
– SUPPLEMENTARY MATERIAL – 
 
 

In 1), we present the results of the simulations for traits with low (𝜌 = 0.2) average correlations 

and with or without phylogenetic structure in the predictor variable (Fig. S1 and S2 

respectively), and simulations with higher correlations between the traits (𝜌 = 0.8) with and 

without phylogenetic structure in the predictor variable (Fig. S3 and S4 respectively). In 2), we 

display the three first phylogenetic principal components of the phyllostomid bats dataset under 

the various feeding modes groupings described in the main text (Figs. S5-6). Phylogenetic PCs 

were obtained using penalized-likelihood with the mvgls.pca function in mvMORPH (PL 

estimate of Pagel’s λ = 0.45; see Clavel et al. 2019). In 3), we provide additional results for 

univariate analyses conducted separately on the three first pPC axes of the bats mandible 

dataset. In 4), we present the general linear hypothesis testing using contrasts coding and test 

specific hypotheses about the dietary grouping schemes on the phyllostomid bats mandible 

dataset. In 5) we briefly explain how the datasets with main differences along specific axes of 

the multidimensional space were simulated, and finally in 6) we provide a step by step 

derivation of the first and second order derivative of the log-likelihood presented in Appendix 

2. 

 

 

 
1 ) Simulations results for type I and II errors (statistical power and error) on datasets 

simulated with low (𝝆 = 𝟎. 𝟐) and high (𝝆 = 𝟎. 𝟖) average correlations. 



 
 
Figure S1. Comparison of the statistical performances (statistical power and error) for the various 
MANOVA approaches with a phylogenetically clustered binary predictor variable and an average 
correlation between the dependent variables of 0.2. In the top row the differences between groups were 
simulated along the first axis of variance (PC1), along the second axis (PC2) on the second row, and 
across all the axes (All) on the third row (see the main text). There were no differences simulated 
between groups (none) on the last row (for type I error testing). We can note that the regularized 
phylogenetic MANOVAs based on penalized likelihood (“loocv-1” and “loocv-2”) show good 
performances in terms of statistical power in all of the scenarios and for various level of phylogenetic 
signal (Pagel’s 𝜆), and type I error to the nominal rate. The conventional OLS (i.e. non-phylogenetic) 
MANOVA shows increased type I error with increasing phylogenetic signal. 
 



 
 
Figure S2. Comparison of the statistical performances (statistical power and error) for the various 
MANOVA approaches with a non-phylogenetically distributed binary predictor and an average 
correlation between the dependent variables of 0.2. In the top row the differences between groups were 
simulated along the first axis of variance (PC1), along the second axis (PC2) on the second row, and 
across all the axes (All) on the third row (see text). There were no differences simulated between groups 
(none) on the last row (for type I error testing). We can note that the regularized phylogenetic 
MANOVAs based on penalized likelihood (“loocv-1” and “loocv-2”) show good performances in terms 
of statistical power in all of the scenarios and for various level of phylogenetic signal (Pagel’s 𝜆), and 
type I error to the nominal rate. In contrast, methods that are restricted to Brownian motion (distance-
based, simulations-based, and PCA-based MANOVA) show high type I error with decreasing 
phylogenetic signal (or equivalently increased random noise; see text). 
 



 
 
Figure S3. Comparison of the statistical performances (statistical power and error) for the various 
MANOVA approaches with a phylogenetically clustered binary predictor variable and an average 
correlation between the dependent variables of 0.8. In the top row the differences between groups were 
simulated along the first axis of variance (PC1), along the second axis (PC2) on the second row, and 
across all the axes (All) on the third row (see text). There were no differences simulated between groups 
(none) on the last row (for type I error testing). We can note that the regularized phylogenetic 
MANOVAs based on penalized likelihood (“loocv-1” and “loocv-2”) show good performances in terms 
of statistical power in all of the scenarios and for various level of phylogenetic signal (Pagel’s 𝜆), and 
type I error to the nominal rate. The conventional OLS (i.e. non-phylogenetic) MANOVA shows 
increased type I error with increasing phylogenetic signal. 
 



