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Abstract

Dynamic vanpooling services, as a flexible, demand adaptive transport service with
ridesharing, is rather a complex transport mode. To model such a service requires a simi-
lar behavior/environment of dynamic traffic simulation environment linked with a dynamic
rerouting algorithm to control the service vehicles serving stochastic requests and incurring
the time-dependent network state. We develop a modeling platform for autonomous dy-
namic vanpooling services based on the traffic simulator SUMO, using its TraCI’s API by
integrating a dynamic routing scheduler, along with the required simulation setup to model
such ridesharing vans. The integrated routing algorithm solves the rerouting optimization
problem for both stochastic requests and time-dependent travel times, hence enabling the
developed platform to model dynamic vanpooling services stochastically (i.e. stochastic
demand requests arrival and service optimization during the simulation execution). A sim-
ulation executer/controller module, written in python, loading TraCI API library and the
routing algorithm (C++ code wrapped as a dll) is developed controlling the simulation
execution integrated with the routing scheduler by predefined communication protocols
through TraCI. The platform can provide benefits to model and evaluate dynamic van-
pools for understanding their feasibility, behavior, and impacts for different situations (i.e.
networks/service area, network conditions, demographics, peak-offpeak hours, etc.). The
platform implementation is still in the final phases and some preliminary results are de-
picted for different van fleet sizes and passenger requests served, running the scheduler
based on dynamic travel time information linked from SUMO.
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1 Introduction

Dynamic vanpooling services is an emerging mode of transport based on smartphone communi-
cation, providing flexible, demand adaptive, and economical transport through ridesharing. It
comes under the larger concept of ‘Mobility as a Service’ (MaaS), which is based on the mod-
ern advancements in the communication industry, directing towards more sustainable trans-
portation systems that rely on real-time smartphone communication for on-demand service.
Although, being emerged recently, dynamic vanpool services have already become popular, at-
tracting much attention in research and industry i.e. many services already running in some
cities (e.g. Didi Chuxing in Beijing, Door2Door and Allygator Shuttle in Berlin, Via in New
York, and Ford in London). In a dynamic vanpooling service, passengers request point-to-point
pick-up and drop-off by smartphones and vans serve these passenger requests through dynamic
rerouting, providing passengers a flexible transit service with ride-sharing and door-to-door
travel.

A fundamental need of modeling/operating such a service is to schedule the van fleet for
dynamically reroute during operation. Scheduling a dynamic vanpool service corresponds to
the dial-a-ride problem (DARP) [13] with the dynamic and stochastic DARP to be the most
realistic one for dynamic vanpool services since it considers both dynamic requests and future
stochastic information. Within this research, we develop a modeling platform for autonomous
dynamic vanpooling services based on the traffic simulator SUMO. The platform integrates a
dynamic routing scheduler develop by [17] under a simulation controller module built using
SUMO’s TraCI API, loading the routing algorithm (C++ code) wrapped as a dynamic link
library. The integrated routing algorithm solves the rerouting optimization problem for both
stochastic requests and time-dependent travel times, hence enabling the developed platform
to model dynamic vanpooling services stochastically i.e. stochastic demand requests arrival
and service optimization during the simulation execution. The dynamic operation also requires
communication between SUMO and the scheduling algorithm dynamically, set based on some
predefined communication protocols.

2 Modeling ridesharing vehicles

2.1 State of the art

To model the emerging trends of dynamic mobility services, many different efforts have been
made to extend the current state of the art transportation models. But, to the best of our knowl-
edge, no explicit research is done to model dynamic vanpooling services involving stochastic
request and service optimization. Similar researches have been created out in the more general
area of modeling Shared Autonomous Vehicles (SAVs) (i.e. car-sharing, ride-hailing, or au-
tonomous taxi operations with or without ride-sharing), many that include ridesharing systems
(two or more passengers) e.g. [24, 4, 11, 12, 15, 16, 19, 20, 31, 5, 6]. Dynamic traffic assignment
(DTA) models provide a more realistic simulation dynamics with the interaction of detailed
supply and demand models replicating better traffic dynamics. In modeling similar mobility
services as ridesharing, except [4] and [3], most of the literature used agent-based modeling and
in particular the MATsim simulator [33] [e.g. [8, 9, 10, 14, 18, 23]] and much recently Sim-
mobility [1]. [26] provides a detailed review of simulating demand-responsive transportation
with agent-based approaches and [27] compared three different approaches to model ad-hoc
demand-responsive transportation, also mentioning different requirements to model them.

