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ABSTRACT

This article highlights specific features of biological neurons and their dendritic trees, whose adop-
tion may help advance artificial neural networks used in various machine learning applications.
Advancements could take the form of increased computational capabilities and/or reduced power
consumption. Proposed features include dendritic anatomy, dendritic nonlinearities, and compart-
mentalized plasticity rules, all of which shape learning and information processing in biological
networks. We discuss the computational benefits provided by these features in biological neurons
and suggest ways to adopt them in artificial neurons in order to exploit the respective benefits in
machine learning.

Keywords Artificial Neural Networks · Biological dendrites · Plasticity

1 Introduction

Artificial Neural Networks (ANN) implemented in Deep Learning (DL) architectures have been extremely successful
in solving challenging machine learning (ML) problems such as image [1], speech [2], and face [3] recognition,
playing online games [4], autonomous driving [5], etc. However, despite their huge successes, state-of-the-art DL
architectures suffer from problems that seem rudimentary to real brains. For example, while becoming true experts
in solving a specific task, they typically fail to transfer these skills to new problems without extensive retraining – a
property known as “transfer learning”. Moreover, when learning new problems, they tend to forget previously learned
ones -a problem termed “catastrophic forgetting.” Finally, in order to achieve top performance, they typically require
large training sets and thousands/millions of trainable parameters, necessitating the use of computing systems that
leave a substantial carbon footprint. The brain, on the other hand, runs on extremely low energy (< 20 watts), learns
from few examples, generalizes extremely well, and can learn in a continual manner without erasing useful prior
knowledge. In this article, we argue that increasing the bioinspiration of ANNs, by adopting dendritic features may
help address the abovementioned limitations. We discuss two types of benefits: advancing the computational power
of ANNs and/or reducing their power consumption.

Why dendrites?

Dendrites are thin processes that extend from the cell bodies of neurons and serve as their primary receiving end: over
90% of the synapses in principal neurons are localized within their dendrites. Dendrites come in a great variety of
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shapes depending on the species, brain area, cell type, and even the layer in which they reside, indicating that they may
be specialized for the respective computations needed [6]. Beyond their function as entry devices, morphologically
complex dendrites affect the integration and propagation of incoming signals in complex ways. For example, passive
dendrites act as filters due to the attenuation and temporal filtering of signals traveling to the cell body [7], thus
allowing neurons to infer the distance of incoming signals from the soma and their kinetics. Moreover, active dendrites
are home to a variety of voltage-gated conductances that support the generation of dendritic spikes (reviewed in [8],
Figure 1). These dendritic features amount to different types of nonlinear integration and allow individual neurons
to perform complex computations, ranging from logical operations to signal amplification or segregation, temporal
sequence/coincidence detection, parallel nonlinear processing, etc. [9, 10, 11, 12, 13, 14, 15].

The computational capabilities of neurons with nonlinear dendrites are exploited by a set of multiscale plasticity rules
that induce synaptic, intrinsic, homeostatic, and wiring changes [16, 17]. These rules can differ between neuronal (e.g.,
apical vs. basal trees) and/or dendritic (e.g., proximal vs. distal) compartments [18, 19, 20, 21, 22], enabling neurons
to alter dendritic integration in a targeted, non-uniform manner. For example, dendrites whose spikes do not propagate
effectively to affect somatic output can turn into powerful influencers as a result of branch-strength-potentiation, a
form of local intrinsic plasticity [23].

Importantly, the effects of anatomical, biophysical, and plasticity properties of dendrites in the living animal are often
tangled. For example, considering only the anatomy of the dendritic tree, distant inputs should be severely attenuated
before reaching the soma, causing weak somatic depolarization. However, this is not always the case. Voltage-
and ligand-gated channels in the distal dendrites are activated upon the arrival of synchronous inputs, leading to the
generation of dendritic spikes that reliably propagate to the soma, often causing somatic spikes (Figure 1). Because
of these nonlinear interactions, biological neurons are considered much more powerful than linear ANN nodes (or
point neurons) [24, 25, 26, 27, 15]. Instead, dendrites rather than neurons are proposed to serve as the fundamental
functional unit of the brain [28]. Of note, the nonlinear computations performed by neurons with active dendrites
can also be performed by networks of point neurons. However, solving them within individual neurons provides
important savings: more energy would be required to fire APs across many neurons and to form appropriate axonal
wiring/coordination of these neurons. Moreover, the space taken up by neuronal somata is much larger than the space
occupied by dendrites, therefore computing with dendrites is more resource-efficient for biological brains.