 
 
Figure S4. Comparison of the statistical performances (statistical power and error) for the various 
MANOVA approaches with a non-phylogenetically distributed binary predictor and an average 
correlation between the dependent variables of 0.8. In the top row the differences between groups were 
simulated along the first axis of variance (PC1), along the second axis (PC2) on the second row, and 
across all the axes (All) on the third row (see text). There were no differences simulated between groups 
(none) on the last row (for type I error testing). We can note that the regularized phylogenetic 
MANOVAs based on penalized likelihood (“loocv-1” and “loocv-2”) show good performances in terms 
of statistical power in all of the scenarios and for various level of phylogenetic signal (Pagel’s 𝜆), and 
type I error to the nominal rate. In contrast, methods that are restricted to Brownian motion (distance-
based, simulations-based, and PCA-based MANOVA) show high type I error with decreasing 
phylogenetic signal (or equivalently increased random noise; see text). 



2 ) Plots of the PL-pPCA axes for the Phyllostomid bats datasets along with their diet 
and feeding modes. 

 

 

Figure S5. Plot of the three first PL-pPC axes on the Phyllostomid bats dataset. In a) and b) the species 
are distinguished by a colour coding depending on whether their feeding mode involves a considerable 
amount of mastication (“high-mastication”) or little or no mastication (“low-mastication”). In c) and 
d), the “low-mastication” species are further distinguished depending on whether they have a 
sanguivores or nectarivores diet. The proposed feeding modes and diets are described in Monteiro & 
Nogueira (2011). Sanguivores and nectarivores species are well separated from the species with high-
mastication on the second and third PL-pPC axes. 
 



 

Figure S6. Plot of the three first PL-pPC axes on the Phyllostomid bats dataset. In a) and b) the species 
are distinguished by a colour coding depending on their feeding mode: frugivores, animalivores, 
nectarivores, or sanguivores. In c) and d), the “animalivores” species are further distinguished 
depending on whether they are specialized in insectivory or carnivory. The proposed feeding modes 
and diets are described in Monteiro & Nogueira (2011). We can notice that the carnivore’s species are 
the only one that can be separated from the other species on the first PC axis. 
 
 
 
 



3) Results of univariate analysis of variance on the pPCs axes of the phyllostomid bats 
dataset. 

 
 

To further explore (and test) on which axes the differences detected by the penalized likelihood 

approach are located, we performed univariate phylogenetic ANOVAs on each of the three 

first separate phylogenetic PC axes (Table S1). For each grouping configuration, we first 

transformed the phylogenetic tree according to the Pagel’s 𝜆 values estimated by the PL-

MANOVA procedure (Table 2a). Next, we computed the pPC axes using the mvgls.pca function 

in mvMORPH under a BM process. Finally, we performed a phylogenetic ANOVA on each of 

the three first pPC axes using the gls function from “nlme” package, with the covariance 

structure provided by the corPagel function in “ape” (Paradis et al. 2004). No significant 

differences were detected on the first PC axis, with the exception of the five groups scenario 

(Table S1, see also Figures S5-6). Differences occurred on pPC2 (except for the 2-groups 

scenario, see also Figure 2 in the main text and Figure S5) and pPC3 (for all scenarios). 

