Performing Detections Using detect peaks

In this document we will perform event detections using detect_peaks() from the tagtools package
(https://github.com/stacyderuiter/ TagTools). The data that will be used in this document was obtained
from a DTAG3 deployment on a Blainville’s beaked whale in the Canary Islands in 2017. This data is freely
available at the tagtools project website (https://github.com/stacyderuiter/TagTools).

First, I will load in the dataset after downloading the ‘nc’ file from the tagtools project website. In R, this
would look like:

md <- load_nc('testsetl.nc')

In Matlab or Octave, this would look like:

md = load_nc('testsetl.nc')

The first event detection that I will perform will use the norm-jerk signal to detect times of large changes in
the animal’s acceleration.

detections <- detect_peaks(data = md$A$data, sr = md$A$sampling_rate, FUN = njerk, thresh = NULL,
bktime = NULL, plot_peaks = TRUE, sampling rate = md$A$sampling rate)

Signal Power
200
I

0 20000 60000 100000 140000

Time (1/sampling_rate)

This same event detection can performed as follows.

jerk <- njerk(A = md$A)
detections <- detect_peaks(data = jerk, sr = md$A$sampling rate, FUN = NULL, thresh = NULL,
bktime = NULL, plot_peaks = TRUE)

If using Matlab or Octave, these two forms of the event detection would be written as:

detections = detect_peaks(md.A.data, md.A.samping_rate, 'njerk', [1, [], true, fs);

. Or...

jerk = njerk(md.A);
detections = detect_peaks(jerk, md.A.sampling_rate, [], [1, [], true);

A summary output of the detections made is shown below.


https://github.com/stacyderuiter/TagTools
http://www.animaltags.org./doku.php

tibble: :glimpse(detections)

## List of 6
## ¢ start_time: num [1:279] 4376 9033 18598 24437 26911 ...

## ¢ end_time : num [1:279] 4379 9045 18620 24458 26929 ...

## $ peak_time : num [1:279, 1] 4376 9038 18602 24439 26916 ...
## $ peak_max : num [1:279, 1] 30.9 133.6 112 132.6 125.2 ...
## $ thresh : Named num 27.4

#it ..— attr(x, "names")= chr "99%"

## $ bktime : Named num 0.44

## ..— attr(x, "names")= chr "80%"

At this stage, it is possible to manually adjust the threshold and/or blanking time. If you choose to select a
new threshold or blanking time, the detections will simply be rerun and the contents of detections will be
changed appropriately.

The detect_peaks() function works with any uivariate input, not just norm-jerk. For example, suppose
we want to find the times of high relative energy expenditure. To do this, we will use the tagtools odba ()
function, which includes several methods and options for calculating the overall dynamic body acceleration
(ODBA), as a rough proxy for energy expenditure. For the sake of this document, I will use the ‘fir’ method
for odba() and will set the high-pass filter cut-off frequency at 2 Hz.

detections <- detect_peaks(data = md$A$data, sr = md$A$sampling_rate, FUN = odba, thresh = NULL,
bktime = NULL, plot_peaks = TRUE,
sampling_rate = md$A$sampling _rate, fh = 2)

 —

g _|

o ©

o _

©

c <

K= _|

) i
O —

0 20000 60000 100000 140000

Time (1/sampling_rate)

. or alternatively:

energy <- odba(A = md$A, fh = 2)
detections <- detect_peaks(data = energy, sr = md$A$sampling rate, FUN = NULL, thresh = NULL,
bktime = NULL, plot_peaks = TRUE)

If using Matlab of Octave, these two forms of the event detection would be written as:

detections = detect_peaks(md.A.data, md.A.sampling rate, 'odba', [], [], true, md.A.sampling_rate, 2);

. or...



energy = odba(md.A, 2);
detections = detect_peaks(energy, md.A.sampling rate, [], [1, [], true);

A summary output of the detections made is shown below.

tibble::glimpse(detections)

## List of 6

## $ start_time: num [1:315] 9033 18597 24438 26912 27062 ...

## ¢ end_time : num [1:315] 9045 18620 24459 26929 27064 ...

## $ peak_time : num [1:315, 1] 9039 18602 24440 26917 27062 ...
## $ peak_max : num [1:315, 1] 2.96 3.6 3.63 4.71 1.41

## $ thresh : Named num 0.929
## ..— attr(x, "names")= chr "99%"
## $ bktime : Named num 0.36

#t ..— attr(x, "names")= chr "80%"



