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Abstract Self-organizing networks (SONs) are expected to minimize operational
and capital expenditure of the operators while improving the end users’ quality
of experience. To achieve these goals, the SON solutions are expected to learn
from the environment and to be able to dynamically adapt to it. In this work,
we propose a learning based approach for self-optimization in SON deployments.
In the proposed approach the learning capability has the central role to perform
the estimation of Key Performance Indicators (KPIs) which are then exploited
for the selection of the optimal network configuration. We apply this approach
to the use case of Dynamic Frequency and Bandwidth Assignments (DFBA) in
Long Term Evolution (LTE) residential small cell network deployments. For the
implementation of the learning capability and the estimation of KPIs we select
and investigate various machine learning and statistical regression techniques. We
provide a comprehensive analysis and comparison of these techniques evaluating
the different factors that can influence the accuracy of the KPI predictions and
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consequently the performance of the network. Finally, we evaluate the performance
of learning based DFBA solution and compare it with the legacy approach and
against an optimal exhaustive search for best configuration. The results show that
the learning based DFBA achieves on average a performance improvement of 33%
over approaches that are based on analytical models, reaching 95% of the optimal
network performance while leveraging just a small number of network measure-
ments.

Keywords machine learning · frequency allocation · dense small cell deployment ·
self-organized networks · LTE

1 Introduction

In recent years, the fourth generation (4G) mobile networks have been rapidly
growing in size and complexity. Operators are continuously seeking to improve
the network capacity and the QoS by adding more cells of different types to the
current deployments consisting of macro-, micro-, pico-, and femto-cells. These
heterogeneous deployments are loosely coupled, increasing the complexity of 4G
cellular networks. This increase in complexity brings a significant growth in the
operational and the capital expenditures (OPEX/CAPEX) of the mobile network
providers. To reduce these costs on a long-term scale, operators are seeking net-
work solutions that will provide automatic network configuration, management
and optimization, and that will minimize the necessity for human interventions.
In 2008, the Next-Generation Mobile Networks (NGMN) alliance recommended
Self-Organizing Networks (SONs) as a key concept for next-generation wireless
networks, and defined operator use cases in [1] . Shortly after, the SON concept
was recognized by the Third-Generation Partnership Project (3GPP) as an essen-
tial functionality to be included in the Long-Term Evolution (LTE) technology
and consequently it was introduced into the LTE standard in [2]. SONs are ex-
pected to reduce the OPEX/CAPEX and to increase the capacity and the quality
of service (QoS) in future cellular networks. All self-organizing tasks in SONs are
described at a high-level by the following features: self-configuration, self-healing
and self-optimization.

Recent studies show that roughly 80% of mobile data traffic is indoor [3]. Still,
operators are failing at providing good QoS (coverage, throughput) to the indoor
users. In order to solve these issues while saving OPEX/CAPEX, operators are
deploying small cells. These are low cost cells that can be densely deployed in
residential areas and which are connected to the core network via broadband.
In current early LTE small cell deployments, various technical issues have been
detected. Small cells are increasingly being deployed according to traffic demands
rather than by traditional cell planning for coverage. Such LTE small cell networks
are characterized by unpredictable interference patterns, which are caused by the
random and dense small cells placements, the specific physical characteristics of
the buildings (walls, building material, etc.), and the distance to outdoor cells, e.g.,
macro or micro base stations. Thus such deployment scenarios are characterized
by complex dynamics that are hard to model analytically. However, in the research
literature solutions are often proposed based on simplified models, e.g. assuming
interference models with uniform distribution of small cells over the macrocell
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coverage, which differs significantly from realistic urban deployments [4]. Therefore
in these kinds of deployments the classical network planning and design tools
become unusable, and there is an increasing demand for small cells solutions that
are able to self-configure and self-optimize [5].

Recently, the authors of [6] suggested that the cognitive radio network (CRN)
paradigm could be used in SONs to increase their overall level of automation and
flexibility. CRNs are usually seen as predecessors of SONs. The CRN paradigm
was initially introduced in 1999 by Mitola [7] in the context of a Cognitive Ra-
dio, and since then it evolved significantly and received a lot of attention by the
scientific community. The cognitive paradigm can be implemented in the network
by adding an autonomous cognitive process that can perceive the current net-
work conditions, and then plan, decide, act on those conditions [8]; and while
doing so it is learning and adapting to the environment. This cognitive approach
could be applied to SONs as an autonomous process for self-optimization and self-
healing, which can perform a continuous optimization of the network parameters
and their adaptation to the changes in the environmental conditions. Addition-
ally, because of its learning capabilities, a cognitive approach can be used to meet
a plug-and-play requirement for SONs according to which the device should be
able to self-configure without any a priori knowledge about the radio environment
into which the radio device will be deployed. Many different network optimization
problems are successfully addressed by using a CRN approach based on machine
learning (ML) [9].

Several network infrastructure providers have also been developing SON so-
lutions based on machine learning and big data analytics. For example, Reverb,
one of the pioneers in self-optimizing network software solutions, has created a
product called InteliSON [10], which is based on machine learning techniques and
its application to live networks results in lower drops, higher data rates and lower
costs for operator. Similarly, Zhilabs and Stoke [11] are developing solutions based
on big data analytics. Samsung developed a product called Smart LTE [12] that
is leveraging on SON solution that gathers radio performance data from each cell
and adjusts a wide array of parameters at each small cell directly.

Similarly to the previously described industrial approaches, in this work we
focus on application of ML to improve SON functionalities by providing a more
accurate estimates of the key performance indicators (KPIs) as a function of the
network configuration. The KPIs are mainly important for operators to detect
changes in the provided QoS and QoE, for example, in order to reconfigure the
network in response to a detected degradation in QoS. The estimation of the KPIs
based on a limited network measurements is one of the main requirements of the
Minimization of Drive Tests (MDT) functionality and represents a key element for
the realization of the Big Data Empowered SON approach introduced in [13]. In
this work, we apply learning based LTE KPI estimation approach to the specific
use case of LTE small cell frequency and bandwidth assignment. We investigate
the potential of LTE’s frequency assignment flexibility [14] in small cell deploy-
ments, i.e. exploiting the possibility of assigning different combinations of carrier
frequency and system bandwidth to each small cell in the network in order to
achieve performance improvements. Currently, most LTE small cell deployments
rely on same-frequency operation with the reuse factor of one, whose main objec-
tive is to maximize the spectral efficiency. However, the spectrum reuse factor is
subject to a trade-off between spectral efficiency and interference mitigation. Since
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interference may become a critical issue in unplanned dense small cell deployments
reconsidering spectrum reuse factors in this kind of deployments may be necessary.
Moreover, the same-frequency operation is not expected to be the standard prac-
tice in the future, since additional spectrum will be available at higher frequencies,
e.g., 3.5 GHz [15]. Thus, for the future network deployments, it will be more rel-
evant to consider band-separated local-area access operating on higher-frequency
bands, with the overlaid macro layer operating on lower cellular bands.