The potential benefits of the abovementioned dendritic characteristics have yet to be exploited in ANNs and their
neuromorphic implementations. Respective neurons (nodes) in traditional ANNs are typically point neurons arranged
in several layers, interconnected with symmetric (all-to-all), plastic (trainable) synapses, and furnished with nonlinear
activation functions. Learning is typically achieved through weight updating rules, the most popular of which is
the backpropagation-of-error algorithm. There are strengths in the simplicity of this approach (easier to understand
and implement, fast convergence, high performance), but also weaknesses (e.g., catastrophic forgetting, high power
consumption). To address the latter, researchers turn to more biologically-inspired architectures [29, 30, 31, 32]
and learning rules [33, 34, 31], with promising results (e.g., on MNIST classification). We believe that an in-depth
exploration of the anatomical, biophysical, and plasticity features of dendrites may help reduce the resources needed
to achieve top performance and/or address problems like transfer and continual learning, where traditional ANNs fail.
Towards this goal, we review recent experimental and computational findings related to how dendritic features can
form a foundation for specific computations and suggest ways to integrate them in DL architectures. We focus on
three fundamental features of dendrites: i) anatomy and compartmentalization, ii) active ionic mechanisms, and iii)
multiscale plasticity rules. We spotlight recent discoveries that connect subcellular mechanisms and algorithmic-level
functions for each one of these dendritic features.

2 Dendritic anatomy and compartmentalization

The pioneering work of Wilfrid Rall (1959) revealed that dendrites are not isopotential electrical devices but rather
electrically distributed circuits whose conducting properties are described by the cable theory. As such, signals that
travel along (passive) dendrites are logarithmically attenuated [35], and the level of this attenuation is highly dependent
on the morphological properties of dendritic trees [7, 36]. Specifically, the propagation loss is proposed to decrease
with increasing diameter and decreasing length of dendritic compartments [37]. Given that dendritic trees are typically
non-symmetric, signal attenuation can vary extensively within the same neuron. Moreover, branch points are a major
source of attenuation, a feature that promotes compartmentalized processing in neurons with elaborated trees [38].
These morphological effects have been attributed important functions: according to Rall’s 1964 study [39], passive
dendrites can detect the temporal sequence of incoming inputs by inducing different somatic responses depending on
the activation order. This property could be used by neurons to infer the direction of motion (e.g., of a visual stim-
ulus moving from right to left versus from left to right). Moreover, the compartmentalized, sublinear integration of
inputs in passive dendrites was suggested to enable single neurons to compute linearly non-separable functions [40].
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Finally, the dendritic structure has been shown to enhance sparsity in biological networks, a property associated with
increased memory capacity [41], better discrimination [42], and faster learning [43]. For example, dendrites made
granule cells less likely to fire in a dentate gyrus network model. Consequently, the network’s ability to discriminate
between similar input patterns was increased because patterns were encoded by less overlapping granule cell popula-
tions [42]. Moreover, sparsifying the connectivity of inputs, by distributing them across basal and apical dendrites,
enabled simulated neurons to encode multiple input sequences simultaneously [44]. These examples highlight the
power of dendritic anatomy in shaping signal processing in biological neurons, primarily by implementing sublinear
integration and increasing network sparsity.

ANNs, on the other hand, typically use the McCulloch-Pitts model [45], whereby artificial neurons (nodes) receive a
weighted sum of their incoming synaptic inputs, largely ignoring dendritic influences. Yet, some of the approaches
commonly used in the field to improve performance resemble the structural features of dendritic trees. For example,
dropout layers used in deep architectures [46] lead to the sparsification of a network, as a randomly chosen portion of
the connections are removed from training. Such sparsification is somewhat similar to that achieved by having multi-
branched dendritic trees and achieves both resource savings (fewer trainable parameters) and better generalization
performance. Modular networks [47, 48], consisting of various ANN sub-networks, can also be seen as analogous
to dendritic structures, with each module learning a part of the task. Finally, sparse ANNs, where a portion of the
trainable parameters are set to zero (and respective multiplications can be omitted), have some similarities with the
restricted connectivity imposed by dendritic structures [49].

