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1 Multivariate GLS in mvMORPH

Multivariate GLS linear model fit and multivariate hypotheses tests can be performed in mvMORPH with the
mvgls and manova.gls functions respectively. These functions are the multivariate counterpart to the gls
and anova functions in “nlme” with the phylogenetic corClasses objects from “ape”. The mvgls function
allows fitting multivariate model using either maximum likelihood (method="LL") when p<n-q or penalized
likelihood for any p (method="PL-LOOCV", see Clavel et al. 2019). NOTE: The current version of mvMORPH
(1.1.1) allows the use of the MANOVA tests in manova.gls with only the RidgeArch penalty for the penalized
likelihood approach (see ?mvgls).

The main options taken by the manova.gls function are described in the table below:
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Arguments Description Values
test The multivariate test statistic used in the "Pillai" (default), "Wilks",

MANOVA "Lawley-Hotteling", "Roy"

type The type of sums of squares (SS) and cross- type="I" (default), "II", or "III"
products used with multiple predictors

nperm The number of permutations used to assess Default is nperm=999
the significance of the test*

nbcores The number of cores to use to spread the Default is 1. Note that this works only
calculations and speed-up the computations on Mac and Linux platforms

permutation The type of optimization procedure used on
the

permutation="approx" (default), or full

permuted datasets

L The contrasts coding matrix for
user-specified

(optional - user defined, default is NULL)

generalized linear hypothesis test

rhs The right hand side equation of the
generalized

(optional - user defined, default is rhs=0)

linear hypothesis test

*When the model fit is estimated by ML, parametric tests are returned by default unless otherwise specified
(see below).

2 Maximum Likelihood or Penalized Likelihood when p < n?

We generally advocate the use of the PL-based method (method="PL-LOOCV") to perform model fit and
multivariate tests because simulations show that even a slight regularization can considerably improve the
performances of the tests (Figs 3 and 4 in the MS). Moreover, with large sample size the PL approach will
tend to the ML (method="LL") approach given that the regularization parameter will tend to zero. This
means that the PL approach is general as it leads to the conventional MANOVA tests when n>>p and
satisfies several optimality criteria when p>n (see Clavel et al. 2019). However, there are situations when
one might be interested in using the ML approach. For instance, when estimated using the ML approach,
the multivariate statistics can be used to compute measures of multivariate association (the multivariate
counterpart to the R2). As an example, with Wilks’ Λ, a simple multivariate measure of association is
obtained by (see Rencher 2002, p. 172):

η2 = 1 − Λ

Further works are needed to develop high-dimensional multivariate measures of association.

3 Multivariate statistics (test)

There are various multivariate statistics proposed in the literature. The four most common ones are the
Pillai’s trace (default in manova.gls), Wilks’s Λ, Roy’s largest root, and Lawley-Hotelling tests. All these
statistics have the same type I error rate (i.e. the probability of rejection of the null hypothesis H0 when it is
true), however they differ in their probability of rejecting H0 when it is false (i.e. they have different power).
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The performances of the different statistics depend on the structure of the multivariate space as they depend
on the eigenvalues of the matrix E−1H described in the paper. For instance, when the mean vectors are
collinear, Roy’s test is the more powerful since it only uses the largest eigenvalue but is outcompeted by
the others when the mean vectors are more diffuse (Rencher 2002). Given that in most empirical cases
mean vectors will not be collinear, Roy’s test might be of least practical interest. Pillai’s trace test is often
considered as more robust because it performs better when there is heterogeneity of covariance matrices in
factorial designs. However, the Wilks Λ is not far behind and has a long history in the statistical literature
because of its connection with likelihood ratio tests (LRTs) and well known approximations of the F -statistic.
Pros and cons are discussed at greater length in Olson 1974 or Rencher 2002.