 

 
Table S1. Results of univariate pANOVAs on the first pPC axes for the various dietary grouping scenarios 

considered for the phyllostomid bats dataset. 

 pANOVA - Tests significance (p-values) 
  Grouping 1 Grouping 2 Grouping 3 Grouping 4 
pPC1* 0.5331 0.7739 0.3552 0.0006 
pPC2* 0.0983 <0.0001 <0.0001 <0.0001 
pPC3* <0.0001 <0.0001 <0.0001 <0.0001 
*The phylogenetic tree was transformed to the Pagel's 𝜆 values estimated by the PL approach for each 
scenario before computing the pPCs and conducting the pANOVAs 

 

 

 

 

 



 

4 ) General linear hypothesis testing using multivariate contrasts and application to the 
bats dataset  

 

When the multivariate test on the GLS model 𝒀 = 𝑿𝑩 + 𝚵 is significant, we can use general 

linear hypothesis testing to test more specific hypotheses of the form: 

𝐻4: 𝑳𝑩 = 𝚯 

Where 𝑩 is the 𝑞 × 𝑝 matrix of parameters estimated while performing the GLS fit, L is a 

𝑘 × 𝑞 matrix of full row rank, 𝑟𝑎𝑛𝑘(𝑳) = 𝑘 ≤ 𝑞, called the contrast coding matrix, and 𝚯 is a 

𝑘 × 𝑝 constant matrix, usually full of zeros, called the right-hand-side (rhs) matrix, that 

together specify the hypotheses to be tested using k linear combinations of the parameters 𝑩 

(see details in Fox 2015; and also Rencher 2002 - p. 180-183).  

The multivariate tests of such general hypotheses (e.g., using the Wilks’s lambda, 

Pillai’s trace, Lawley-Hotelling, or Roy’s largest root tests) are based on the eigenvalues of the 

𝑝 × 𝑝 matrix 𝑬CD𝑯 described in the main text with the hypothesis matrix H given by (see Rao 

et al. 1993; Timm 2002):  

𝑯 = (𝑩F𝑳F − 𝚯F)[𝑳(𝑿F𝑪CD𝑿)CD𝑳F]CD(𝑳𝑩 − 𝚯) 

Where C is the phylogenetic variance-covariance matrix estimated during the GLS fit. When 

the significance of the test is assessed using the permutation procedure (e.g. in the PL test, cf 

main text), we need the design matrix of the null (or reduced) model 𝑿𝟎, which is given by 

𝑿𝟎 = 𝑿(𝑰 − 𝑳F(𝑳F)L) where 𝑨L stands for the pseudoinverse of a given matrix A, and I is the 

𝑞 × 𝑞 identity matrix (Winkler et al. 2014). The test statistic distribution is then obtained as 

described in the main text.  

We illustrate the general linear hypothesis testing on the bat dataset. The overall 

MANOVA test in the 5 groups scenario rejected the null hypothesis (𝐻4: 𝑿𝑩 = 𝟏𝑩OPQQ). We 

test three specific hypotheses about morphological difference between groups: 1) difference 



between the sanguivorous and the nectivorous species, 2) between the frugivorous and the 

animalivorous, and 3) between the carnivorous and the insectivorous. These three tests 

correspond to the following linear hypotheses: 

0𝑩RSPTUVWSX + 0𝑩YOZ[\]UVWSX + 1𝑩_[\]`SUVWSX + 0𝑩a`SOUVWSX − 1𝑩b`OTPUVWSX = 𝚯D 

1𝑩RSPTUVWSX − 0.5𝑩YOZ[\]UVWSX + 0𝑩_[\]`SUVWSX − 0.5𝑩a`SOUVWSX + 0𝑩b`OTPUVWSX = 𝚯d 

0𝑩RSPTUVWSX + 1𝑩YOZ[\]UVWSX + 0𝑩_[\]`SUVWSX − 1𝑩a`SOUVWSX + 0𝑩b`OTPUVWSX = 𝚯e 

 

Where 𝑩fU[] is the row of 𝑩 that corresponds to the specified diet category, and  𝚯D,𝚯d	and 𝚯e are 

taken to be vectors of length p full of zeros. The corresponding 𝑳 contrast coding matrices used 

to test each of the three hypotheses are therefore: 

𝑳D = [0 0 1					0 −1] 

𝑳d = [1 −0.5 0					−0.5 0] 

𝑳e = [0 1 0					−1 0] 

 We ran the manova.gls function with the contrast coding matrices L defined above and 

right-hand-side null matrices 𝚯 with the Wilks statistic (9999 permutations) on the bat dataset. 