MATSim a demand centric microscopic simulator, does not simulate detailed individual
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vehicle interactions and behavior to run larger traffic networks and higher demands faster [28],
compensating on the sensitivity of traffic flow dynamics over time. MATSim extensions were
developed to incorporate a dynamic routing algorithm (DVRP) for modeling DRT [25] which
has limitations to account for available traffic simulation dynamics due to lack of improvement
in initially given plan of DRT user agents over simulation iterations for equilibrium. Much
recently, Simmobility [2] focused on modeling Autonomous Mobility On Demand (AMOD)
in a similar agent-based modeling framework, but mainly focuses on door-2-door ridesharing
vehicles. Simmobility’s modeling framework considers a more detailed micro-simulation suite
(i.e. MITSIM [7]) to simulate AMOD in a dynamic traffic simulation that detailed supply
models to cater for vehicular interactions. A major lack of activity-based models for modeling
dynamic ridesharing services is the pre-planned daily activity schedules (including activity
sequence, modes, and departure times), fixing the agents mode choice to be a ridesharing
service without considering that the complexity of such a system can make its availability very
stochastic and time-dependent and required a dynamic modeling system for allowing a dynamic
mode choice, multimodal behavior, and stochastic behavioral interactions of dynamic vanpools
(traffic congestions, network dynamics, etc.) critical for evaluating dynamic ridesharing services.

The scheduling of dynamic vanpool service corresponds to the dial-a-ride problem (DARP)
whose variants have been studied extensively in the literature [13]. The dynamic and stochastic
DARP is the most realistic one for dynamic vanpool services since it considers both dynamic
requests and future stochastic information. Schilde et al. propose scheduling algorithms for
dynamic vanpooling considering stochastic requests [29] or stochastic time-dependent travel
times [30]. Li et al. [17] proposed a scheduler for dynamic vanpool services considering both
stochastic requests and time-dependent travel time. It also considers prepositioning which
means that it may send the vans to locations with potential requests and finds that it can
improve scheduling performance.

2.2 Modeling requirements

With an extensive review of literature and traffic simulation environments, we summarized a set
of modeling requirements needed to effectively model autonomous dynamic vanpooling systems:

Routing scheduler The core part of dynamic vanpool service operation is its dynamic rout-
ing algorithm. Referring it as a ’Scheduler’, these algorithms are responsible to optimize van
routes to serve new demand without breaching in-service passenger preference constraints set
based on passenger preferences (i.e. waiting times, in-vehicle times, and trip costs/willingness
to pay) and vehicle operational attributes (e.g. charging constraints for electric vehicles)

Modeling dynamic rerouting Dynamic vanpooling requires continuous dynamic rerouting
optimized by the scheduler. This would require simultaneous interaction between the traffic
simulator and the scheduler during the simulation. The information interchanging includes
reading the network state (i.e. link speeds or travel times), vans information (i.e. its position,
occupancy, and current route), new passenger request information from the simulation, and
new van routes from the scheduler. The communication frequency would be defined based on
the factors i.e. frequency of requests, the time required for optimization, and the time required
for reading and communicating the simulation parameters.

Autonomous vanpool vehicles Autonomous dynamic vanpools should have vehicles repli-
cating autonomous van behavior by autonomous driving, van capacity (between 8 to 14 pas-

4



Modeling dynamic vanpools Qurashi, Jiang, and Antoniou

sengers), and supporting infrastructure to provide flexible stoppage for a door to door service.

Modeling individual passenger trips Dynamic vanpooling requires to model discrete pas-
senger trips to assess individual trip attributes i.e. waiting times, travel times, and trip costs.
Due to the flexible door to door service, the level of service experienced by each passenger vari-
ates, hence, discrete passenger modeling infrastructure is required to model individual passenger
trips and evaluate the overall level of service of the mode appropriately.

3 Autonomous dynamic vanpools in SUMO

3.1 Modeling architecture

To model autonomous dynamic vanpools using SUMO, the modeling architecture shown in
figure 1 is used. A SUMO simulation model is set up by adding dynamic vanpooling service vans
(based on pre-defined autonomous vehicle class) in the simulation network along with the loaded
network demand. In addition, the supporting infrastructure to run the door-2-door ridesharing
service is also incorporated as supply enhancements. For dynamic passenger requests, a choice
based preference module is set up containing the interaction of network demand (trips XML
file), the perceived serving attributes, and passenger preferences profiled with different user
groups (based on the demographical data). The scenario executer is a simulation controller
module written in python, loading: i) the scheduler (written in C++) as dynamic link library,
ii) preference module, iii) SUMO simulation model using the TraCI library.