In this work, we investigate how to exploit this flexibility in order to maximize
the performance of small cell network deployments. We show that the proposed
learning based approach for KPI estimation can be successfully employed to ef-
fectively optimize such multi-frequency multi-bandwidth small cells deployment
strategy.

2 Related Work and Proposed Contribution

Frequency assignment is one of the key problems for the efficient deployment,
operation and management of wireless networks. For earlier technologies, such as
2G and 3G networks as well as Wi-Fi access point deployments, relatively simple
approaches based on generalized graph coloring [16] were sufficient to obtain a
good performance. This is because the frequency assignment for these networks
was often orthogonal and with a low degree of frequency reuse, and the runtime
scheduling of radio resources had a highly predictable behavior due to the sim-
plicity of the methods used. Additionally, due to the predictable system load, the
frequency assignment was often based on static planning, which could be done
easily offline.

However, the new 4G technologies, such as LTE, adopt a more flexible spec-
trum access approach based on dynamic frequency assignment (DFA) and inter-cell
interference coordination in order to allow a high frequency reuse and capacity.
In particular, DFA is recognized as one of key aspects for high performance small
cell deployments [17]. According to DFA, the available spectrum is allocated to
base stations dynamically as a function of the channel conditions to meet given
performance goals. Furthermore, the LTE technology is highly complex due to the
inclusion of advanced features such as OFDMA and SC-FDMA, adaptive modu-
lation and coding (AMC), dynamic MAC scheduling, and HARQ [14]; hence, it is
much more difficult to predict the actual system capacity in a given scenario than
it was for previous mobile technologies. Because of this, it is very challenging to
design a DFA solution that can work well not only on paper, but also in a realistic
LTE small cell deployment.

On this matter, while several publications recently appeared in the literature
deal with the general problem of LTE resource management, considering aspects
ranging from power control [18] to frequency reuse between macro and small
cells [19], only few works focus on DFA for small cell networks. Among these,
we highlight [20] and [21] whose authors propose DFA solutions based on graph
coloring algorithms. The key aspect of these papers, and of many other similar
works, is that they assume that the rate achieved on a specific channel is given
by simple variants of Shannon’s capacity formula, thus neglecting some important
aspects that affect the performance of an LTE system, such as MAC Scheduling,
HARQ and L3/L4 issues. Doing this yields significant errors in the estimation of
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the actual system capacity, possibly resulting in sub-optimal or even badly per-
forming frequency assignments even in relatively small networks. Because of this,
we argue that solutions like [20] and [21] are not suitable for real deployments.

Additionally, as argued in [22] the existing techniques for femtocell-aware spec-
trum allocation need further investigation, i.e. co-tier interference and global fair-
ness are still open issues. The main issue is to strike a good balance between
spectrum efficiency and interference, i.e. to mitigate the trade-off between orthog-
onal spectrum allocation and co-channel spectrum allocation. Still, the existing
approaches are highly complex, difficult to be implemented by the operator and
they mainly aim to address the cross-tier spectrum-sharing issues.

We believe that a learning based approach can address successfully these is-
sues while keeping the overall implementation and computational complexity very
low. The main advantage of machine learning approach over other techniques is
its ability to learn the wireless environment and to adapt to it. To the best of our
knowledge and according to some of more recent surveys, i.e. [22], there is only
little work in the literature that is considering a machine learning for frequency
assignment in small cell networks. In [23] the authors propose a machine learn-
ing approach based on reinforcement learning in a multi-agent system according
to which the frequency assignment actions are taken in a decentralized fashion
without having a complete knowledge on actions taken by other small cells. Such
decentralized approach may lead to frequent changes in frequency assignments,
which may cause unpredictable levels of interference among small cells and degra-
dation of performance.

In this work, we apply different machine learning and advanced regression
techniques in order to predict the performance that a user would experience in an
LTE small cell network by leveraging a small sample of performance measurements.
These techniques take as inputs different frequency configurations and measured
pathloss data, and hence allow to estimate the impact of configuration changes
on various KPIs. Differently to the previously described work, in our approach
frequency assignments of the small cells are determined in a centralized fashion,
by selecting the parameters which will lead to the best network performance.

Summarizing, the key contributions of this paper are the following:

1. We propose a learning based approach for LTE KPI estimation and we study its
application to the use case of Dynamic Frequency and Bandwidth Assignment
(DFBA) for self-organizing LTE small cell networks.

2. We select and investigate various ML and statistical regression techniques for
predicting network and user level KPIs accounting for the impact on the per-
formance of the whole LTE stack, based on small number of measurements.
Our focus is specifically on well-established machine learning and regression
techniques rather than on developing our own ad hoc solutions. Furthermore,
to the best of our knowledge, this study is the first one to include both ML
and regression techniques in a comparative integrated study applied to LTE
SONs.

3. We study the impact of the choice of covariates (measurement or configura-
tion information made available to the performance prediction algorithm) and
different sampling strategies (effectively deciding which measurements of net-
work performance to carry out in a given deployment) on the efficiency of the
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KPI prediction. Additionally, the prediction performance is tested for different
network configurations, different sizes of training sets, and different KPIs.

4. We evaluate the performance of a DFBA solution based on the proposed learn-
ing based KPI estimation, comparing with legacy approach as well as with an
optimal exhaustive search approach.

3 Learning Based Dynamic Frequency and Bandwidth Assignment

3.1 LTE System Model

We first summarize the aspects of the LTE technology that are relevant for
our study. We consider the downlink of an LTE FDD small cell system. The LTE
downlink is based on the Orthogonal Frequency Division Multiple Access tech-
nology (OFDMA). The OFDMA technology provides a flexible multiple-access
scheme that allows the transmission resources of variable bandwidth to be allo-
cated to different users in the frequency domain and different system bandwidths
to be utilized without changing the fundamental system parameters or equipment
design [14]. In LTE, as far as frequency assignment and radio resource manage-
ment are concerned, a small cell is an ordinary base station (eNodeB); the main
differences with respect to a macro / micro eNodeB are its location (typically in-
door), and its smaller transmission power. As in this work we focus on small cell
deployments in the remainder of this paper we will use the term eNodeB and small
cells interchangeably.

According to the LTE physical layer specifications [24], radio resources in the
frequency domain are grouped in units of 12 subcarriers called resource blocks
(RBs); the subcarrier spacing is 15 kHz, thus one RB occupies 180 kHz. In this
work we consider the following network parameters for the LTE downlink: 1) the
system bandwidth B and 2) the carrier frequency fc. Each LTE eNodeB operates
using a set of B contiguous RBs; the allowed values for B are 6, 15, 25, 50, 75 and
100 RBs, which correspond to a system bandwidth of 1.4, 3, 5, 10, 15 and 20 MHz,
respectively [24]. These RBs are centered around the carrier frequency fc, which
is constrained to be a multiple of 100 kHz since the LTE channel raster is 100 kHz
for all bands [25]. The setting of B and fc can be different for each eNodeB, which
gives significant degrees of freedom for the selection of the frequency assignment.
We highlight that in a scenario with small cells that have the same value of B, but
different value of fc, there will be some RBs that are fully overlapped, some that
are orthogonal, and some that are partially overlapped, as shown in the example
of Fig. 1.

