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Abstract

The microstructure of materials is often described by its texture which is the ori-

entation distribution (ODF) of the individual grains. The nature of this distribution

governs the properties of the grain boundary characteristics. These grain boundary

characteristics are known to drive the various deformation modes within the microstruc-

ture. For Mg3AlZn, the prevalent deformation mode is the formation of twins. It has

been found that certain grain boundary misorientation angles are favorable for twin

creation. This project seeks to utilize optimization methods to maximise the grain

boundary misorientation distribution (GBMD) that encourages twin formation for an

initial texture. The arrangement of these unit cells will be governed by the ODF given

and the GBMD will be obtained from the spread of misorientation between them. The

optimization problem will then be stated as having an objective function of maximising

the appropriate GBMD for a given texture that encourages twin creation by allowing

the texture to be changed, limited to certain orientations. Further constraints, such as

ensuring that necessary planes of unit cells always intersect so there are no voids formed

in the optimized microstructure, will be developed and applied as necessary. A method

for finding optimum texture for a given grain boundary characteristic is explained. A

microstructure is optimized for misorientation spread that promotes twinning.
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Introduction

Magnesium when compared to steel, has greater strength to weight ratio. Studies for effective

use of Magnesium alloys in automotive structural members has been conducted in recent

years. The increase in fuel efficiency because of reduced weight from using Mg has been

found favorable1.2

But the failure of Mg alloys to accommodate large strain deformations discourages

their use in structural members. In Mg alloys, which have an HCP crystal structure, the

required number of deformation modes is not activated by slip systems alone. This has been

attributed because of low c/a ratio of HCP crystals, which along with the heavily basal

texture, increases the energy required for slip activity on the c+a axis.3

Hence to provide the necessary deformation mode for accommodating strain, twins

are formed within the microstructure. These twins enable the c axis to either expand or

compress and they are called extension twins and compressive twins respectively. Obser-

vation of microstructural characteristics has not yet yielded a clear understanding of twin

formation and propagation. To help predict twinning activity, it has been studied as a

stochastic event. With the observation of large number of twin nucleation (or formation)

and propagation sites, some of the causes for twins have been identified.

Barnett et al4 observed the effect of grain size on the both tension and compres-

sion twins in metals with HCP crystal structure. Beyerlein et al5 studied the stochastic

nature of twins further and proposed a twin prediction model. This model has been further

developed by Niezgoda et al6 to match it more accurately with experimental results. The

microstructural attributes predicted or assumed by the model was verified by Khosravani et

al,7 particularly the misorientation angles of grain boundaries. The twin prediction model

is sought to be improved by using Machine Learning principles to further find corelations

existing in microstructure attributes.

In this paper we seek to optimize a given Mg microstructure for the maximizing the

spread of misorientation angles (29◦ and 36◦ that encourage twin nucleation and propagation.
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The optimum microstructure varies based on initial texture. By using several initial textures,

the bounds of the optimum microstructure is determined. Further more, by constraining

the optimized texture to remain basal for a given initial basal texture, the bounds for the

optimum microstructure are also studied.

Optimization

Methodology

The methodology presented here translates the problem defined above into a format that

can be optimized using commercially available optimizers. The texture that is to be opti-

mized is assumed to be a square texture with HCP crystal structure. A square texture is a

texture with equal number of grains in both directions, resulting in a convenient structure

to parse through computationally. This also allows us to maintain grain boundaries between

neighboring grains.

Given a texture size s, the optimization is constructed as:

Design Variables:

φ1,Φ, φ2 (1)

Bounds:

0 ≤ φ1 ≤ 360, 0 ≤ Φ ≤ 60, 0 ≤ φ2 ≤ 90 (2)

Constraints:

29.0 ≤ m ≤ 36.0 (3)

Objective Function:

mcon = m/36.0 − 1.0, if(m > 36.0) (4)

mcon = 1.0 −m/29.0, if(m < 29.0) (5)
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objective =
n∑

i=0

mconi
(6)

Instead of only optimizing one grain group at a time, the optimization includes a

complete texture of variable square size s (i.e., 3 ∗ s2 total design variables, 2 ∗ 3 ∗ s2 bounds,

and 2∗3∗ s2 constraints). This texture is parsed to produce a list of grain groups of variable

size based on how many neighboring grains each grain has (Figure 1). Each of the groups

shown in Figure 1 are handled differently because of the relative position and number of

neighboring grains (blue) each grain (green) has. Each grain group has an objective value

and the objective values for each grain are summed up to produce one objective value for

the complete texture.