4 Types of sums of squares and cross-products (type)

When considering multiple predictors, that may be to some extent correlated, there are different ways to assess
the effects of each of them. Correlations or collinearity between predictors may arise for multiple reasons.
For instance, because of unbalanced grouping schemes in factorial designs, or because of autocorrelation
between samples - as in comparative data. In such a situation, there is an overlap in the residual error
explained by the different factors. Hence there are different ways to treat this shared part of residual error
in the tests, which correspond to the computation of two broad classes of sums of squared (SS) errors [or
equivalently sums of squares and cross-products for multivariate tests]: the sequential (type I) and adjusted
(type II or III). For instance, the type="I" considers that the shared part is explained by the predictors that
precede new predictors entered in the model in a sequential fashion. In contrast, adjusted tests (type="II"
or type="III") consider only the part of the variation that can be uniquely attributed to a predictor given
all the predictors in the model. We briefly present these differences below.

4.1 Type I (sequential)

Sequential tests have the desirable feature that they are additive. That is, the total sum of squares remains
the same for all possible ordering of the explanatory (or independent) variables. This means that all the
variation in the model is accounted for by those tests while the adjusted tests may miss some of the residual
variance or account for it twice. However, in sequential tests the importance of the factors depends on the
order they are entered in the model. Hence, one may obtain a different result depending on the ordering
of the predictors. With multiple predictors the sequential tests can be interesting when they are ordered
theoretical or by the experimental design. The comparison of sequential tests with different ordering of the
variables is also useful to assess the effect of adjusting for a given variable first on the tests significance.

4.2 Type II (adjusted)

Type II tests use adjusted sums of squares. In contrasts to the sequential tests, the tests performed with type
II SS do not depend on the ordering of the predictors. Moreover, these adjusted sums of squares are said to
obey the principle of marginality. That is, they respect the hierarchy of the predictors level (e.g., main effects
and interactions). The significance of the tests for the main effects does not account for higher-order effects
terms (e.g. interactions) while the tests for the higher-orders account for all of the lower-orders terms.

4.3 Type III (adjusted)

Type III tests also use adjusted sums of squares. The main difference with the type II is that they include
higher-level terms (e.g. interactions) when making adjustments. In other words, the tests for an effect are
performed after adjusting for all the other model terms (hence they violate the marginality principle since
main effect tests are accounting for the interactions). This type of test is controversial because it is often
assumed that interpreting main effects in the presence of significant interactions is of little interest and that
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type II tests are more powerful when the interaction is nonsignificant (see e.g. Langsrud 2003). However, these
tests do not depend on the differences in sample sizes for factorial designs (assuming the treatments have been
correctly adjusted using the ?contrasts argument. See also ?Anova in car package and McFarquhar 2016).

4.4 Summary

When a model has multiple predictors (but no interaction terms), then the choice is whether a sequential
(type="I") or an adjusted test (either type="II" or type="III") is needed. For instance, if we have two
predictors A and B, and we are interested in testing the residual effects of B that remain after controlling for
A, then a sequential test should be used (type="I"). When there is no such a priori order, then an adjusted
test is less arbitrary and should be preferred (e.g. type="II"). In practice, if there are low covariations
between the predictors, using adjusted or non-adjusted tests won’t make a big difference.

When a multiple regression model includes interaction terms (i.e. higher order terms), we should look at
the results of the highest-order term first. All the types of test will give the same answer for this term,
and when it is significant, they indicate that we can confidently reject the null hypothesis that the main
effects are additives because they are interdependent. The lower order terms will be different between all the
tests. In most situations however, the tests of the main effects are of little interest when there is a significant
interaction.

N.B. In base R, the default option for the conventional (i.e. non phylogenetic) ANOVA and MANOVA tests
is the sequential (or type I) SS. In the car package the default is type II. We chose to use the type I test as
the default to follow base R implementation.