3.2 Optimization Problem and Real System Constraints

Taking into account the system model described in Section 3.1, our specific
optimization problem consists of selecting, for each deployed eNodeB i = 1, . . . , N ,
the frequency f i

c and the system bandwidth Bi that achieves the best network
performance in terms of selected KPI. The number of possible configurations,
C, is exponential with N ; the base of the exponent depends of the number of
allowed combinations of fc and B for each eNodeB, which depends on the total
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Fig. 1 The partial frequency overlapping between 2 femtocells which have different fc, but
the same B = 6RB; foi is the lower bound of frequencies being used by the i-th small cell,
and fbi is upper bound.

bandwidth available for the deployment by the operator and is constrained by the

operator’s deployment policy. Let x
(i,j)
conf = (f

(i,j)
c , B(i,j)) be the configuration of

the i-th eNodeB in the configuration j; then the j-th network configuration may

be represented as a vector xj = [x
(1,j)
conf , . . . , x

(N,j)
conf ], where j = 1, . . . , C. Let γjkpi

be the network performance for the selected KPI. The network configuration that
maximizes the network performance is formally given by

x(opt) = arg max
xj

γjkpi. (1)

If the values γjkpi are known for all frequency and bandwidth configurations,

then the x(opt) can be found by performing an exhaustive search on the set of
samples (xj , γjkpi). However, the application of exhaustive search is not feasible
in a real system. The practical constraints of this solution are the cost and the
time of performing the network measurements for all possible configurations. The
measurements may be obtained by performing drive tests, but as these tests are
expensive for the operator, the number of tests would need to be very limited.
To reduce costs, the MDTs measurements may be used. Even so, time would be
a significant constraint, since the time to obtain all measurements linearly grows
with the number of possible configurations.

As an example, in a four small cell network deployment with a total available
bandwidth of 5 MHz, considering fc values multiple of 300 kHz (three times the
LTE channel raster, i.e., one third of the possible frequencies), and limiting the
choice of B to B = {6, 15, 25} for simplicity, there are already 4625 physically
distinct configurations. For a five small cell network this number grows to 34340.
If the measurement time per configuration is only 1 hour, then the time necessary
to gather measurements for a four small cell network is 193 days, and for a five
small cell network is close to 4 years. In order to overcome this constraint, we
aim at designing a solution that is capable of performing nearly optimal while
leveraging only a limited number of KPI measurements.

Finally, we consider another two constraints of the real small cell deployments:
the number of possible configurations, C, and the frequency of the configuration
changes in the network. Even if an LTE carrier could be positioned anywhere
within the spectrum respecting the channel raster constraint, and the basic LTE
physical-layer specification does not say anything about the exact frequency lo-
cation of an LTE carrier, including the frequency band, the number of allowed
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combinations needs to be limited for practical reasons [15], e.g., to reduce search
time when an LTE terminal is activated. As we will show in this work, even with a
limited number of combinations of parameters, significant performance gains can
be achieved.

Obviously, these parameters cannot be changed frequently, so one could ques-
tion time-scale applicability of this solution to real small cell deployments. This
question was raised in more general context for SONs and in one recent study,
the authors of [26] argue that SONs based on longer time scale system dynamics
(e.g., user concentration changes, user mobility patterns, etc.) can lead to better
performance than solutions that are based on dynamics of shorter time scales (e.g.,
noise, fast fading, users mobility).

3.3 Proposed Approach

In a nutshell, our goal is to design a general framework for LTE network perfor-
mance prediction and optimization, that is easy to deploy in a real LTE system and
able to adapt to the actual network conditions during normal operation. In Fig. 2
we illustrate our proposed approach. As shown in the figure, we focus mainly on
LTE indoor small cell network deployments and, in terms of evaluation, on the typ-
ical LTE residential dual-stripe scenario described in [27]. This scenario character-
izes not only interactions among neighboring small cells within the same building,
but also among small cells belonging to adjacent buildings. According to our ap-
proach the measurements are gathered from both, LTE users and LTE small cells.
On the user side we gather measurements related to the performance achieved by
user, i.e., throughput, and delay, and the corresponding measurements related to
channel conditions, i.e., SINR per RB. On the small cells side we gather RLC and
MAC layer statistics, and various throughput performance measurements. These
measurements are then used to calculate different metrics which are then used for
network performance predictions by the LTE KPI Prediction Engine. This engine
is leveraging different machine learning and regression methods to realize the LTE
KPI prediction functionality. The predicted LTE KPI values are then forwarded to
the DFBA Optimization Engine which is using these values together with network
measurements to inspect how near the current network performance is to the esti-
mated optimal performance for the currently measured network conditions. If the
DFBA Optimization Engine estimates that the change in network configuration
will compensate possible trade-offs (e.g., interruption in service), it schedules the
reconfiguration of the frequency and bandwidth assignment.

Our approach follows the centralized SON (CSON) architecture, according to
which there is a centralized node that oversees operation of all small cells and
controls their behavior. In CSON architecture the centralized node receives inputs
from small cells and determines their configuration. Thus, the LTE KPI Predic-
tion Engine and the DFBA Optimization Engine are placed at the centralized
node. Since the configuration parameters are not going to be changed frequently
the proposed solution should not be affected by the latency due to the communi-
cation exchange between small cells and the centralized node. Also, the network
overhead is low, since the measurement information from the small cells to the
central node can be scheduled per best-effort basis. Note that this architecture is
compliant with the control plane solution for MDT which is discussed in 3GPP
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Fig. 2 Proposed learning based approach.

TR32.827 [28]. Thus, the main message exchanges in our approach are between
UEs and small cells, and between small cells and the centralized management node,
and all the interfaces needed for implementing our solution are already present in
the standard.

The main contribution of the proposed approach is the learning based LTE
KPI performance estimation. Even if in this work we apply this approach to the
frequency and bandwidth assignment use case, we argue that this approach is
much more general and may be used for a larger set of configuration parameters
and for different utility-based network planning and optimization tasks [9], where
the accurate prediction of KPIs are necessary for an effective optimization.

3.4 LTE KPI Prediction Engine

To realize the LTE KPI prediction engine, we propose a learning based ap-
proach according to which different KPIs are accurately predicted by using regres-
sion analysis and machine learning techniques based on basic pathloss and config-
uration information combined with a limited number of feedback measurements
that provide the throughput and the delay metrics for a particular frequency and
bandwidth setting. As discussed in Sec. 3.2, we aim at designing a solution that
requires a minimal amount of training for active exploration. Moreover, the pre-
diction engine should be able to predict different KPIs, e.g., the network-wide and
per-user LTE KPIs. To achieve all these requirements and to select the best candi-
date for the prediction engine, we study and compare the performance of various
classical and modern prediction techniques. We list and explain these techniques
in Sec. 3.5.