3 Active ionic mechanisms and dendritic computations

In addition to their branching structure, many dendrites are equipped with a variety of voltage-gated and ligand-gated
ionic channels. These so-called “active” mechanisms allow dendrites to transform incoming signals in nonlinear
ways. For example, if two stimuli arrive within the same dendrite of pyramidal neurons, their integration results in a
much larger response than if they land in separate dendrites [50, 51, 11]. This is because the integration of multiple
nearby inputs causes a large enough depolarization that activates voltage-gated channels, which would otherwise
remain closed, resulting in the generation of regenerative events (dendritic spikes). Dendritic spikes are much larger
in amplitude than the linear summation of the incoming synaptic inputs (thus resulting in signal amplification) and
can reliably propagate to the cell body, counteracting the attenuation caused by dendritic morphology. The ability to
induce different responses depending on the dendritic location of inputs greatly increases the discriminatory power of
neurons [52, 26]. Dendritic spikes are driven by various ions and differ in their kinetics and localization. Dendritic
sodium (Na+) spikes are faster than calcium (Ca2+) spikes and occur throughout the dendritic tree [9, 53, 54, 13]. Ca2+

spikes are generated in the distal apical trunk and can spread to the apical dendritic tree [55, 56]. NMDA spikes have
even slower dynamics and usually reside within side/terminal dendritic branches [57]. Finally, Na+ spikes generated
at the soma can also travel back into the dendrites [58]. The occurrence of these dendritic spikes, their kinetics, and
location dependence expand the computing power of individual neurons [59]. For example, both Na+ and Ca2+ spikes
have been attributed to a coincidence detector role. The former were shown to emerge upon synchronous activation
of synaptic inputs within an individual dendrite [9, 50], thus enabling a neuron to detect synchronous inputs with
millisecond precision. The latter were shown to emerge when distal and proximal dendritic regions of cortical neurons
are activated within several milliseconds, leading to strong somatic bursting [60]. Bursting can signal the coupling
(coincidence) of input streams from different regions, thus serving as an association mechanism operating at larger
time scales. Finally, NMDA spike generation within individual branches was found to be sensitive to both the timing
and location of inputs, thus endowing single dendrites with the ability to detect the activation sequence of inputs [10].

Beyond their spatio-temporal processing power, dendritic spikes were predicted by models [26, 51] and verified by
experiments [50, 11] to enable dendrites to integrate inputs like sigmoidal activation functions. As a result, a pyramidal
neuron with multiple dendrites (sigmoidal units) acts like a powerful 2-stage [24, 26] or even a multi-stage ANN
[61, 62], with dendrites acting as computing nodes. Such dendritic nonlinearities were recently found in interneurons
[63, 64, 65], suggesting that these cells may also act as multi-stage ANNs [27]. Notably, Gidon et al. [66] recently
discovered a new, more powerful dendritic spike (dCaAP) in human layer 2/3 cortical neurons. Unlike other types
of spikes, the input-output curve for dCaAPs is described by a non-monotonic activation function. In biophysical
models, this property enables a single human dendrite to solve the Exclusive-OR (XOR) problem, a logical operation
though solvable only by multilayer ANNs. In sum, dendritic spikes endow dendrites with nonlinear signal processing
capabilities, which enable the local implementation of various nonlinear computations and can be mathematically
approximated with activation functions similar to those used in ANNs. Of note, the suppressing effects of passive
dendrites (sublinear integration) can also be described with activation functions.

In the ML world, activation functions are a topic of intense investigation because of their enormous impact on the
performance accuracy of ANNs [67]. Currently, the most popular activation function is the ReLU and its derivatives
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Figure 1: Schematic representation of dendritic features in biological neurons. (Bottom) Schematic depiction of a
typical pyramidal cell. If dendrites were passive (blue shaded area, left), the magnitude of an incoming signal would
decrease as it propagates to the soma. However, with active dendrites (red-shaded area, right), a strong-enough in-
coming stimulus can generate various types of dendritic spikes (‘dSpikes’). Typical shapes of ‘dSpikes’ are shown
schematically on the right (blue: Na2+ spike (duration: 1-2ms), red: Ca2+ spike (duration: a few 10s of milliseconds),
green: NMDA spike (duration: 50-150ms), yellow: Ca2+ plateau potentials, which are mixtures of Ca2+ and NMDA
spikes). (Top) Schematic representation of some plasticity mechanisms that operate in dendrites. (left) Initial connec-
tivity, all synapses are of the same strength. (middle) Some of the synapses (the co-active ones) are strengthened, while
others are depressed. The overall dendritic excitability increases (yellow shade). Axons that contact depressed spines
rewire, and new connections are formed. (right) Homeostasis scales all synapses while maintaining their relative
strengths.
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(e.g., PReLU, ELU, GELU), although more biological ones (e.g., sigmoid, tanh, delta, logarithmic) are also extensively
used. The positive part of ReLU can be thought of as the frequency-current (F/I) curve of a neuron, while the negative
part (e.g., leaky ReLU) is there for computational efficiency.