5 Number of permutations (nperm)

The permutations are used to approximate the distribution of the multivariate statistic under the null
hypothesis (H0) being evaluated. The larger the better, but this has a computational cost. We think that
~999 permutations is probably enough in most situations. This can be assessed by plotting the permuted
distribution(s) using the plot() function on the manova.gls output (see below). Furthermore, parallel
computing (through forking) is available on Linux and Mac OS to speed-up the computations (see the example
below). Note that it is also possible to use permutations rather than parametric tests on ML model fit by
using the argument "parametric=FALSE" (see ?manova.gls) for example if the sample size is small.

6 Permutation strategies (permutation)

When using a different evolutionary model than Brownian Motion (e.g. lambda, OU or EB), there are dif-
ferent ways of computing the multivariate statistics on the permuted samples. The approximate strategy
(permutation="approx" - the default option) fixes the evolutionary model to the parameters estimated by
the mvgls function and only tries to optimize the level of regularization/penalization on each permuted
datasets. The “exact” strategy (permutation="full") optimizes both the evolutionary model and regu-
larization/penalization parameters on each permuted datasets. While this permutation scheme accounts
for the estimation of all the parameters in the permuted datasets, optimization is more difficult and time
consuming. We chose to use by default the approximate version since it is more stable, faster, and there were
no noticeable differences under a large set of simulations.

7 Examples

To illustrate how to fit high-dimensional phylogenetic regressions in mvMORPH, we use here two simple
simulated examples.
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i) In the first example, we use the traditionnal one-way MANOVA to test for differences between two
groups (q=2) on a n=36 species tree with p=5 traits. Although the method can be used on cases where
p>n-q, here we used a simpler (and faster) example to illustrate the general workflow. We also fit an
ANCOVA model (multiple predictors) to illustrate the differences between the types of sums of squares
and cross-products (type).

ii) The second example is directed to the more experienced users who want to perform general linear hy-
pothesis tests using contrast coding. General linear hypothesis testing is a powerful tool to design custom
hypothesis tests based on the multivariate statistics (including pairwise and planned comparisons).

Finally, we illustrate the use of the multivariate tests on the empirical phyllostomid bat dataset (p>n-q) from
Monteiro & Nogueira (2011).

7.1 Model fit and hypothesis testing: the one-way MANOVA

In the following simulated example, we want to test if the hypothetical species inhabiting the “forest” habitat
(n=18 ) show differences with species from the “open” habitat (n=18 ).
# load the package and simulate some fake data
library(mvMORPH)
set.seed(1, sample.kind = "Rounding") # for reproducibility with older R versions
n = 36; p=5
tree = pbtree(n=n)
R = crossprod(matrix(runif(p*p),p,p)) # random covariance matrix
theta = rep(0,p) # the mean of the p traits
trait <- mvSIM(tree, model="BM1", # phenotypic traits

param=list(sigma=R, theta=theta))
grp <- rep(c("forest","open"), each=n/2)
pheno <- trait + rep(c(0,10), each=n/2) # introduce some differences (~10) on "open"
size <- rTraitCont(tree) # an hypothetical "body-size" for the species

Now that we have our dataset (“trait”) and grouping categories (“grp”), we can fit the phylogenetic multivariate
linear model by penalized likelihood (PL). We will consider here the Pagel’s λ model for the phylogenetic
structure, and use the default parameters values of the mvgls function (an archetypal ridge penalty [
penalty="RidgeArch" ] with a target matrix proportional to the identity [target="unitVariance"] - See
?mvgls for details).
# First create a list object with the required data
data = list(trait=pheno, habitat=as.factor(grp), size=size)

# Fit the multivariate linear model
fit <- mvgls(trait ~ habitat, data=data, tree=tree, model="lambda")

Note that for a MANOVA design, we have to specify that the values of the “grp” variable are factors. This is
done above by using the as.factor() function, as for conventional regressions in R.