These prediction techniques leverage various parameters, metrics and derived
inputs. The latter are usually called covariates or regressors in the statistical and
machine learning literature. Among the covariates being used in this paper, the
most are being calculated by using the SINR/MAC throughput mapping. This
mapping represents the network MAC layer throughput calculation based on the
actual network measurements. We calculate this mapping in the following way.
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Table 1 Considered combinations of covariates.

Covariates SINR
SINR/MAC THR

Mapping

Usage per RB Aggr. Min. per RB Aggr. Min.

AGGR × × ×
1RB+ × ×
2RB+ × ×
AGGR-1RB+ × × ×

According to the LTE standard, UEs are periodically reporting to the base station
a channel quality indicator (CQI) per each subband and wideband. We use this
value at the MAC layer of the base station for AMC mapping, i.e., to determine
the size of the transport block (TB) to be transmitted to the UE. A typical AMC
behavior is to select a TB size that yields a BLER between 0 and 10% [29]; the TB
size for each given modulation and coding scheme and number of RBs are given
by the LTE specification in [30].

Moreover, we investigate the performance for different combinations of co-
variates. Since the covariates can be combined on a per-RB basis, or aggregated
together in various ways (such as considering the minimum or the sum of SINRs
over the band), the number of different combinations of covariates is very large.
Here we limit our attention to a small number of representative combinations
summarized in Table 1.

Additionally, we consider the effect on prediction performance of different sam-
pling methods, i.e., random and stratified sampling. In statistics, stratified sampling
is obtained by taking samples from each stratum or sub-group of a population,
i.e., a mini-reproduction of the population is achieved; conversely, according the
random sampling method each sample is chosen entirely by chance in order to re-
duce the likelihood of bias. While stratified sampling requires more effort for data
preparation, it is appealing for its higher prediction accuracy in scenarios where the
performance varies among different sub-groups of population or sampling regions.
For the stratified sampling method, we define the sampling regions by calculating
the aggregated network throughput based on the SINR/MAC throughput mapping
previously described.

Finally, we analyze performance prediction by means of goodness of fit metrics,
such as the prediction error in network-wide and per-user throughput estimation,
evaluating how they depend on the size of the training set. This allows us to
determine the ability of the proposed solution to learn during real-world operation.

3.5 Statistical and Machine Learning Methods for LTE KPI Prediction Engine

In this section we provide an overview of the different statistical and machine
learning methods being studied for the realization of the LTE KPI prediction
engine. We begin with a basic overview of the principles and terminology involved,
and then give a concise summary on the principles of the methods used. For
further information on the prediction techniques being used, the interested reader
is referred to [31] and [32].
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The objective of all of the methods considered, regardless of whether statistical
or machine learning based, is to find a function that predicts the value of a depen-
dent variable y = f(x1, . . . , xn) as a function of various predictors or covariates
xi. Usually this is done by conducting a limited number of experiments that yield
the value of y for known values of the covariates that are then used to fit or train
the model. The functional form of the model as well as the training procedure used
are the main differences between the different methods. In our case the y corre-
sponds to a performance metric of interest, and the different xi are measurements
of network conditions (SINR values for different nodes) as well as available prior
data (such as theoretical MAC layer throughput at given SINR).

The simplest method used for establishing a baseline prediction performance
is linear regression method (LM), that simply models y as a linear function of the
covariates, as in

y = a0 +
∑

i
aixi. (2)

The coefficients ai are determined based on the training data for example by min-
imizing the root mean squared error (RMSE) of the predictor. Linear regression
also has in our context a simple communication-theoretic interpretation: in the
high SINR regime, linear functions approximate well the Shannon capacity for-
mula, and y becomes simply the best approximation of the network throughput as
a optimal weighted sum of the individual Shannon capacity estimates. Thus linear
regression can be used as an improved proxy for simple Shannonian SINR-based
network capacity models. Simple generalization of this basic scheme is to apply
a transformation function to each of the terms aixi. The generalized regression
techniques thus obtained are usually called projection pursuit regression (PPR)
methods.

The simplest non-traditional prediction method we consider is the K nearest
neighbors algorithm (KNN for short). For KNN we consider the covariates xi as
defining a point in an Euclidean space, with the value of the y obtained from the
corresponding experiment being assigned to that point. When predicting y for x′i
for which experimental data is not available, we find the K nearest neighbors of
the point x′i from the training data set in terms of the Euclidean distance. Our
prediction is then the distance-weighted average of the corresponding values of y.
The KNN algorithm is an example of a non-parametric method that requires no
estimation procedure. This makes it easy to apply, but limits both its ability to
generalize beyond the training data and the amount of smoothing it can perform
to counter the effects of noise and other sources of randomness on the predictions.

A much more general and powerful family of regression techniques is obtained
by considering trees of individual regression models. The model corresponds to
a tree graph, with each non-leaf vertex corresponding to choosing a subspace by
imposing an inequality of some of the xi. The leaves of the tree finally yield the pre-
dictions y as the function of the ancestor vertices partitioning the space of xi into
subsequently finer subspaces. The various regression tree algorithms proposed in
the literature differ mainly in the method used to choose the partitioning in terms
of the covariates xi, as well as in the way training data is used to find the optimum
selection of decision variables in terms of the chosen partitioning scheme. We con-
sider both boosting (BTR) and bagging (TBAG) in the process of finding optimal
regression tree. Of these, bagging uses bootstrap (sampling with replacement to
obtain large number of training data sets from a single one) with different sample
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sizes to improve the accuracy of the parameter estimates involved. Boosting on the
other hand performs retraining of the model several times, with each iteration giv-
ing an increased weight to samples for which the previous iterations yielded poor
performance result. The final prediction from a boosted tree is a weighted average
of the predictions from the individual iterations. In general, regression trees are a
very powerful and general family of prediction methods that should be considered
as a potential solution to any non-trivial prediction or learning problem.

Support Vector Machines (SVMs) are a type of the machines often used for
classification and pattern recognition, but can also be used for regression prob-
lems. These methods have efficient training algorithms and can represent complex
nonlinear functions. The core of this method is the transformation of the stud-
ied data into a new, often higher dimensional, space so that this data is linearly
separable in this new space and, thus, the classification or regression is possible.
The representation of data using a high-dimensional space carries the risk of over-
fitting. SVMs avoid this by finding the optimal linear separator, a hyper-plane
that is characterized by the largest margins between itself and the data samples
from both sides of the separator. A separator is obtained by the solution of a
quadratic programming optimization problem, which is characterized by having a
global maximum, and is formulated using dot products between the training data
and the support vectors defining the hyperplanes. While it is rare that a linear
separator can be found in the original input space defined by the xi, this is often
possible in the high dimensional feature space obtained by mapping the covariates
with the kernel function. In the following, we use SVMs with basic radial basis
functions for regression.

