
Documentation for the ABC model

Ross Bannister, University of Reading, UK

March 10, 2017

The �ABC model� is a non-hydrostatic toy model � designed by Ruth
Petrie, Ross Bannister, and Mike Cullen � for use in convective-scale

data assimilation investigations. Source code for model and
diagnostics are freely available from git-hub. This is a very brief guide

to the model and how to use it.

1 The model equations

The equations solved by the model are the following

∂u

∂t
+Bu · ∇u+ C

∂ρ̃′

∂x
− fv = 0, (1a)

∂v

∂t
+Bu · ∇v + fu = 0, (1b)

∂w

∂t
+Bu · ∇w + C

∂ρ̃′

∂z
− b′ = 0, (1c)

∂ρ̃′

∂t
+B∇ · (ρ̃u) = 0, (1d)

∂b′

∂t
+Bu · ∇b′ +A2w = 0. (1e)

The prognostic variables are as follows: u is the zonal wind, v is the meridional wind, w is
the vertical wind, u = (u, v, w) is the wind vector, ρ̃ is a density-like variable (where ρ̃′ is the
perturbation, ρ̃ = ρ̃0 + ρ̃′, where in this model, ρ̃0 = 1), and b′ is a buoyancy-like variable
(for meteorologists, b′ is related to potential temperature, θ′, by b′ = gθ′/θR, where g is the
acceleration due to gravity and θR is the reference potential temperature of 273K). The dimen-
sion variables are as follows: x is longitudinal distance, z is vertical distance, and t is time.
Constant parameters to be chosen by the user are as follows: A (units s−1) is the static stability
(equivalent to the pure gravity wave frequency), B (dimensionless) multiplies the advection and
divergence terms, and C (units m2s−2) relates density perturbations to pressure perturbations,
p′ = Cρ0ρ̃

′, where ρ0 is a reference density. The value of
√
BC is the pure acoustic wave speed).

These parameters give the model its �ABC� name. The remaining constant is f , which is the
Coriolis parameter.

There is also a tracer transport equation, which advects a tracer, q, with the wind vector u,
and not by the modi�ed winds, Bu:

∂q

∂t
+ u · ∇q = 0. (2)

The model is run in a 2D slice (longitude/height) geometry. All variables are considered
constant in the meridional direction. The model grid is an Arakawa-C grid in the horizontal

1



Figure 1: The arrangement of variables on the toy model's grid: an Arakawa-C grid in the
horizontal and a Charney-Phillips grid in the vertical. Note the abbreviations: FL=Full Level
and HL=Half Level.

and a Charney-Phillips grid in the vertical (Fig. 1). The horizontal resolution of the model is
1.5km, there are 360 grid-points in the horizontal, and 60 vertical levels.

The scienti�c rational for this model, together with more details, are in a paper1, which is
currently under peer review with the journal Geoscienti�c Model Development.

2 The �les in the git-hub repository

The model is written in fortran-90, and is contained in the following �les:

−−−−−−−−−−
Boundaries . f90
BoundaryMod . f90
DefConsTypes . f90
D iagnos t i c s . f 90
Forc ings . f90
Functions . f90
I n i t i a l i s e . f 90
Linear_Analys is . f 90
Main . f90
Model . f 90
ReadWrite_data . f90
UM_data_proc . f90
−−−−−−−−−−
Also available is the make �le for compilation with a Linux-based operating system:

−−−−−−−−−−
make f i l e
−−−−−−−−−−
The following �les are also included:

−−−−−−−−−−
UserOptions . n l
Processed_Init ia l_Data . nc
−−−−−−−−−−

1The �ABC model�: a non-hydrostatic toy model for use in convective-scale data assimilation investigations
by Petrie, Bannister and Cullen.

2



(an example namelist �le and sample initial conditions for the model). Diagnostics output from
the model can be viewed by running python codes as follows:

−−−−−−−−−−
BalanceScale_1 . py
PlotEnergy . py
PlotWaveSpeeds . py
PlotMany . py
−−−−−−−−−−

3 Compiling the code

The code is compiled in the standard way in Linux by typing make in the directory containing
the source code and the make �le. Users should check that the make �le is correctly con�gured
to his or her system (some example con�gurations are given in the make �le). Users should
also check that the include �les in the Fortran code are correct for his or her system. The code
requires a Fortran-90/95 compiler, and the netcdf and nag libraries.2

4 Running the software

Control of the mode of operation, and the values of parameters is made with the namelist �le
UserOptions.nl. There are more modes of operation that the ones described below, but it is
assumed here that users will be most interested in the run modes documented.

4.1 Linear analysis

The model's linear modes (frequencies, and horizontal and vertical speeds of gravity and acoustic
modes) are investigated by using the following example namelist.

