_previous_candidates=T,ppm=5,Protein_desc_of_interest="Pro_CALI",threshold=0.005,FDR_cutoff=0.1)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot_cali.fasta",output_candidatelist=T,spectra_segments_per_file=1,use_previous_candidates=T,ppm=5,Protein_desc_of_interest="Pro_CALI",threshold=0.005,FDR_cutoff=0.05)
#peptide calibrant
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot_cali.fasta",output_candidatelist=T,spectra_segments_per_file=1,use_previous_candidates=F,peptide_ID_filter=1,ppm=5,missedCleavages=0:5,Modifications=list(fixed=NULL,fixmod_position=NULL,variable=c("Amide"),varmod_position=c(6)),FDR_cutoff=0.1)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot_cali.fasta",output_candidatelist=T,spectra_segments_per_file=1,use_previous_candidates=T,peptide_ID_filter=1,ppm=5,missedCleavages=0:5)
#Ultraflex data
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,ppm=25,peptide_ID_filter=3,Protein_desc_of_interest<-c("Crystallin","Actin"))
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-Human.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=25,peptide_ID_filter=3,Protein_desc_of_interest<-c("Crystallin","Actin"))
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=25)
imaging_identification(Digestion_site="([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))",Fastadatabase="uniprot-mus.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=25)
You may need to update the Xcode. Go to your Mac OS terminal and input:
You’ll then receive: xcode-select: note: install requested for command line developer tools You will be prompted at this point in a window to update Xcode Command Line tools.
You may also need to install the X11.app and tcl/tk support for Mac system:
X11.app: https://www.xquartz.org/
Use the following link to download and install the correct tcltk package for your OS version. https://cran.r-project.org/bin/macosx/tools/
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18362)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] gridExtra_2.3 XML_3.98-1.20 protViz_0.5.1 dplyr_0.8.3
## [5] magick_2.2 HiTMaP_1.6.0 data.table_1.12.8 pls_2.7-2
## [9] lattice_0.20-38
##
## loaded via a namespace (and not attached):
## [1] tidyselect_0.2.5 xfun_0.11 purrr_0.3.3
## [4] splines_3.6.1 tcltk_3.6.1 vctrs_0.2.1
## [7] htmltools_0.4.0 stats4_3.6.1 yaml_2.2.0
## [10] utf8_1.1.4 survival_3.1-8 rlang_0.4.2
## [13] pillar_1.4.3 glue_1.3.1 BiocParallel_1.18.1
## [16] BiocGenerics_0.30.0 foreach_1.4.7 stringr_1.4.0
## [19] gtable_0.3.0 codetools_0.2-16 evaluate_0.14
## [22] Biobase_2.44.0 knitr_1.26 doParallel_1.0.15
## [25] parallel_3.6.1 fansi_0.4.0 Rcpp_1.0.3
## [28] backports_1.1.5 BiocManager_1.30.10 S4Vectors_0.22.1
## [31] png_0.1-7 digest_0.6.23 stringi_1.4.3
## [34] cli_2.0.1 tools_3.6.1 magrittr_1.5
## [37] tibble_2.1.3 pacman_0.5.1 crayon_1.3.4
## [40] pkgconfig_2.0.3 zeallot_0.1.0 MASS_7.3-51.4
## [43] Matrix_1.2-18 assertthat_0.2.1 rmarkdown_2.0
## [46] rstudioapi_0.10 iterators_1.0.12 R6_2.4.1
## [49] multtest_2.40.0 compiler_3.6.1
End of the tutorial, Enjoy~
R Packages used in this project:
viridisLite(Garnier 2018)
rcdklibs(Guha 2017)
rJava(Urbanek 2019)
data.table(Dowle and Srinivasan 2019)
RColorBrewer(Neuwirth 2014)
magick(Ooms 2019)
ggplot2(Wickham 2016)
dplyr(Wickham et al. 2019)
stringr(Wickham 2019)
protViz(Panse and Grossmann 2019)
cleaver(Gibb 2019)
Biostrings(Pag�s et al. 2019)
IRanges(Lawrence et al. 2013)
Cardinal(Bemis et al. 2015)
tcltk(R Core Team 2019)
BiocParallel(Morgan et al. 2019)
spdep(Bivand and Wong 2018)
FTICRMS(Barkauskas 2012)
UniProt.ws(Carlson 2019)
Barkauskas, Don. 2012. FTICRMS: Programs for Analyzing Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Data. https://CRAN.R-project.org/package=FTICRMS.
Bemis, Kyle D., April Harry, Livia S. Eberlin, Christina Ferreira, Stephanie M. van de Ven, Parag Mallick, Mark Stolowitz, and Olga Vitek. 2015. “Cardinal: An R Package for Statistical Analysis of Mass Spectrometry-Based Imaging Experiments.” Bioinformatics. https://doi.org/10.1093/bioinformatics/btv146.
Bivand, Roger, and David W. S. Wong. 2018. “Comparing Implementations of Global and Local Indicators of Spatial Association.” TEST 27 (3): 716–48. https://doi.org/10.1007/s11749-018-0599-x.
Carlson, Marc. 2019. UniProt.ws: R Interface to Uniprot Web Services.
Dowle, Matt, and Arun Srinivasan. 2019. Data.table: Extension of ‘Data.frame‘. https://CRAN.R-project.org/package=data.table.
Garnier, Simon. 2018. ViridisLite: Default Color Maps from ’Matplotlib’ (Lite Version). https://CRAN.R-project.org/package=viridisLite.
Gibb, Sebastian. 2019. Cleaver: Cleavage of Polypeptide Sequences. https://github.com/sgibb/cleaver/.
Guha, Rajarshi. 2017. Rcdklibs: The Cdk Libraries Packaged for R. https://CRAN.R-project.org/package=rcdklibs.
Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gentleman, Martin Morgan, and Vincent Carey. 2013. “Software for Computing and Annotating Genomic Ranges.” PLoS Computational Biology 9 (8). https://doi.org/10.1371/journal.pcbi.1003118.
Morgan, Martin, Valerie Obenchain, Michel Lang, Ryan Thompson, and Nitesh Turaga. 2019. BiocParallel: Bioconductor Facilities for Parallel Evaluation. https://github.com/Bioconductor/BiocParallel.
Neuwirth, Erich. 2014. RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer.
Ooms, Jeroen. 2019. Magick: Advanced Graphics and Image-Processing in R. https://CRAN.R-project.org/package=magick.
Pag�s, H., P. Aboyoun, R. Gentleman, and S. DebRoy. 2019. Biostrings: Efficient Manipulation of Biological Strings.
Panse, Christian, and Jonas Grossmann. 2019. ProtViz: Visualizing and Analyzing Mass Spectrometry Related Data in Proteomics.
R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Urbanek, Simon. 2019. RJava: Low-Level R to Java Interface. https://CRAN.R-project.org/package=rJava.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
———. 2019. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.
Wickham, Hadley, Romain Fran�ois, Lionel Henry, and Kirill Muller. 2019. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.