The last family of machine learning techniques we consider in our study is that
of self-organizing maps also known as Kohonen networks (KOH). These form a
family of artificial neural networks, for which each neuron (a vertex on a lattice
graph) carries a vector of covariates initialized to random values. The training
phase iterates over the training data set, finds the nearest neighbor to each vector
of covariates from this set and the neural network, and updates the correspond-
ing neuron and its neighbors to have higher degree of similarity with the training
vector. Over time, different areas of the neural network converge to correspond to
different common types occurring often in the training data set. While originally
developed for classification problems, the Kohonen network can be used for re-
gression by assigning a prediction function (such as the simple linear regression)
to each class discovered by the neural network.

The considered KPIs, prediction methods and metrics, regressors, and sampling
methods are summarized in Table 2. We use the R environment, and in particular
the caret package, as the basis of our computations [32].

4 Performance Evaluation

4.1 Evaluation Setup

We consider a typical LTE urban dual stripe building scenario defined in [27]
and the corresponding simulation assumptions and parameters defined in [33]. In
Fig. 3 we show a radio environmental map of one instance of the simulated sce-
nario. Each building has 1 floor which has 8 apartments. The small cells (home
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Table 2 Considered KPIs, prediction methods and metrics, regressors and sampling methods.

KPIs Network throughput; User throughput

Prediction methods Bagging tree (TBAG, Treebag)
Boosted tree (BTR)
Kohonen network (KOH)
SVM radial (SVM)
K-nearest neighbor (KNN)
Projection pursuit regression (PPR)
Linear (LM)

Prediction metrics RMSE user fit; 95th %ile RMSE

Regressors SINR; SINR/MAC throughput mapping

Sampling Random; Stratified
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Fig. 3 Radio environmental map of dual-stripe scenario with 1 block of 2 buildings. Each
home eNodeB has connected three UEs that are located in the same apartment.

eNodeBs) and users are randomly distributed in the buildings. Each home eNodeB
has an equal number of associated UEs and is placed in a separate apartment along
with its associated UEs. By using the random distribution we aim at simulating
the scenario that corresponds to the greatest extent to a realistic residential small
cell deployment. The random placement of small cells in each independent sim-
ulation along with the random placement of the users adds to the simulation
additional degree of randomness, which is consequently increasing the credibility
of obtained simulation results. We concentrate on studying the following network
configurations:

– 4 home eNodeBs, 12 users and a total system bandwidth of 2 MHz,
– 4 home eNodeBs, 8 users and a total system bandwidth of 5 MHz, and
– 2 home eNodeBs, 20 users and a total system bandwidth of 2 MHz.

For propagation modeling we use the ITU-R P.1238 model with additional loss
factors for internal and external wall penetration. We consider both TCP and UDP
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as transport layer protocols, to investigate the performance of our approach for
different types of transport protocol. In both cases, we configure traffic parameters
to send packets with a constant rate that can saturate the system. Additionally, we
consider the effect of the MAC scheduler on the LTE KPI prediction performance.
The purpose of MAC scheduler is to decide which RB will be assigned to which
UE; different policies are used for this purpose, resulting in different performance
trade offs. We select two schedulers that are widely used as a reference in literature:
Round Robin (RR) and Proportional Fair (PF). For more information on MAC
schedulers the interested reader is referred to [35]. To avoid the effects of the
network initializations and starting up of the user applications, we neglect the
first interval of 5 s of each simulation execution. We configure simulations by using
different combinations of B and fc, and we configure other network parameters
according to Table 3. Different random placements of small cells and users are
achieved by running each simulation configuration with different values of the
seed of the random number generator.

To simulate the scenarios we use the ns-3 based LTE-EPC network simulator
(LENA) [34] which features an almost complete implementation of the LTE proto-
col stack, from layer two above, together with an accurate simulation model for the
LTE physical layer [29]. The use of such detailed simulator provides a performance
evaluation which is reasonably close to that of an experimental LTE platform.

4.2 Results on the correlation between Covariates and KPIs

We begin by illustrating the challenges of MAC layer throughput prediction
based on a SINR metric. For this analysis we select the Sum SINR, Sum/THR
Mapping and Min SINR per RB covariates, that were introduced in Section 3.4.
The Sum SINR covariate is calculated as the raw sum of SINRs per RB. The
SUM/THR Mapping represents the MAC layer throughput calculated as a function
of the raw sum of SINRs per RB according to the throughput calculation based on
the the AMC scheme, which is explained in the Section 3.4. The Min SINR per RB
covariate is the minimum SINR perceived per RB. The SINR metric is calculated
by leveraging on the pathloss measurements gathered at each UE. In Fig. 4 we show
the actual measured system-level MAC layer throughput as a function of either
Sum SINR or Sum/THR Mapping based on 337 simulation results. Points in the
figures correspond to measurements obtained from different simulation executions.

From Fig. 4(a) and (b) we note that: 1) a low positive correlation is present
between actual measured throughput and covariates, which confirms the need for
advanced prediction techniques for KPI predictions; and 2) the correlation between
the system-level MAC throughput and the covariates, Sum SINR and Sum/THR
Mapping, is very similar for Proportional Fair and Round Robin schedulers, i.e. it
is expected that the KPI prediction engine that is predicting system-level KPIs by
using these covariates will perform equally good regardless which MAC scheduler
is being used at eNodeBs. This is not the case for the user-level KPI estima-
tion. Namely, from the Fig. 4(c) we note that when the Proportional Fair sched-
uler is used there is no linear correlation between the MAC throughput and Sum
SINR/THR Mapping, while when the Round Robin scheduler is used, there is a
positive correlation. This indicates that the choice of MAC scheduler significantly
affects the correlation function between the actual measured MAC throughput
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Table 3 Evaluation configuration parameters

Parameter name and units Values

Scenario type Dual-stripe [27] and [33]
No. of small cells per scenario setup {2, 4}
No. of users per small cells {2, 3, 10}
Small cell placement inside of Random
apartment
User placement inside of apartment Random
Lower bound of downlink carrier 2110 MHz
frequency values
Upper bounds of downlink carrier {2112, 2115}MHz
frequency values
Lower bound of uplink carrier 1920 MHz
frequency values
Upper bounds of uplink carrier {1922, 1925}MHz
frequency values
Total system bandwidth {2, 5}MHz
Carrier frequency spacing 300 kHz
Small cell bandwidth {1.4, 3, 5}MHz
Small cell bandwidth in RBs {6, 15, 25}
Home eNodeB transmission power 20 dBm
Transport protocols {TCP,UDP}
MAC Schedulers Proportional Fair,

Round Robin
Simulation time in seconds 15
Measurements start time in seconds 5
Measurements update interval 100
in milliseconds
No. of independent simulations 50

and the selected covariate, when the user-level KPIs are predicted. This can be ex-
plained by the fact that the Round Robin scheduler allocates approximately equal
amount of resources to each UE, while the resources allocated by the Proportional
Fair scheduler strongly depend on the actual environment, e.g., distributions of
small cells and users, and on the channel conditions of all users; thus, the KPIs
obtained when using Round Robin scheduler should be easier to predict. Still, the
results obtained for Round Robin scheduler show large dispersion of correlation.
This behavior may be the consequence of assigning the resources to UEs always in
the same order during the simulation; thus, if there is a significant difference be-
tween SINRs among RB, this will affect the performance of the user. E.g., if some
user always gets assigned a RB with low SINR, the performance will be poor, even
if the average SINR value over all RBs allows for much better performance. An-
other reason could be that the transport block size assigned to the user is affected
by the presence of RB with very low SINR; because of this, in the following we
consider the correlation of Min SINR per RB and MAC Throughput.