A number of recent ML studies have explored dendritic structure and activation functions in ANNs. For example, [29]
introduced three-compartment-nodes comprised of a soma, an apical, and a basal dendrite, each furnished with its own
activation function. Basal and apical compartments received different types of information (sensory and feedback,
respectively), allowing neurons in different layers to coordinate synaptic weight updates. As a result, the network
learned to categorize images better than a single-layer network. While this work aimed at understanding how the com-
partmentalization of biological neurons may facilitate learning, it is one of the first studies where simplified dendrites
were integrated as building blocks of the ANN graph. A similar approach using dendritic ANNs, i.e., replacing each
node with a 2-layered structure furnished with a dendritic and somatic layer, achieves higher model expressivity (com-
plexity of functions that can be computed) compared to that of a single-layered neuron and better generalization than
traditional ANNs, by sparsifying the network connections [68]. Jones and Kording [69] went a step further by incorpo-
rating multiple dendritic layers in an ANN. They showed that a single neuron modeled as a dendritic ANN with sparse
connectivity could solve binary classification tasks (e.g., MNIST) and benefit from having the same input at different
dendritic sites. Another approach utilizes multiple dendritic layers in each node of a deep ANN, and reduces catas-
trophic forgetting in a continual learning task [70]. To explore the potential advantages of human dCaAPs, a recent
study used their respective transfer function in various deep learning architectures and found a small but significant
increase in classification performance for various tasks, especially when used in combination with sparse connectivity
resembling that of dendritic trees [71]. It should be noted that none of the abovementioned studies has surpassed the
current state-of-the-art in performance accuracy. However, it has been shown that dendritic ANNs can achieve better
performance (lower error) when compared with traditional ANNs with the same number of trainable parameters [68].

While the true power of dendrites for ML is just beginning to emerge, we believe that their most prominent role is to
allow neurons to solve difficult problems more efficiently. By efficiency, we refer to the computational cost of solving a
problem. We can simplify this to the number of parameters that must be updated and the energy that must be consumed
to make all necessary computations and updates. For example, a human neuron can solve XOR using solely its apical
dendrites, whereby a non-monotonic function resides [66]. With point-neurons, this would require a small network
of linear-non-linear units. Obviously, the biological solution is cheaper, therefore, more efficient (no need to engage
multiple neurons, which have a large volume, and it is hard to activate them nor update their connection weights).
Another example comes from associative memory formation: a memory stored in a network of dendritic neurons is
encoded by fewer neurons that fire at lower rates, compared to a memory stored in a network of point neurons. At the
same time, dendrites maximize the sparsity of responses and minimize memory interference [52, 27]. This is achieved
using the exact same number of trainable parameters (synaptic weights) for both types of networks. Overall, if the
aforementioned benefits in resource savings could be realized in ML, they would bring major advantages in systems
where resource consumption is critical (e.g., in portable devices, mobile phones, microchips, etc.). Achieving this,
however, is not trivial as a one-to-one correspondence between the biological and the ANN components responsible
for the observed benefits does not always exist.

4 Multiscale plasticity rules

The abovementioned savings in biological networks are not only a result of their dendritic structure and active mecha-
nisms. These features act in concert with a set of plasticity rules that dynamically shape not only synaptic weights but
also network connectivity and activation functions, and whose contribution to learning is often unintuitive [19]. For
example, synaptic plasticity can occur in the absence of somatic spiking [72, 73], and synapses can be potentiated or
depressed according to the activity of their neighbors [74]. As a result, synapses that fire together are more likely to
cluster within the same dendrite, irrespectively of whether they fire strongly enough to excite the cell [75, 76, 22]. The
latter is contrary to the common belief that neuronal firing is necessary for synaptic plasticity (as in classical -but not
local- Hebbian rules) and highlights the richness of biological ways to update synaptic weights.