We can have a look at the model fit output:
# Print the model fit
print(fit)

>
> Call:
> mvgls(formula = trait ~ habitat, data = data, tree = tree, model = "lambda")
>
>
> Generalized least squares fit by penalized REML
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> LOOCV of the log-restricted-likelihood: -120.8996
>
>
> Parameter estimate(s):
> lambda: 1
>
> Regularization parameter (gamma): 0.0056
>
>
> Covariance matrix of size: 5 by 5
> for 36 observations
>
> Coefficients:
> [,1] [,2] [,3] [,4] [,5]
> (Intercept) 0.15306 0.87385 0.05411 -0.13147 0.73431
> habitatopen 8.26574 7.67076 8.63673 8.97492 8.40437

The model fit indicates that the estimated Pagel’s λ is equal to 1 meaning that there is a Brownian motion (BM)
correlation structure in the model residuals (as expected, given that we simulated under BM. . . ). Furthermore,
the regularization parameter is ~0.0056, indicating that there is no need for a strong regularization of the
covariance matrix. This is also expected since n > p in this example. We can further note from the estimated
coefficients that there are clear differences between the two groupings [the intercept here corresponds to the
“forest” species; this is because R uses by default the first factor as baseline], with the “open” dwellers having
a mean value which is roughly higher by a value of 10. So far so good, we retrieved the simulated features.

Now that we have fitted our model, we can test the null hypothesis (H0) that there are no differences between
“forest” and “open” species using the manova.gls function with 999 permutations.
# The overall MANOVA test:
(aov <- manova.gls(fit,

nperm=999, test="Wilks", verbose=TRUE))

> Sequential MANOVA Tests with 999 permutations: Wilks test statistic
> Test stat Pr(>Stat)
> habitat 0.1755 0.001 **
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output of the function shows that the estimated Wilks’s statistic is ~0.17 and that the p-value is significant
so that we can confidently reject the null hypothesis.

It is possible to visualise the distribution of the test statistic under the null hypothesis obtained by permutations
using the plot() function on the “manova” object:
# display the test statistic
plot(aov)
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Of course, if we increase the number of permutations we will obtain a better (smoother) distribution of the
test statistic under H0 - although it seems that it’s not necessary here.

To reduce the computational burden of the permutation procedure, we can use “parallel” computing (on
Linux and Mac only) through the nbcores argument and re-run the analysis with an increased number of
permutations:
# Fit with parallel computing on 4 cores for 9999 permutations
(aov2 <- manova.gls(fit,

nperm=9999, nbcores=4L, test="Wilks", verbose=TRUE))

> Sequential MANOVA Tests with 9999 permutations: Wilks test statistic
> Test stat Pr(>Stat)
> habitat 0.1755 1e-04 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# display the test statistic
plot(aov2)
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Statistic distribution: habitat
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7.2 Multivariate multiple regression tests (multiple predictors, MANCOVA,
etc.)

In this new example we reuse the previous data and we add a supplementary predictor (“size”) to the model.
This model with a continuous covariate is known as an Analysis of Covariance (ANCOVA or MANCOVA):
# Fit the MANCOVA model
fit2 <- mvgls(trait ~ size + habitat, data=data, tree=tree, model="lambda")

Again, the effects can be tested using the manova.gls function:
# The overall MANOVA test:
(aov3 <- manova.gls(fit2,

nperm=999, test="Wilks", verbose=TRUE))

> Sequential MANOVA Tests with 999 permutations: Wilks test statistic
> Test stat Pr(>Stat)
> size 0.8559 0.355
> habitat 0.1742 0.001 **
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The MANOVA table shows that only the “habitat” factor is significant, and that the “size” effect is not (this
is expected since the “size” has been simulated independently of the trait data). We also note that this
analysis required the permutations to be performed for each predictor. The default test used here is the
“sequential” test also known as “type I” sum of squares (and cross-products). This test assesses the effect of
each predictor in a sequential order after accounting for the effect of the previous ones. This means that
different results might be obtained depending on the order of the predictors (see above).