In Fig. 5 we illustrate correlations between the KPI and the selected covari-
ates on a much larger data set which contains 4625 samples. These samples are
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Fig. 4 Actual measured performance vs. pathloss-based SINR, and 3GPP based mapping of
these values to MAC throughput. System bandwidth of 2 MHz, 4 small cells with 3 associated
users each.

achieved by configuring a larger system bandwidth, 5 MHz, which allows for much
larger number of frequency and bandwidth assignment combinations, as we ex-
plained in 3.2. As we show in the following discussion, the analysis on a larger
data set confirms the trends that were observed for a smaller data sets in Fig. 4.
In Fig. 5(a) and Fig. 5(b) we note the strong correlation between the transport
protocol type and the measured MAC layer throughput. When the transport pro-
tocol is UDP, there is a strong correlation between the MAC Throughput and the
Sum SINR/MAC THR Mapping covariate. On the other hand, when TCP is being
used, there is a weak correlation, i.e., it is harder to predict the KPIs. This is an
expected behavior because of the complex interplay between the TCP congestion
control and the LTE PHY, MAC and RLC layers. We also note from these two fig-
ures that there is no strong correlation between MAC Throughput and Min SINR
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per RB, so that the dispersion of results for the Round Robin scheduler shown
in Fig. 4(c) is not caused by assigning the min SINR per RB to UEs. Fig. 5(c)
shows that the correlation remains strong when eNodeBs are configured to use the
Round Robin scheduler instead of Proportional Fair, and that the Sum SINR and
the Sum SINR/MAC THR Mapping covariates can be used almost interchange-
ably for predictions. We also note that the smaller number of users increases the
dispersion in the SINR vs. MAC throughput dependency even further.

From these results we note that the correct selection of covariates is funda-
mental for the robust and effective prediction engine. Moreover, we expect that
designing a solution that can perform good in a variety of network configura-
tions, and that can perform equally good while predicting both system-level and
user-level KPIs, is a challenging problem.

4.3 Performance of Prediction Methods

Following the conclusions derived in Section 4.2, we select the scenario setup
and regressors for the performance comparison of the LTE KPI prediction meth-
ods. Namely, we select the configuration that appears the most complex for predic-
tion, i.e., the configuration manifested by low or lack of linear correlation between
the predicted KPI and covariates, that is the network configuration in which small
cells operate with the Proportional Fair MAC scheduler and UEs traffic goes over
TCP. Additionally, based on a study from Section 4.2, we select the aggregate re-
gressors, since they appear to have a higher correlation with KPI than Min SINR
per RB. The total of 4625 samples are obtained by running the small cell network
scenario that consists of four small cells with two users associated to each of them,
while the total system bandwidth is 5 MHz. The training data for each prediction
method is obtained by selecting 10% of samples by random sampling method. The
testing data samples are generated based on measurements for each user in the
scenario, with a total of 50 independent samplings and regression fittings samples.
We consider the following prediction techniques: Bagging tree (TBAG), Boosted
tree (BTR), Kohonen network (KOH), SVM radial (SVM), K-nearest neighbor
(KNN), Projection pursuit regression (PPR) and Linear regression method (LM),
all of which we explained in detail in Section 3.5. Finally, in Fig. 6 we show the re-
sults of the prediction performance of different prediction methods. For boxplots,
the three lines of the box denote the median together with the 25th and 75th
percentile, while the whiskers extend to the data point at most 1.5 interquartile
ranges from the edge of the box.

As expected for the selected network scenario with a complex non-linear na-
ture of the additional information, the simplest prediction method, LM, has the
highest Root Mean Square Error (RMSE) and consequently the poorest predic-
tion performance ratio. The poor performance of the LM method indicates that
analytical models based on Shannonian capacity estimates are also expected to
perform poorly. Note also that the gain of more advanced methods over LM lower
bounds the gain compared to even simpler schemes, such as full frequency reuse
or orthogonalized channelization. More advanced prediction techniques based on
regression, PPR and KNN, are computationally extremely fast (� 1 ms for the
tested sample set), which can thus be useful to offer an intermediate solution
in situations in which more computationally expensive methods are not feasible.
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Fig. 5 Actual measured performance vs. pathloss-based SINR, and 3GPP based mapping of
these values to MAC throughput. System bandwidth of 5 MHz. Setup with 4 small cells each
having associated 2 users in (a) and (b); 2 small cells each having associated 10 users in (c)

.

Among advanced machine learning techniques, SVMs and KOH networks perform
the poorest, and the latter technique shows additionally a large variability in the
performance prediction accuracy. Both tree-based methods (TBAG and BTR) per-
form consistently better than all previous methods in terms of raw performance
and variability of results; finally, the TBAG method achieves the best prediction
performance. This superior performance is expected due to the very nature of
TBAG and BTR. Use of bootstrap samples results in both of these methods being
essentially not an individual machine learning optimizer, but an ensemble learner
conducting voting between large number of individual models. Such combinations
of models usually outperform individual ones by wide margin at the cost of larger
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Fig. 6 Comparison of prediction methods over random sampling of 10%.

storage and training overhead [31]. Based on the latter discussion, we conclude
that TBAG is the most promising method for the prediction engine.

4.3.1 Prediction Performance Validation for Different Sizes of The Training Set

In the following we evaluate the prediction performance of TBAG as a function
of the size of the training set, i.e. in order to assess how fast it can learn when
deployed in an actual scenario. We carry out a performance evaluation study us-
ing the same small cell network scenario setup that we used for the comparison
of the prediction techniques. We compare TBAG with the LM method in order
to analyze the advantage of the application of advanced prediction techniques in-
stead of simple prediction techniques for different sizes of the training set. For this
performance evaluation we define the performance ratio metric as the ratio of the
network throughput of the frequency and bandwidth allocation chosen by solving
the optimization problem with the considered model to the network throughput of
the best possible frequency and bandwidth configuration, i.e., the one that would
be allocated by an exhaustive search algorithm. The purpose of this metric is to
give a measure of how close a given solution is to the optimal frequency and band-
width assignment. In Fig. 7 we show the results of the prediction performance
for different sizes of the training set. The black lines in the figures show the ten-
dencies in the plot, while the boxplots are generated in the same way as for the
results shown in Fig. 6. By observing the RMSE from Fig. 7 we note that for
more accurate performance more samples need to be taken, though this does not
necessarily translate into a better network optimization performance, which is the
case for the LM method. Additionally, we conclude that the benefit of advanced
prediction techniques over simpler prediction techniques is not only the ability to
learn on a very small sample set, but is also the ability to improve its performance
over time. Both characteristics are crucial for a real network deployment, as we
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Fig. 7 Linear and bagging tree methods for different sizes of the training set (random sampling
with 5% to 70%).

seek a solution that can work good with minimum a priori knowledge, and that is
able to improve performance by exploiting real- time network measurements.