Importantly, the probability of finding co-active synaptic partners is ensured by rewiring, a structural plasticity mecha-
nism that allows synapses to form and retract within dendrites in search of an appropriate partner [77, 78, 79, 80, 81].
This type of plasticity is an example of how nature implements dynamics changes in the wiring (connectivity/graph)
of biological networks while at the same time facilitating synaptic weight updates. Finally, synapses also undergo
homeostatic plasticity (scaling) to prevent run-away excitation (or inhibition) and maintain a high signal-to-noise ratio
between potentiated synapses while allowing further plastic changes to take place [82]. This homeostatic plasticity
can also be dendrite-specific [83]. Beyond synaptic weight and wiring plasticity, the dendrites and somata of biolog-
ical neurons also undergo plasticity of their intrinsic excitability [84, 23, 85], which is analogous to changes in their
activation functions. For example, learning-induced reductions in A-type K+ currents can make dendritic activation
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functions more supralinear and affect the coupling between dendritic and somatic compartments [23, 86]. Similarly,
changes in the somatic afterhyperpolarization current of neurons involved in learning allow them to become more
excitable and remain at a heightened excitability state for hours [84]. The specific roles sub-served by each plastic-
ity type (weight, wiring, activation function) remain unclear, yet some contributions are directly relevant to ML in
the sense that they could provide inductive biases. For example, the plasticity of somatic excitability increases the
probability that a neuron involved in learning one piece of information will also participate in learning subsequent
events (within a window of hours). This property facilitates the linking of information across time, forming memory
episodes that extend over several hours [87, 75]. Such a learning rule could, for example, empower ANNs that learn
sequences (e.g., recurrent ANNs). Moreover, at the single neuron level, temporal binding of information is realized via
the co-strengthening (clustering) of synapses from subsequent events in the same dendrites [75]. Synapse clustering
results from the combined effects of rewiring and cooperative plasticity [75, 52], it can be established in development
and persist through adulthood under a common framework [88], and is a very effective way to bind together pieces
of information that arrive simultaneously from different input streams, thus forming associations [9, 50]. Such plas-
ticity rules facilitate the detection of regularities in the input distributions sensed by biological networks and bias the
system towards learning higher-order correlations. We propose that incorporating rewiring and cooperative plasticity
in dendritic ANNs is likely to facilitate learning in dynamically changing environments (such as transfer and contin-
ual learning). Recent attempts to implement rewiring in deep ANNs, based on a probabilistic approach, are highly
promising with respect to performance accuracy [89].

Finally, another important feature of biological plasticity rules is that they don’t need a signal dictating how close the
network is to solve a specific problem. Associative learning, for example, can be achieved in a fully unsupervised
manner [75]. On the other hand, cortical circuits were recently reported to implement supervised learning via the use
of feedback signals [90]. The ability of biological networks to implement both supervised and unsupervised learning
is another property that could help empower ANNs. The latter are typically trained using the backpropagation-of-error
algorithm (back-prop) although more sophisticated and complex (often bio-inspired) rules have also been applied
[91, 92]. The back-prop moves along the direction of the minimal gradient, thus rapidly converging to the optimal
solution. However, back-prop requires that every synapse in the multiple layers of an ANN knows its contribution to
the global error, which is computed at the very last layer. Such a condition may appear biologically implausible, yet
various bio-realistic solutions have been suggested [93, 94, 95, 96]. For example, according to Sacramento et al. [96],
prediction errors are encoded in the distal dendrites of excitatory neurons through the activity of local interneurons and
are mediated by local plasticity rules. In support of this idea, Doron and colleagues [90] recently found that the distal
dendrites of cortical pyramidal neurons receive such feedback signals that coordinate learning in ways similar to the
backpropagation algorithm. Another approach uses error signals that are calculated locally, in a layer-specific manner
[97, 98], thus eliminating the necessity to propagate the global error back to all hidden layers. The difference target
propagation is another alternative [99], whereby targets instead of gradients are computed based on an autoencoding
feedback loop, and thus, minimization is achieved with auxiliary variables [100]. In other words, the problem is broken
down to easier-to-solve local sub-problems via inserting auxiliary variables corresponding to activations in each layer.

