XeF_{2} gas-assisted focused-ion-beam etching of InSb quantum wells for

 rapid prototyping of semiconductor nanodevicesD. K. Shearer ${ }^{1}$, M. Masteghin ${ }^{2}$, D. C. Cox ${ }^{2}$, S. K. Clowes ${ }^{1}$ ${ }^{1}$ Advanced Technology Institute, Department of Physics, University of Surrey

Aim: To develop a novel fabrication technique for rapid prototyping of nanodevices from InSb quantum wells

Background

Standard fabrication techniques for making nanodevices from semiconductors are complex, time-consuming and require photomasks which are expensive. We explore the use of focused ion beam (FIB) lithography for the nanomachining of devices from InSb quantum well materials. The FIB instrument uses a beam of ions to remove atoms from the sample surface. This flexible technique is a 'direct-write' method, making fabrication quick as well as allowing for the testing of different etching chemistries and electrical properties in-situ ${ }^{[1]}$. This makes the FIB ideal for rapid-prototyping of novel devices within the R\&D context.

Methods

The Xe plasma FIB was used to etch trenches into the InSb quantum wells

- Various beam parameters and the addition of a fluorine chemistry $\left(\mathrm{XeF}_{2}\right)$ was explored After etching, scanning electron microscope images were taken and the surface scanned using a profilometer to assess etch depth and quality

References

ach | R1] A. A. Ts. |
| :--- |
| Jan 2004. |

Results

SEM images taken at a 55° angle of etches made us
Xe plasma FIB Xe plasma FIB milling with a bear energy of 10kev 20keV, 30keV without (right) and with (left) fluorine
gas injection.

XeF_{2} chemistry increases etch rate, produces higher resolution features and less sputtered material compared with just the Xe beam

SEM image of trenches made using Xe (left) and XeF_{2} (right) etching XeF_{2} (right) etching
Etching parameters were 30 keV beam were 30 keV be beam current, and 10 sec etch time

Resolution of 540nm trench width achieved with XeF_{2}, 100pA beam energy \& 10sec etch time

Conclusions

- XeF_{2} is a suitable ion beam etching regime for $\operatorname{InSb} / \operatorname{InAISb}$ quantum wells for making nanodevices
- The fabrication toolkit developed can produce resolution comparable to conventional lithography techniques with the advantages of the FIB system for R\&D applications

Future Work

This study lays the groundwork for developing InSb-based nanoscale quantum devices. InSb has low effective mass, high mobility, and strong spin-orbit coupling making it an ideal material for applications such as spintronics ${ }^{[2]}$, but until now fabrication challenges ${ }^{[3,4]}$ have slowed the development of innovative InSb-based spintronics devices.