4.3.2 Prediction Performance Validation for Different LTE KPIs and Network
Configurations

We continue the TBAG performance analysis by testing the prediction of differ-
ent KPIs metric under various network configurations. Specifically, whereas before
we evaluated TBAG in the context of optimizing system level KPI, we now focus
on the performance prediction of TBAG in terms of user-level KPIs. We evaluate
the performance obtained with differently configured small cell network setups.
The fixed scenario parameters are: the system bandwidth is 2 MHz, network has 4
small cells and a total of 12 users. We run independent batch simulations that have
in common the small cell network topology, but differently configured transport
protocols used by UEs’ applications (TCP or UDP) and different MAC scheduler
(Proportional Fair or Round Robin). Out of the four combinations (two different
schedulers, two different transport protocol types) that we evaluated, we illustrate
the performance of TBAG vs. LM in Fig. 8 for the two most interesting cases:
1) eNodeBs employing the Proportional Fair scheduler and UEs traffic going over
TCP, and 2) eNodeBs employing the Round Robin scheduler and UEs traffic over
UDP. Our results confirm that the TBAG method performs well for different sce-
nario setups. Here the TBAG method outperforms the LM method, especially in
the case of TCP and the Proportional Fair scheduler (panels (a)–(b)). We note
that the results shown in Fig. 6 also hold on a per-user basis, as well as in more
complex and dynamic network scenario (TCP and Proportional Fair scheduler be-
ing used). Fig. 8(c) and Fig. 8(d) show a similar collection of results, but for the
case of UDP with the Round Robin scheduler. Here even the simple LM method
performs nearly optimal due to the simplified higher-layer interactions explained
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(a) Normalized performance considering per user optimization.
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(d) RMSE over user performance regression fitting with actual
measured performance ranging from 1521 kbps to 2871 kbps.

Fig. 8 Random sampling with 10% of 337 permutations being explored with the linear and
the bagging tree regression methods and the aggregate regressor. Figures (a)–(b) are for the
TCP, Proportional Fair scheduler. Figures (c)–(d) are for the UDP, Round Robin scheduler.
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in Section 4.2. These figures confirm the previously formulated hypothesis that the
network configuration with the simpler setup (UDP and more simple scheduler,
such as Round Robin) results in a higher predictability.

4.3.3 Prediction Performance Validation for Different Covariates and Sampling
Methods

We evaluate the performance of the TBAG prediction method for different co-
variates and different sampling methods: the random and the stratified sampling,
all of which were explained in Section 3.4. Fig. 9 summaries the performance of the
TBAG method and the LM with different covariates being used, together with two
sampling methods over 5% and 30% samples being taken. The stratified sampling
results in better performance than the simple random selection of the configu-
rations used to train the predictor. The basic AGGR covariate is outperformed
by the 1RB+ regressor if complex machine learning based methods are applied,
as those can make use of the additional information available through them (see
Table 1 for the covariate abbreviations). For LM, due to the non-linear nature of
this additional information, the performance impact is actually negative. In gen-
eral, only advanced machine learning and regression techniques are able to benefit
from more complex covariates, such as per-RB measurements, provided that a
large enough sampling base is available (which was not the case for the 2RB+
regressor).

4.4 Performance Evaluation of Proposed Learning Based DFBA Approach

Finally, in this section we present the major results of this work by evalu-
ating the network performance achieved for DFBA when the proposed learning
based approach is used, and comparing it with the case where prediction methods
based on pathloss-based mathematical models that use SINR and MAC through-
put mapping estimates (sum or minimum of those over the RBs) are used. The
performance gain is expressed as the percentage of the maximum achievable net-
work performance obtained by applying an exhaustive search method to solve the
DFBA problem. The learning based DFBA approach is using the TBAG method
for LTE KPI predictions which is trained by using the stratified sampling method
and is employing the active probing in addition to pathloss values. Table 4 shows
the performance obtained when using different prediction methods for solving the
frequency and bandwidth optimization problem explained in Section 3.2 with the
goal of total network throughput maximization.

The scenario label identifies the number of small cells/number of users, the
percentage of samples taken, and the employed transport layer and schedulers. The
gains obtained by using the learning based DFBA range between 6% and 43%. We
note that the gain is largest for the more complex scenarios, which means that even
larger gains are expected for more complicated performance optimization goals,
e.g., ones that include a fairness metric. Overall, the results provided in Table 4
show that the learning based DFBA approach results in the selection of a network
configuration that performs better compared to the SINR-based models, and is
close-to-optimal.
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Fig. 9 Four small cells scenario with two users per small cells and bandwidth of 5 MHz.
Random sampling with 5% and 30% of 4625 permutations. Per user network optimization is
considered with actual measured performance ranging from 1521 kbps to 2871 kbps.
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Table 4 Comparison of DFBA performance when different prediction approaches are used.

Scenario conf. and sample set size 4/12, 2 MHz, 10% 4/8, 5 MHz, 5%

Transport protocol TCP UDP TCP UDP

MAC scheduler PF RR PF RR PF RR PF RR

SINR 85% 83% 83% 86% 53% 54% 53% 42%
Min SINR 91% 82% 89% 89% 71% 77% 58% 49%
Sum SINR/MAC THR Mapping 72% 72% 70% 81% 61% 61% 35% 43%
Min SINR/MAC THR Mapping 89% 81% 88% 89% 55% 64% 55% 50%

Learning based (TBAG) 100% 85% 100% 95% 96% 95% 97% 92%

Exhaustive search 100% 100% 100% 100% 100% 100% 100% 100%

Exhaustive search [Mbps] 9 8 9 7 12 10 26 25

5 Conclusions

In this paper we investigated the problem of performance prediction in LTE
small cells and we studied its application to dynamic frequency and bandwidth
assignment in an LTE small cells network scenario. We proposed a learning based
approach for LTE KPI performance prediction and we evaluated it by using data
obtained from realistic urban small cell network simulations. The results firmly
show that the learning based performance prediction approach can yield very high
performance gains. The outstanding aspect of the learning based DFBA approach
is that the high performance gains are obtained for a reasonably small number of
measurements, which allows for its implementation in a real LTE system. Among
the studied prediction methods, the Bagging tree prediction method results to be
the most promising approach for LTE KPI predictions compared to other tech-
niques, such as Boosted trees, Kohonen networks, SVMs, K-nearest neighbors,
Projection pursuit regression and Linear regression methods. Another conclusion
of the comparative study on the prediction methods for the LTE network per-
formance prediction is that the used performance metric and RMSE should be
considered together when evaluating the different performance prediction meth-
ods. In particular, a high RMSE does not always lead to poor optimization results,
and, if maximum performance grows, RMSE may also increase due to higher vari-
ance, but the main tendency of prediction might not change. Finally, we show that
the DFBA based on LTE KPI prediction achieves in average performance improve-
ments of 33% over approaches involving simpler SINR-based models. Moreover,
the learning based DFBA performs very close to optimal configuration, achieving
on average 95% of the optimal network performance.