We used Holm and Bonferroni multiple testing corrections (Holm 1979) on the estimated p-

values using the p.adjust function in the R package “stats”. Results are presented in Table (S2) 

and show that all the tests rejected the null hypothesis, suggesting that the various dietary 

strategies are associated to well differentiated morphologies.  

 

Table S2. Results from linear hypothesis tests (MANOVA on contrasts variables) on the bats 

dataset (9999 permutations). 

  Linear hypothesis 
 Wilks 𝜆 p-value p-value 

(Holm) 
p-value 

(Bonferonni) 
Animalivorous vs. Frugivorous 0.0521 0.0001 0.0003 0.0003 
Insectivorous vs. Carnivorous 0.1331 0.0033 0.0033 0.0099 
Nectivorous vs. Sanguivorous 0.0279 0.0001 0.0003 0.0003 



5 ) Simulating differences between groups in the multidimensional space. 
 
 

To simulate scenarios where the differences between the binary groups are located on specific 

dimensions of the multivariate space (i.e., 𝝁d ≠ 𝝁D on PC1, PC2, or all the PCs axes), we first 

rotated the simulated datasets 𝒀 to its principal component axes: 

 

𝒀j = 𝒀𝑼 

Where 𝑹 = 𝑼F𝑫𝑼 is an eigen decomposition of the trait’s covariance matrix 𝑹. In practice we 

used the simulated covariance matrix 𝑹 (as explained in the main text) rather than the empirical 

(sample) covariance because it corresponds to the population estimate, and because the later 

estimate is singular in high-dimensions. Differences between groups were then introduced by 

shifting part of the values from the jth column (or columns) of 𝒀j corresponding to the desired 

PCs dimensions (e.g., PC1, PC2 and all the PCs in our experiment):  

 

𝒀no = 𝒀jo + 𝑿𝛽 

Where 𝑿 is a design matrix with dummy coding specifying the row of 𝒀jo that correspond to 

each of the two groups, and 𝛽 = {𝝁D; 𝝁d} is a vector with the two groups mean (𝝁D = 0 and 

𝝁d ≠ 𝝁D). The effect-size chosen for the shifts from 𝝁D to 𝝁d are described in the main text. 

To preserve the rank of the eigenvalues of the original data on the transformed dataset, we need 

to standardize first each transformed PCs axis to the variance of the original PCs: 

 

𝒀no = 𝒀no × t𝑉𝑎𝑟(𝒀jo) 𝑉𝑎𝑟(𝒀no)v  

We then center the j transformed PCs on the values of the original PCs: 

 

𝒀no = 𝒀no − 𝐸[𝒀no] + 𝐸[𝒀jo] 

And we finally transform back the transformed and standardized PCs to the original space 

using the eigenvector matrix  𝑼: 

𝒀∗ = 𝒀n𝑼F 

The values of 𝒀∗ show differences located on the desired PCs axes and are used in the 

downstream simulations. Note that, when the traits were simulated with a phylogenetic signal, 

the mean and variance of the respective PCs are computed using the generalized least squares 

estimates given by: 



𝐸[𝒀] = (𝟏F𝑪CD𝟏)CD𝟏F𝑪CD𝒀 

and, 

𝑉𝑎𝑟(𝒀) = 𝑑𝑖𝑎𝑔((𝒀 − 𝐸[𝒀])F𝑪CD(𝒀 − 𝐸[𝒀]))/(𝑛 − 1) 

 

Where 𝒀 is either 𝒀no or 𝒀jo, n is the number of species, 𝑪 is the variance covariance matrix of 

the evolutionary process, and 𝟏 is a column vector of one. 