Beyond the attempt to find bio-realistic solutions to error-backpropagation, other biological learning rules have recently
been used in combination with dendritic structure. Combining a neuro-inspired plasticity rule based on bursting with
a dendritic-like sparse connectivity structure was recently shown to achieve very good classification performance [31].
Moreover, in ANNs with multi-compartmental dendrites, an online optimization algorithm was shown to perform
canonical correlation analysis, an unsupervised task where the data are projected in a new subspace maximizing their
correlations [101]. It should be noted that incorporating more biologically plausible rules in dendritic ANNs does not
necessarily improve performance per se, but it often achieves similar performance using fewer resources. For example,
according to Illing et al. [102], a local, biologically plausible learning rule based on a layer-specific loss function can
learn representations of images and speech with less hardware consumption. Overall, these examples pinpoint the
potential benefits of incorporating bio-inspired plasticity rules, in conjunction with dendritic structure, to empower
ANNs.

5 Conclusions

This opinion article highlights specific features of biological dendritic trees whose adoption is likely to endow impor-
tant advantages to ANNs (summarized in Table 4). These features include a) the compartmentalizing and filtering
effects of dendritic morphology, which effectively sparsify the connectivity of biological networks and form semi-
independent processing units within individual neurons. b) The integrative properties of dendrites, culminating in the
generation of dendritic spikes. These spikes transform synaptic inputs in ways similar to those of nonlinear activation
functions in artificial nodes while also allowing dendrites to solve difficult spatio-temporal problems, such as logical
operations (e.g., AND, OR, XOR, NAND), implement coincidence and sequence detection, associate input streams,
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Artificial neurons in ANNs Biological neurons

Morphology Nodes as point neurons, each node
can be a multilayered perceptron,
symmetric tree

Complex dendritic tree with several
branch points, not symmetric

Sparsification Dropout layers Inputs are distributed across the tree

Integration Activation functions used in each
node (e.g., sigmoid, tanh, ReLU)

Dendritic spikes (Na+, Ca2+, NMDA,
dCaAPs, back-propagating action po-
tentials) or passive (sublinear) inte-
gration

Learning Backpropagation-of-error algorithm
(most effective)

Cooperative synaptic plasticity (lo-
cal), plasticity of excitability (den-
dritic/somatic), bursting

Homeostasis Regularization of weights / Normal-
ization of layers

The total synaptic strength of all
synapses (in a branch, neuron, or net-
work) scales up/down

Rewiring Not typically used, would amount to
dynamically changing the graph

Synapses turn over dynamically, and
only those that fire with neighbors are
stabilized

etc. c) The dampening effects of morphology and the amplifying effects of dendritic spikes are bound together by a
variety of plasticity rules that fine-tune input-output transformations at all levels of processing: from the strength of
individual synapses to the grouping of correlated inputs, the coupling strength of each dendrite to its soma, the mod-
ulation of excitability and the homeostatic scaling of connections. We believe that these features boost learning and
problem-solving in biological brains, not in isolation but through their intricate interplay. They do so by augmenting
flexibility so that biological networks can quickly tune into new problems without forgetting the ones learned. This is
realized via local updates that are not driven by prediction errors (which are task-specific) but rather by the regularities
in the input streams (which can be generic across tasks). Updates occur within specific, sparsely connected compart-
ments, thus allowing different problems to tab onto common features as detected at the bottom layers. This hypothesis
is supported by the studies discussed here. Yet, it remains unknown whether dendrites can empower learning in ANNs
in a manner that goes well beyond the traditional architectures, enabling them to solve more challenging problems.

What would certainly comprise an important advantage is the physical implementation of dendritic ANNs on neuro-
morphic chips. Currently, the power consumption of traditional DL architectures is much higher than that of a human
brain, while their robustness and flexibility in different tasks remain limited [103]. Neuromorphic computing, on the
other hand, can perform complex calculations faster, more power-efficiently, and on a smaller area than traditional von
Neumann architectures [104]. Despite the current advances in the hardware domain, e.g., chips stack in a 3D structure
[105], the physical dimensions of chips and the need for long wires to emulate the all-to-all connectivity pose severe
limitations in implementing state-of-the-art DL architectures on hardware. Dendritic ANNs offer a solution to this
problem, as they massively reduce the need for long-cables and all-to-all connectivity [106, 107]. Recent attempts to
integrate dendritic functions on hardware [108] have resulted in a single chip containing the three critical components
of a biological neuron; soma, dendrite, and synapses, which can efficiently process spatio-temporal information. These
first steps are highly promising towards making neuromorphic computing a practical reality. We hope that the seeds
planted here will inspire generations of ML and hardware researchers, helping them achieve major savings in resource
utilization and perhaps even human-level performance in tasks that remain unsolvable by current systems.
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