6 Acknowledgments

The work done at CTTC was made possible by NPRP grant No. 5-1047-2-437
from the Qatar National Research Fund (a member of The Qatar Foundation).
The statements made herein are solely the responsibility of the authors. The work
done at RWTH was partially funded by the FP7-ICT ACROPOLIS project.



Machine learning DFBA for SON small cells 25

References

1. NGMN Technical Working Group Self Organising Networks, Next Generation Mobile Net-
works Use Cases related to Self Organising Network, Overall Description (2008)

2. ETSI, 3GPP TR 36.902, LTE; E-UTRAN; Self-configuring and self-optimizing network
(SON) use cases and solutions (Release 9), (2011)

3. Cisco Service Provider Wi-Fi: A Platform for Business Innovation and Revenue Generation,
http://www.cisco.com, 2012. Accessed December 2015

4. J. Weitzen; L. Mingzhe; E. Anderland and V. Eyuboglu, Large-Scale Deployment
of Residential Small Cells Proceedings of the IEEE, 101(11): 2367–2380, (2013).
doi:10.1109/JPROC.2013.2274325.

5. T. Zahir; K. Arshad; A. Nakata and K. Moessner, Interference Management
in Femtocells, IEEE Communications Surveys Tutorials, 15(1): 293–311, (2011).
doi:10.1109/SURV.2012.020212.00101.

6. S. Hamalainen (Editor); H. Sanneck (Editor) and C. Sartori (Editor), LTE Self-Organising
Networks (SON): Network Management Automation for Operational Efficiency, Wiley,
(2011). doi:10.1002/9781119961789.

7. J. Mitola III and G. Q. Maguire, Cognitive radio: making software radios more personal
IEEE Personal Communications, 6(4):13–18, (1999). doi:10.1109/98.788210.

8. R. W.Thomas; L. A. DaSilva and A. B. MacKenzie, Cognitive networks, Proceedings of
IEEE DySPAN, (2005). doi:10.1109/DYSPAN.2005.1542652.

9. M. Bkassiny; Y. Li and S. Jayaweera, A survey on machine-learning techniques in
cognitive radios, IEEE Communications Surveys Tutorials, 15(3):1136–1159, (2013).
doi:10.1109/SURV.2012.100412.00017.

10. Reverb, Inteligent SON solutions, http://www.reverbnetworks.com/ Accessed December
2015.

11. Stoke and Zhilabs, Analytics in Secured LTE, http://www.zhilabs.com/new_z/
wp-content/uploads/2014/06/150-0045-002_SB_Stoke_Zhilabs_AnalyticsSecuredLTE_
Final1.pdf, Accessed Deccember 2015.

12. Samsung, Smart LTE for Future Innovation,
http://www.samsung.com/global/business/networks/smart-lte, Accessed December
2015.

13. N. Baldo; L. Giupponi and J. Mangues-Bafalluy, Big Data Empowered Self Organized
Networks, Proceedings of European Wireless, (2014).

14. S. Sesia; I. Toufik and M. Baker, LTE - The UMTS Long Term Evolution (From Theory
to Practice) John Wiley and Sons Ltd, (2009). doi:10.1002/9780470742891.

15. E. Dahlman; S. Parkvall and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband
Academic Press (Elsevier), (2013). doi:10.1016/B978-0-12-419985-9.01001-1.

16. W. Hale, Frequency assignment: Theory and applications Proceedings of the IEEE,
68(12):1497–1514, (1980). doi:10.1109/PROC.1980.11899.

17. H. Zhuang et al., Dynamic Spectrum Management for Intercell Interference Coordination
in LTE Networks Based on Traffic Patterns IEEE Transactions on Vehicular Technology,
62(5):1924–1934, (2013). doi:10.1109/TVT.2013.2258051.

18. Z. Lu; T. Bansal and P. Sinha, Achieving user-level fairness in open-access femtocell-
based architecture IEEE Transactions on Mobile Computing, 12(10):1943–1954, (2013).
doi:10.1109/TMC.2012.157.

19. L. Tan et al., Graph coloring based spectrum allocation for femtocell downlink interference
mitigation Proceedings of IEEE WCNC, (2011). doi:10.1109/WCNC.2011.5779338.

20. S. Sadr and R. Adve, Hierarchical resource allocation in femtocell networks using graph
algorithms Proceedings of IEEE ICC, (2012). doi:10.1109/ICC.2012.6364427.

21. S. Uygungelen; G. Auer and Z. Bharucha,
Graph-Based Dynamic Frequency Reuse in Femtocell Networks, Proceedings of IEEE VTC,
(2011). doi:10.1109/VETECS.2011.5956438.

22. Y. L. Lee; T. C. Chuah and J. Loo, Recent Advances in Radio Resource Management
for Heterogeneous LTE/LTE-A Networks IEEE Communications Surveys & Tutorials,
16(4):2142–2180, (2014). doi:10.1109/COMST.2014.2326303.

23. F. F. Bernardo; R. R. Agusti; J. J. Perez-Romero and O. Sallent, Intercell Interfer-
ence Management in OFDMA Networks: A Decentralized Approach Based onReinforcement
Learning IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 41(6):968–976, (2011). doi:10.1109/TSMCC.2010.2099654.

http://www.cisco.com
http://dx.doi.org/10.1109/JPROC.2013.2274325
http://dx.doi.org/10.1109/SURV.2012.020212.00101
http://dx.doi.org/10.1002/9781119961789
http://dx.doi.org/10.1109/98.788210
http://dx.doi.org/10.1109/DYSPAN.2005.1542652
http://dx.doi.org/10.1109/SURV.2012.100412.00017
http://www.reverbnetworks.com/
http://www.zhilabs.com/new_z/wp-content/uploads/2014/06/150-0045-002_SB_Stoke_Zhilabs_AnalyticsSecuredLTE_Final1.pdf
http://www.zhilabs.com/new_z/wp-content/uploads/2014/06/150-0045-002_SB_Stoke_Zhilabs_AnalyticsSecuredLTE_Final1.pdf
http://www.zhilabs.com/new_z/wp-content/uploads/2014/06/150-0045-002_SB_Stoke_Zhilabs_AnalyticsSecuredLTE_Final1.pdf
http://www.samsung.com/global/business/networks/smart-lte
http://dx.doi.org/10.1002/9780470742891
http://dx.doi.org/10.1016/B978-0-12-419985-9.01001-1
http://dx.doi.org/10.1109/PROC.1980.11899
http://dx.doi.org/10.1109/TVT.2013.2258051
http://dx.doi.org/10.1109/TMC.2012.157
http://dx.doi.org/10.1109/WCNC.2011.5779338
http://dx.doi.org/10.1109/ICC.2012.6364427
http://dx.doi.org/10.1109/VETECS.2011.5956438
http://dx.doi.org/10.1109/COMST.2014.2326303
http://dx.doi.org/10.1109/TSMCC.2010.2099654


26 Biljana Bojović et al.
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