−−−−−−−−−−
! Def ine name l i s t
&UserOptions
! Linear an a l y s i s
make_ics_from_um = .FALSE.
run_toy_model = .FALSE.
do_l inear_ana lys i s = .TRUE.
l i n ea r_ana ly s i s_od i r = ' . '
wavespeed_experiment = 'Waves '
A = 0.02
B = 0.01
C = 1 .0E4
f = 1 .0E−4

/
−−−−−−−−−−

The run_toy_model = .FALSE. and do_linear_analysis = .TRUE. ensure that the model
itself is not run, but the linear analysis routine is run. Files are output to directory lin-

ear_analysis_odir, and output �lenames will contain a part with the string wavespeed_experiment.
The values of A, B, C, and f are set here. The output of this mode can be analysed using the
program PlotWaveSpeeds.py, which generates various plots (in encapsulated postscript format).

2The nag library is used to compute the eigenstates of the linearised model when looking at the normal
modes of the model (this is the �linear analysis� run mode in Sect. 4.1). Users not wishing to do these calcu-
lations and who do not have access to the nag library should 'comment-out' the call to nag_sym_eig_all in
Linear_Analysis.f90, and remove references to nag software in the compile and link options in the make �le.

3



4.2 Running the model

The model is run from a �le of initial conditions by setting the following example namelist.

−−−−−−−−−−
! Def ine name l i s t
&UserOptions
! Reading and pro c e s s i ng UM data
make_ics_from_um = .FALSE.
datadirUM = ' . '
in it_um_fi le = ' '
model_ics_data_out_file = ' Processed_Init ia l_Data . nc '
l a t i t u d e = 144
Regular_vert_grid = .TRUE.
gravity_wave_switch = .FALSE.

!
A = 0.02
B = 0.01
C = 1 .0E4
f = 1 .0E−4
Tracer_leve l = 20

!
! Run the forward model
run_toy_model = .TRUE.
datadirMODEL = ' . '
model_ics_data_read_file = ' Processed_Init ia l_Data . nc '
model_output_fi le = ' F i e l d s . nc '
d i a g n o s t i c s_ f i l e = ' D iagnos t i c s . dat '
dt = 1 .0
runlength = 10800.0
ndumps = 6
convect ion_switch = .FALSE.
pressure_pert = .FALSE.
press_source_i = 180
press_source_k = 30
x_scale = 60
z_scale = 3
press_amp = 0.01
Adv_tracer = .TRUE.
Lengthsca l e_d iagnos t i c s = .TRUE.

!
do_l inear_ana lys i s = .FALSE.
l i n ea r_ana ly s i s_od i r = ' . '
wavespeed_experiment = ' . '

/
−−−−−−−−−−

Not all of the variables shown above are needed to run the model. The important ones are:
run_toy_model, which should be switched on, datadirMODEL is the directory containing the
initial conditions, model_ics_data_read_�le is the name of the initial condition �le (a netcdf
�le), model_output_�le is the �lename of the output �elds (a netcdf �le), diagnostics_�le con-
tains some diagnostics data (text �le), dt is the time step (seconds), runlength is the model
integration length (in seconds), ndumps is the number of times the model will dump its state
over the integration, Adv_tracer switches on/o� tracer advection (the q �eld above), and Length-
scale_diagnostics switches on/o� calculation and output of numerically derived lengthscales of
each variable at the end of the integration. The values of the parameters A, B, C, and f are

4



also set in this namelist.
Note that the initial conditions �le provided, Processed_Initial_Data.nc, has been prepared

to be a nearly balanced state according to parameters C = 104m2s−2 and f = 10−4s−1 (other
parameters do not play a role in the generation of this �le). Running the model with this initial
state, but with C and f parameters di�erent to these may produce highly unbalanced results.
The authors advise that C and f are not changed without �rst generating a new consistent set
of initial conditions (this is done from a speci�c Met O�ce Uni�ed Model (UM) dump, and
running with make_ics_from_um switched on to generate a new set of initial conditions3).4

The output of this code can be analysed with the programs BalanceScale_1.py, PlotEn-
ergy.py, and PlotMany.py. BalanceScale_1.py plots the geostrophic and hydrostatic imbalance
as a function of time and horizontal scale, PlotEnergy.py plots the total energy in the model as
a function of time (to check conservation), and PlotMany.py plots each �eld in the main output
�le.

3This step is not yet documented here as it is assumed that the user will not have access to a suitable UM
dump. Please contact the authors if you wish to use this option.

4It is possible to use an approximate equivalence of parameters to e�ectively run with a di�erent value of C
to that used above (but actually keep the same value of C as above, and hence use the set of initial conditions
provided). Two model runs are approximately equivalent if the product BC is the same (some model �elds will
be scaled accordingly, but the underlying physics will be approximately the same for two model runs with a
common value of BC). Thus instead of modifying C to a required value Creq (and hence the need to generate
a consistent set of initial conditions), you may wish instead to run the model with the original C as above (call
Corig), but instead modify B accordingly to a new value. In the above Borig = 0.01, and Corig = 104m2s−2.
Let Breq and Creq be the required new values. The parameters that you could actually run with, Bnew and
Cnew, which are approximately equivalent to Breq and Creq, could then be set to Bnew = BreqCreq/Corig, and
Cnew = Corig.

5