Figure 1: Grain Neighbor Cases

Each grain group produces an array of misorientation angles. The constraints

include 29 ≤ m[i] ≤ 36 for each misorientation angle except the misorientation angle of the

grain which the other grains’ misorientation angles are relative to.

The objective incorporates the aforementioned constraints (not the bounds) by hav-

ing the objective be the sum of the constraint violations. For example, if the misorientation

angle array was

m=[36,23,0,37,29]

the 0 would not be considered because it is the misorientation angle that the others

are relative to. The first and last misorientation angles do not violate the constraints,

so they do not contribute to the objective. The second misorientation angle violates the
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constraint because 23 < 29.0. The added value to the objective is 1 − 23/29.0 for the

second misorientation angle. The fourth misorientation angle violates the constraint because

37 > 36.0. The added value to the objective is 37/36.0 − 1 for the fourth misorientation

angle. The resulting objective value for m is 1 − 23/29.0 + 37/36.0 − 1 = 0.23467433. The

above construction of the optimization problem defines the minimum objective or fitness

value as 0. A value of 0.0 for the objective signifies that all of the constraints are satisfied.

There are many advantages to incorporating the constraints into the objective value.

The point of the optimization is to ensure that the resulting texture’s misorientation angles

all fall within a certain range. Because this desired result does not have any other goal, the

objective becomes the satisfaction of the constraints. This allows us to know exactly what

the global minimum is and when it is reached by defining it as 0.0. This is more realistic

in the sense that there are actually many different textures that will satisfy the constraints

and are equally optimal. We do not allow a minimum below 0.0, because we do not want

to reward the optimization algorithm for getting the texture further and further within the

constraints. When the constraints are satisfied for a particular grain group, it no longer

contributes to the objective function so that it does not cancel out constraint violations in

other areas of the texture.

Gradient-Based

We elected to use gradient-based methods for this optimization because of their inherent

ability to handle larger numbers of design variables. The smallest number of design variables

we planned to use came from a 2x2 texture, which resulted in 12 design variables. A more

realistic texture would be closer to 1000x1000, which would result in 3000000 design variables.

Gradient-free methods would not be able to handle that many design variables with our

available computing power. For gradient-based methods, we used the Finite Difference and

Automatic Differentiation methods for determining the necessary gradients before providing

the gradients to an existing commercial gradient-based optimization algorithm. The Finite
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Difference gradients were calculated using a step size of 1∗10−6. Algopy was used to compute

the Automatic Differentiation gradients. No modifications to the optimization problem are

necessary for gradient-based optimization with exception to the calculation of the gradients

that are to be provided to the optimization algorithm. The SLSQP method in Scipy’s

Minimize was used to perform all gradient-based optimizations presented in the results.

Results

The results for the optimization of a texture are not easily visualized because, as men-

tioned earlier, smallest dimension objective function results from a 2x2 texture and is 12-

dimensional. The largest dimensional optimization that we were able to successfully run

(meaning that it converged to the global minimum) was of a 75-dimensional objective func-

tion (5x5 texture). Because of this, we have chosen not to attempt to present a plot of the

resulting objective function. However, below in Figure 2, the initial and final textures of a

gradient-based optimization on a 3x3 texture along with the initial and final objective values

are presented to provide an example of the input and output of a successful optimization.

Figure 3 displays the comparison of a gradient-free method with a gradient-based

method. A randomly generated initial population and starting texture for both the gradient-

free and gradient-based methods was generated for each of the 50 optimization runs recorded

in Figure 3. As can be seen in Figure 3, while both the gradient-free algorithm and the

gradient-based algorithm were successful in finding the global optimum 100% of the optimiza-

tion runs, the gradient-based method significantly outperformed the gradient-free method in

both computation time and number of iterations required to arrive at an optimal texture.