Scenario executer

SUMO

Simula�on model

Demand

Preference module

Communica�on types:

Service 

a�ributes

Simula�on 

model (Network 

+ Demand)

Supply 
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Scheduler

Scenario inputs
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Trip �le

Network state

upda�on
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Serviceablilty

Serving request
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Figure 1: Modeling architectiue for SUMO
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The scenario executor controls the simulation using the TraCI library functions and inter-
acts with the scheduler and the preference module to serve dynamic requests by scheduler’s
optimization based on the given van service attributes. The communication protocol between
these three components is on two different levels (both during simulation) i.e. request-based
(when a new request emerges or a van is serving on a pick-up/drop-off point) and interval/pe-
riod based to update the network state of link speeds/ travel times. The third communication
level in figure 1 is scenario-based to communicate the scenario inputs/outputs to and from the
scenario executor components.

3.2 Scheduling algorithm

[17] proposed a scheduler for dynamic vanpool services, modeling the scheduling problem as a
DARP. The goal is to optimize the profit and the passenger level of service considering stochastic
requests and time-dependent travel time. The operating profit is modeled as the operating cost
minus the service revenue. The passenger level of service is modeled based on the waiting time
and the detour. The objective function is defined as the linear combination of the cost, revenue,
waiting, and detour times.

Each request has its pickup node, delivery node, status (i.e. new, rejected, waiting for
pickup, picked, or delivered), pickup time window, and delivery time window. The pick-up
time window defines the maximum waiting time while the drop off time window defines the
constraints for maximum allowed detour ratio against direct trip time.

The procedure to schedule service vans uses scenario/based approaches to decide request
acceptance and van routes. The scenario represents stochastic information about future requests
and traffic conditions. Within a scenario, a deterministic problem gets solved using a tabu search
algorithm. The inputs include 1) Set of van positions 2) Set of requests i.e. newly received and
already accepted with their status. The scheduler first decides to accept each new request and
then routes of each van.

3.3 SUMO - Scheduler integration

To optimize the dynamic vanpools’ simultaneously along with the traffic simulation, the scenario
executor module runs based on an interfacing workflow defined in figure 2. Outside the interface
module, the components depict the inputs given to the scenario executor i.e. van requests,
van service attributes, and simulation configuration file loaded through TraCI. To run the
simulation first the simulation configuration is loaded and then the service vans are generated
in the simulation. Next, the simulation time steps are run sequentially checking the occurrence
of an event at each step. There are in total of three events, request event (arrival of a new
request ), stop event (a van stopped for service), and network update (to update network state).
After completion of the simulation time, the outputs are loaded, including van trip outputs and
passenger (person) trip outputs.

Out of the three events, the request and van stop event have the similar protocol, first, the
van positions are read from the simulation and communicated to the scheduler (also request trip
attributes are communicated in the request event), then, the scheduler runs the optimization
and returns new van routes which are updated in the simulation. For network update events,
network link speeds are read from the simulation and are sent to the scheduler for network state
updates and the event is triggered by a pre-defined interval.
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Figure 2: SUMO - Scheduler integration

3.4 SUMO enhancements

Modeling dynamic vanpooling service in a microscopic simulator like SUMO requires some
additional enhancements to replicate the unique ridesharing service behavior. Following are
the enhancements added in the SUMO simulation model:

Preference module Dynamic vanpooling passenger requests are generated by defining a
preference module. This module incorporates passenger preference information towards service
usage for travel attributes such as waiting time, travel time, and trip cost. These preferences
variate among passengers by their demographics e.g. age, income, car ownership, household
attributes etc and hence, user groups can be created to profile different users demographics.
Dynamic trip requests are generated by evaluating mode choice for all trips available in SUMO
trip xml file (based on the service attributes of all modes).

Passenger trip variables Dynamic vanpools serve each passenger on-demand and each trip’s
attributes variate significantly. Hence, individual trips are modelled by generating persons for
each trip request and changing their trip commuting attributes based on the scheduler outputs.
TraCI simulation API is used to generate persons upon request acceptance and also to assign
the corresponding van for trip commute. Once the simulation is finished, we use the person trip
outputs to evaluate individual trip attributes e.g. waiting time, travel time, level of service,
utility experienced etc.