We can use instead an adjusted or “type II” sum of squares (and cross products) test to avoid this issue (if
we want to know the marginal contribution of each factor):
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# The overall (type II) MANOVA test:
(aov4 <- manova.gls(fit2,

nperm=999, test="Wilks", type="II", verbose=TRUE))

> Type II MANOVA Tests with 999 permutations: Wilks test statistic
> Test stat Pr(>Stat)
> size 0.8862 0.538
> habitat 0.1742 0.001 **
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this example the results differ only slightly which is expected given that the predictors were simulated
with no interdependences.

It is also possible to assess the effect of an interaction between both predictors using the * operator as with
the classical lm function:
# Fit the MANCOVA model with interaction term
fit3 <- mvgls(trait ~ size + habitat + size*habitat,

data=data, tree=tree, model="lambda")

# The overall (type II) MANOVA test:
(aov5 <- manova.gls(fit3,

nperm=999, test="Wilks", type="II", verbose=TRUE))

> Type II MANOVA Tests with 999 permutations: Wilks test statistic
> Test stat Pr(>Stat)
> size 0.8852 0.491
> habitat 0.1738 0.001 **
> size:habitat 0.9041 0.686
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Once again, the results show that only the habitat effect is significant. This is totally expected since we
simulated a large difference (~10) between both groups but no relationship to the variable “size”.

7.3 General Linear Hypothesis Testing through the L argument (advanced
users)

In this last example, we show how to use general linear hypothesis testing using contrast coding on a simulated
dataset.

Contrast coding allows testing general linear hypotheses of the form:

Lβ = Θ

Where β is the q×p matrix of parameters estimated by the mvgls function, L is a k×q matrix of full row
rank, rank(L) = k ≤ q, called the contrast coding matrix, and Θ is a k×p constant matrix, usually full of
zeros (default in manova.gls), called the right-hand-side (rhs) matrix, that together specify the hypotheses
to be tested using k linear combinations of the parameters β (see details in Fox 2015; and also Rencher 2002 -
p. 180-183).

For instance, consider a multivariate dataset with p=5 variables and q=3 groups (on the 36 species tree
simulated above):
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grp2 = rep(1:3, each=n/3)
pheno2 = trait + rep(c(0,0,10), each=n/3) # introduce some differences on the third group
data2 = list(pheno=pheno2, grp=as.factor(grp2))

# fit the model
fit4 <- mvgls(pheno~grp, data=data2, tree=tree, model="lambda")

# The overall MANOVA test:
(manova.gls(fit4, verbose=TRUE))

> Sequential MANOVA Tests with 999 permutations: Pillai test statistic
> Test stat Pr(>Stat)
> grp 0.8118 0.001 **
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test is significant, meaning that there are differences between (at least one of) the groups. We can assess
more specific hypotheses. Recall that in this dataset we have introduced differences for the third group (+10).
We can test if the third group and the second group have the same mean vector. This is done by testing a
simple linear combination of the estimated parameters which can be expressed as:

0β1 + 1β2 − 1β3 = Θ

Where Θ = 0. Indeed, we test that the difference between β2 and β3 is equal to 0 - i.e. we ask if they are the
same. The contrast vector L (or matrix) for this hypothesis is therefore:

L = [0, 1,−1]

We note that β1 is not involved in this hypothesis and thus has a contrast code of 0. Now this linear
hypothesis can be evaluated with the manova.gls function:
L1 <- matrix(c(0,1,-1), ncol=3) # Contrasts (vector or matrix)

# Test the first contrast:
(manova.gls(fit4, L=L1, nperm=999, verbose=TRUE))

> General Linear Hypothesis Test with 999 permutations: Pillai test statistic
> Test stat Pr(>Stat)
> Contrasts L 0.7617 0.001 **
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected the test is significant.