Dimensionality, along with the other gradient-free methods and gradient-based methods

discussed in the previous section, will also be explored in the final paper.

Because the gradient-based algorithms were superior to the gradient-free methods,

the remainder of the results we collected were collected using gradient-based methods. When
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Figure 2: Initial and Final 3x3 Textures from SLSQP Minimization

Figure 3: Real-Coded Genetic Algorithm vs. SLSQP with Finite Difference Gradients

using the SLSQP, we noticed that there were opportunities for improvement when it came to

convergence times. The basic SLSQP presented in Figure 4 is the standard SLSQP method

with a randomly generated initial texture and a constant gradient step size of 1 ∗ 10−6.

The enhanced SLSQP presented in Figure 4 is the standard SLSQP method with an initial

texture chosen as the top texture from a randomly generated population of 100 textures and

a variable gradient step size of 1.0 if the objective value is greater than 1.0 and 1 ∗ 10−6

otherwise. These enhancements resulted in a SLSQP method that converged much faster.

Figure shows that the enhanced SLSQP converged in only 65 iterations while the basic
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SLSQP still had not converged at the maximum number of iterations of 1000. The enhanced

SLSQP took 20 minutes and 26 seconds with 76 function calls, while the basic SLSQP took

9 hours, 44 minutes, and 0 seconds with 2181 function calls.

Figure 4: Basic vs. Enhanced SLSQP Method Convergence on 5x5 Texture

We attempted to find a correlation between ranges of the design variables and the

range of the misorientation angles. We ran 100 optimizations of 2x2 textures with randomly

generated initial textures using Automatic Differentiation to calculate the gradients and the

SLSQP method to minimize the objective value. The resulting ranges of the design variables

across all 100 optimal results (all of which satisfied all of the constraints) are:

1.28554598355 ≤ φ1 ≤ 360, 0 ≤ Φ ≤ 60, and0 ≤ φ2 ≤ 90 (7)
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Discussion

The gradient-based optimization methods computed faster than the gradient-free optimiza-

tion methods and required fewer function calls. This is due to the fact that the genetic

algorithm computes the objective value many more times than gradient-based methods in

order to perform selection, cross-over, and mutation operations. The objective value in this

case is time-consuming to compute and adds most of the computation time. Also, the genetic

algorithm does not scale well with large numbers of design variables, which is what we were

working with in optimizing textures.

It is interesting to note that with a variable gradient step size and better initial

starting point we were able to reduce the convergence time of the optimization of a 5x5

texture by about 97%. Although the better starting point did help, the variable gradient

step also contributed to the shorter convergence time. We believe this is due to the nature of

the objective function as it approaches the global minimum. The definition of the objective

function creates a very large portion of the design space that is either at the global minimum

or near to it. The objective function does not have a single point that defines the global

minimum. If it were only 3-dimensional, it could be compared to a shallow flat-bottomed

bowl that is large in diameter with very steep sides. Because of its steep sides and large flat

center, the larger gradient step size further from the global minimum allowed the minimiza-

tion to descend faster. The smaller gradient step size employed when the objective value

was less than 1.0 allowed for the minimization to be more careful as it approached the global

minimum.

A method to find the influence of initial orientation on the misorientation spread

for a microstructure with optimization techniques has been explained. Similarly we can find

the influence of other grain boundary characteristics such as grain boundary length, ker-

nal average misorientation, etc on texture. This can allow us to predict the formation of

microstructural features such as twinning, by developing stochastic relationship between mi-

crostructural characteristics. By understanding the nature of these microstructural features
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we can create reconstruction models that allow us to simulate increased deformation modes,

so there is better strain accommodation within the Mg crystal structure. With the devel-

opment of Mg microstructures favorable for strain accommodation, increased usage of Mg

leading to decrease in the weight of structures without lose of strength can be encouraged.
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