Autonomous vanpools vehicle class To model autonomous dynamic vanpools, the vans
are generated at the start based on a predefined vehicle class. The vehicle class (vType) in-
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clude vehicle classified as default (passenger), vehicle capacity, dimensions, appropriate speeds,
less agile acceleration/deceleration patterns. For adequate passenger boarding/alighting, dwell
times of service van are defined along defining the stop location for van to serve the passen-
ger. To model autonomous behavior, the ACC controller based on the car following models
developed by [22] and [34] is used. The vehicle parameters including maximum acceleration,
deceleration, reaction time and minimum gap as per [21] and [32].

Flexible stoppage infrastructure Dynamic vanpools provide door-2-door or point-2-point
service which requires on-road stoppage for passenger pick-up and drop-off. In author’s knowl-
edge, SUMO requires parking infrastructure on the network to do parking based stops for
serving the passenger. In current implementations, we do on-road service for pick-up and
drop-off (considering shorter dwell times for a single passenger), and also plan to add parking
infrastructure in future for van stops as parking stops. But, on-road stops are not adequate
for idle empty van waiting for service call-ups, to address this issue we used another SUMO’s
TraCI based functionality of moveToXY which allows moving empty vans outside the network.
The vehicles at simulation start or when they are empty during the service, are moved to the
an arbitrary location outside the network. Upon call for serving, the vans are moved back to
their last network position.

4 Preliminary results and discussion

Given the modeling architecture and its implementation method in SUMO (section 3). The
implementation to create the dynamic vanpooling modeling platform is still in its final phases.
Under this section, we show some preliminary results extracted from running the scheduler
algorithm linked with dynamic travel time information from SUMO simulation model (i.e. the
van travel behavior is approximated having dynamic travel times information of links from
SUMO). The case study for the experiment is based on Munich city centre network (figure 3).

Figure 3: Network of Munich city center
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Multiple scenarios have been simulated for all penetration rates to account for the involved
stochasticity of request arrival time and location, and van positioning. Figure 4 shows the aver-
aged results for dynamic vanpools for different penetration rates i.e. different van fleet sizes and
different number of requests. Each data point depicts a combination of fleet size and requests
arrived. The results show the effects of different fleet sizes and number of requests served in
terms of passenger experience i.e. additional detour times (shown by hue) and the extent of
reduction in Total Vehicles Kilometer Travelled-TVKT (by data point size) due to ridesharing.
The results show that given the munich network scenario, the increase in service fleet size after
15 vans doesn’t improve the passenger level of service or TVKT reduction significantly, implying
that the extent of ridesharing won’t increase significantly after this fleet size for serving 100 or
less requests.

Figure 4: Scenarios for different penetration rates of dynamic vanpools

Figure 5: Additional trip time (delays) vs TVKT reduction
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Figure 5 shows the relationship plots between additional detour time versus the TVKT
reduced for serving different number of requests by a single fleet size. The plots depict that:
1) after an optimal service fleet of 15 vans TVKT benefits are reduced without improving the
level of service for passengers significantly, 2) similar TVKT targets are achieved for lesser fleet
size but may incur longer additional times (10 versus 15 vans fleet).

5 Conclusion

Dynamic vanpooling services is rather a complex transport mode due to its nature of rideshar-
ing to serve stochastic requests economically as per the passenger constraints. Also, to model
such a service requires the similar behavior/environment of dynamic traffic simulation environ-
ment linked with dynamic rerouting algorithm to control the service vehicles serving stochastic
requests and incurring the time dependent network state. This research presents the modeling
architecture and implementation method to model dynamic vanpooling service in the micro-
scopic traffic simulation SUMO. Using SUMO to model such dynamic services can allow to
evaluate their behavior, availability, and impacts in a dynamic traffic simulation environment
with stochastic time dependent network state. The proposed platform addresses the modeling
requirements require to model dynamic vanpools i.e. modeling adqeuate vehicle class with sup-
porting infrastructure, a preference model to do mode choice for generating request based on
service attributes, integration of dynamic rerouting scheduler that considers stochastic request
arrival and dynamic travel times, doing the optimization of van routes to serve requests along
the simulation run. The platform have benefits to model and evaluate dynamic vanpools for
understanding their feasibility, behavior, and impacts for different situations (i.e. networks/ser-
vice area, network conditions, demographics, peak-offpeak hours etc.). Preliminary results are
shown for different penetration rates for dynamic vanpools to show the relationship between
fleet size, passenger requests, detour times and service benefits of TVKT.
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