 

 

 

 

 

 

6) Step by step calculation of the first and second order derivative of the log-likelihood 

in Appendix 2 

 

 

It is shown in the Appendix 2, that the cross-validated log-likelihood (Equation A2 in 

Appendix 1) can be computed using the following equation: 

ℒa~ ∝ −
𝑝log|𝑪| − 	𝑝log|𝑿F𝑪CD𝑿|
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To differentiate this function with respect to the regularization parameter 𝛾, we make use of 

the sum/difference rule (𝑓 ± 𝑔)� = 𝑓� ± 𝑔� to differentiate the summands separately. We start 

by using the chain rule [log�𝑢(𝑥)�]� = D
P(�)

× 𝑢�(𝑥) for the term log�(1 − 𝛾)𝑑o
(CU) + 	𝛾𝑡o� and 

we factor out the constant terms in 
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(𝑎 × 𝑓)� = 𝑎 × 𝑓�. We can now apply the reciprocal rule [ D
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	which leads to: 
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We reuse the sum rule and the standard derivative rules 𝑥� = 1 and 𝑎� = 0 (for some constant 

𝑎), for solving ª
ª�
�(1 − 𝛾)𝑑o

(CU) + 	𝛾𝑡o�: 

𝜕
𝜕𝛾 �

(1 − 𝛾)𝑑o
(CU) + 	𝛾𝑡o� =

𝜕
𝜕𝛾 �

(1 − 𝛾)𝑑o
(CU)� +

𝜕
𝜕𝛾 «𝛾𝑡o¬ = 𝑑o

(CU) 𝜕
𝜕𝛾
[(1 − 𝛾)] + 𝑡o

𝜕
𝜕𝛾
[𝛾]

= −𝑑o
(CU) +	𝑡o 

 

We then substitute back into the previous equation 
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After simplifications we obtain the first derivative as follow: 
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We can again use the constant factor rule to the above equation to obtain the closed form 

solution to the second order derivative: 
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We then use the quotient rule �P(�)
V(�)
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 to solve the derivative: 
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Finally, we need the power rule [𝑢(𝑥)O]� = 𝑛 × 𝑢(𝑥)OCD × 𝑢�(𝑥) to differentiate the term 
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After simplifications we can rewrite the above equation in a more compact form: 

𝜕dℒa~
𝜕𝛾d = −

1
2� �

�𝑡o − 𝑑o
(CU)�

d
¥𝑐𝑡𝛾 + 𝑐𝑑o

(CU) − 𝑐𝑑o
(CU)𝛾 − 2�𝑧o

(U)�
d
¦

�𝑑o
(CU) − 𝑑o

(CU)𝛾 + 𝛾𝑡o�
e

�

o�D

O

U�D
 

 
 
 
 
 
 
 
 
 



References: 
 
Anderson M., Braak C.T. 2003. Permutation tests for multi-factorial analysis of variance. 

Journal of Statistical Computation and Simulation. 73:85–113. 

Fox J. 2015. Applied Regression Analysis and Generalized Linear Models. SAGE 
Publications. 

Freedman D., Lane D. 1983. A nonstochastic interpretation of reported significance levels. 
Journal of Business & Economic Statistics. 1:292–298. 

Holm S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal 
of Statistics. 6:65–70. 

Monteiro L.R., Nogueira M.R. 2011. Evolutionary patterns and processes in the radiation of 
phyllostomid bats. BMC Evolutionary Biology. 11:1–23. 

Paradis E., Claude J., Strimmer K. 2004. APE: Analysis of Phylogenetics and Evolutions in 
R language. Bioinformatics. 20:289–290. 

Rao J.N.K., Brajendra C.S., Yue K. 1993. Generalized Least Squares F test in regression 
analysis with two-stage cluster samples. Journal of the American Statistical 
Association. 88:1388–1391. 

Rencher A.C. 2002. Methods of Multivariate Analysis. New York: John Wiley & Sons. 

Timm N.H. 2002. Applied Multivariate Analysis. Springer-Verlag New York. 

Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. 2014. Permutation 
inference for the general linear model. NeuroImage. 92:381–397. 

 