Let’s test now if there are differences between the first (β1) and the second (β2) group by defining a new
contrast matrix. Note that by default, the regression formula in R assumes that the first grouping factor (in
alphabetical order) is the baseline group - called intercept in the model fit output - to which the others are
compared (the other factors coefficients are estimated as deviance from the baseline; see ?contr.treatment).
This means that if we want to compare the two first groups, we need to test if β2 is different from Θ = 0
using the simple following contrasts:

L = [0, 1, 0]
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L2 <- matrix(c(0,1,0), ncol=3) # Contrasts (vector or matrix)

# Test the second contrast:
(manova.gls(fit4, L=L2, nperm=999, verbose=TRUE))

> General Linear Hypothesis Test with 999 permutations: Pillai test statistic
> Test stat Pr(>Stat)
> Contrasts L 0.08306 0.681
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# No differences as expected...

Note that we covered the three scenarios as the third one is implicit.

Alternatively, we can fit a model for which each group mean is explicitly estimated - rather than compared to
a baseline - by specifying a factorial model without “intercept” using +0 (or -1) in the regression formula:
# fit the model without "intercept"
fit4bis <- mvgls(pheno ~ grp + 0, data=data2, tree=tree, model="lambda")

We can now test a similar hypothesis as above using the more intuitive linear relationship:

1β1 − 1β2 + 0β3 = 0

which can be expressed by the contrasts matrix:

L = [1,−1, 0]

L2bis <- matrix(c(1,-1,0), ncol=3) # Contrasts (vector or matrix)

# Test the second contrast:
(manova.gls(fit4bis, L=L2bis, nperm=999, verbose=TRUE))

> General Linear Hypothesis Test with 999 permutations: Pillai test statistic
> Test stat Pr(>Stat)
> Contrasts L 0.08306 0.699
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The result is identical and the test shows no differences as expected...

Note that the slight difference in p-values between the two multivariate tests above is due to the randomness
of the permutation scheme.

CAUTION: take care about global MANOVA tests on a regression model without an intercept (i.e. when
using -1 or +0) because the null hypothesis being tested might be different than for the regression model
with the intercept term.

7.4 Testing hypothesis on the values of estimated parameters through the rhs
argument (advanced users)

We can also test more specific hypotheses like “is the difference between the baseline β1 and β3 equal to 2?”
For instance if we are interested in testing the estimated parameters against theoretical or published values.
This is formally expressed by the following linear hypothesis:

0β1 + 0β2 + 1β3 = Θ = 2
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To do that we can specify our own Θ matrix in the formula above through the rhs argument and use the
appropriate contrast coding matrix L:
L3 <- matrix(c(0,0,1), ncol=3) # define coding
rhs <- 2 # is the difference between the first and the third group equal to 2?

# Test the first contrast:
(manova.gls(fit4, L=L3, rhs=rhs, nperm=999, verbose=TRUE))

> General Linear Hypothesis Test with 999 permutations: Pillai test statistic
> Test stat Pr(>Stat)
> Contrasts L 0.534 0.001 **
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# indeed it is rejected (recall that beta3=10)... try with rhs=10 instead:

(manova.gls(fit4, L=L3, rhs=10, nperm=999, verbose=TRUE))

> General Linear Hypothesis Test with 999 permutations: Pillai test statistic
> Test stat Pr(>Stat)
> Contrasts L 0.1616 0.314
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# it is not different from 10, as expected... Neat!

We can also use the model fit without intercept fit4bis to specifically test the values of the estimated mean
for each of the groups using similar coding contrasts.

Note: if a single value is provided to rhs, then it is assumed that the Θ matrix contains only this value.

7.5 Phyllostomid bats example

Finally, we reuse here the bats dataset from Monteiro & Nogueira (2011) to illustrate how to perform
multivariate analyses on an empirical dataset.
# Load the data
data <- get(data(phyllostomid))
# head(data$mandible) # the dataset is high-dimensional - i.e. p>(n-q)

# Fit the mandible data to the four diet and feeding modes schemes
fit_grp1 <- mvgls(mandible~grp1, data=data, data$tree, model="lambda", method="PL-LOOCV")
fit_grp2 <- mvgls(mandible~grp2, data=data, data$tree, model="lambda", method="PL-LOOCV")
fit_grp3 <- mvgls(mandible~grp3, data=data, data$tree, model="lambda", method="PL-LOOCV")
fit_grp4 <- mvgls(mandible~grp4, data=data, data$tree, model="lambda", method="PL-LOOCV")

# Then we perform the MANOVAs as in the paper
nbcores=4L # to speed up the calculations
(manova.gls(fit_grp1, test="Wilks", nbcores=nbcores, verbose=TRUE)) # Grouping 1

## Sequential MANOVA Tests with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## grp1 0.1287 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(manova.gls(fit_grp2, test="Wilks", nbcores=nbcores, verbose=TRUE)) # Grouping 2

## Sequential MANOVA Tests with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## grp2 0.006345 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(manova.gls(fit_grp3, test="Wilks", nbcores=nbcores, verbose=TRUE)) # Grouping 3

## Sequential MANOVA Tests with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## grp3 0.0004306 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(manova.gls(fit_grp4, test="Wilks", nbcores=nbcores, verbose=TRUE)) # Grouping 4

## Sequential MANOVA Tests with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## grp4 1.768e-05 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also perform the three linear hypotheses tests presented in the Supplementary Material using
contrast coding through the L argument. The specific hypotheses being tested are: 1) difference between
the sanguivorous and the nectivorous species, 2) between the frugivorous and the animalivorous, and 3)
between the carnivorous and the insectivorous. These three tests can be expressed through the following
linear hypotheses:

0βCarnivory + 0βF rugivory + 0βInsectivory + 1βNectarivory − 1βSanguivory = Θ1 = 0

0.5βCarnivory − 1βF rugivory + 0.5βInsectivory + 0βNectarivory − 0βSanguivory = Θ2 = 0

1βCarnivory + 0βF rugivory − 1βInsectivory + 0βNectarivory − 0βSanguivory = Θ3 = 0

The respective contrast codes for these hypotheses are:
# First define the set of contrasts
L <- rbind(c(0,0,0,1,-1), # Nectarivory vs Sanguivory

c(0.5,-1,0.5,0,0), # Frugivory vs. Animalivory
c(1,0,-1,0,0)) # Insectivory vs. Carnivory

Note that R considers the factors in alphabetical order. As already noticed in the examples above, the first
factor is recognized as an intercept by default in the regression formula. This implies that Carnivory is
considered the baseline group to which the others are compared in the model fit_grp4 above. Here, we
specify a factorial model without “intercept” using +0 in the regression formula to estimate the values for
each group instead and make sensible linear hypotheses:
fit_glh <- mvgls(mandible~grp4+0, data=data, data$tree, model="lambda", method="PL-LOOCV")

L1 <- L[1,,drop=FALSE] # Nectarivory vs Sanguivory
(manova.gls(fit_glh,

nbcores=nbcores, test="Wilks", L=L1, verbose=TRUE))
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## General Linear Hypothesis Test with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## Contrasts L 0.02798 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
L2 <- L[2,,drop=FALSE] # Frugivory vs. Animalivory
(manova.gls(fit_glh,

nbcores=nbcores, test="Wilks", L=L2, verbose=TRUE))

## General Linear Hypothesis Test with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## Contrasts L 0.0521 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
L3 <- L[3,,drop=FALSE] # Insectivory vs. Carnivory
(manova.gls(fit_glh,

nbcores=nbcores, test="Wilks", L=L3, verbose=TRUE))

## General Linear Hypothesis Test with 999 permutations: Wilks test statistic
## Test stat Pr(>Stat)
## Contrasts L 0.1331 0.005 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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