Online Appendix D Explaining regional richness patterns
page: 1

Supplementary Material

Online Appendix D. Tables D1-D14.

Time explains regional richness patterns within clades more often than diversification rates or area

Hong Li ${ }^{1,2}$ and John J. Wiens ${ }^{2 *}$
${ }^{1}$ Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing

210023, Jiangsu, China
${ }^{2}$ Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
*Corresponding author: wiensj@email.arizona.edu

American Naturalist

Table D1. Results of Shapiro-Wilks tests for normality for the distribution of species richness among regions for each of the 15 clades. Both raw species richness and ln-transformed species richness were tested. Results in boldface indicate that normality was rejected. For the four clades in which normality was rejected for both raw and ln-richness, we also performed Spearman rank correlation tests (table D12).

Reference	Raw richness	ln-richness
Bengtson et al. (2015)	$\mathbf{W}=\mathbf{0 . 6 9 3}$,	$\mathbf{W}=\mathbf{0 . 7 7 7}$,
	$\boldsymbol{P}=\mathbf{0 . 0 0 5}$	$\boldsymbol{P}=\mathbf{0 . 0 3 6}$
Sun et al. (2014)	$\mathrm{W}=0.846$,	$\mathrm{W}=0.959$,
	$P=0.113$,	$P=0.812$
Vitales et al. (2014)	$\mathrm{W}=0.914$,	$\mathrm{W}=0.916$,
Toussaint and Condamine (2016)	$P=0.490$	$P=0.503$
	$\mathrm{~W}=0.851$,	$\mathrm{W}=0.939$,
Frey and Vermeij (2008)	$\mathrm{W}=0.161, \mathbf{0 . 6 3 1}$,	$P=0.652$
	$\boldsymbol{P}=\mathbf{0 . 0 0 2}$	$\mathrm{W}=0.933$,
Ludt et al. (2015)	$\mathrm{W}=0.684$,	$\mathrm{W}=0.617$
	$P=0.006$,	
Ma et al. (2016)	$\mathrm{W}=0.906$,	$P=0.006$
	$P=0.411, \mathrm{~W}=0.929$,	
Mariguela et al. (2016)	$\mathrm{W}=0.866$,	$P=0.569$
	$P=0.170$	$\mathrm{~W}=0.837$,
Metallinou et al. (2015)	$\mathrm{W}=\mathbf{0 . 5 5 2}$,	$\mathrm{W}=0.093$

Online Appendix D Explaining regional richness patterns

	$\boldsymbol{P}=\mathbf{0 . 0 0 0 1}$	$\boldsymbol{P}=\mathbf{0 . 0 0 0 1}$
Iverson et al. (2013)	$\mathrm{W}=0.917$,	$\mathrm{W}=0.925$,
	$P=0.298$	$P=0.361$
Tolley et al. (2013)	$\mathbf{W}=\mathbf{0 . 6 6 8}$,	$\mathbf{W}=\mathbf{0 . 7 3 8}$,
	$\boldsymbol{P}=\mathbf{0 . 0 0 3}$	$\boldsymbol{P}=\mathbf{0 . 0 1 5}$
Beckman and Witt (2015)	$\mathrm{W}=0.948$,	$\mathrm{W}=0.891$,
Buckner et al. (2015)	$P=0.672$,	$P=0.206$
	$\mathrm{~W}=0.926$,	$\mathrm{W}=0.871$,
Day et al. (2013)	$P=0.409$	$P=0.103$
Martins and Melo (2016)	$\mathrm{W}=0.855$,	$\mathrm{W}=0.897$,
	$P=0.174$,	$P=0.359$
	$\mathrm{~W}=0.808$,	$\mathrm{W}=0.965$,
	$P=0.093$	$P=0.843$

Table D2. Regression analyses of relationships between raw species richness of regions and four independent variables. AFC $=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization events; $\mathrm{NCE}=$ number of colonization events per region; NDR = mean net diversification rate. Results in boldface indicated the variable with the lowest AIC (Akaike information criterion). "Null" indicates cases in which regression analysis failed.

Reference	Species richness vs. AFC	Species richness vs. SAC	Species richness vs. NCE	Species richness vs. NDR
Bengtson et al. (2015)	$r^{2}=0.835$,	$r^{2}=0.053$,	$r^{2}=0.396$,	$r^{2}=0.004$,
	$F_{1,4}=20.20$,	$F_{1,4}=0.23$,	$F_{1,4}=2.62$,	$F_{1,4}=0.02$,
	$P=0.011$	$P=0.660$	$P=0.181$	$P=0.908$
	AIC $=41.013$	AIC $=51.484$	AIC $=48.793$	AIC $=51.790$
Sun et al. (2014)	$r^{2}=0.930$,	$\mathrm{r}^{2}=0.220$,	$r^{2}=0.065$,	$r^{2}=0.622$,
	$F_{1,5}=66.60$,	$F_{1,5}=1.41$,	$F_{1,5}=0.35$,	$F_{1,5}=8.22$,
	$\boldsymbol{P}=0.0004$	$P=0.288$	$P=0.581$	$P=0.035$
	AIC $=34.870$	AIC $=51.761$	AIC $=53.031$	AIC $=46.698$
Vitales et al. (2014)	$r^{2}=0.567$,	$r^{2}=0.554$,	$r^{2}=0.052$,	$r^{2}=0.334$,
	$F_{1,3}=3.93$,	$F_{1,3}=3.72$,	$F_{1,3}=0.16$,	$F_{1,3}=1.51$,
	$P=0.142$	$P=0.149$	$P=0.712$	$P=0.307$
	AIC $=27.227$	AIC $=27.383$	AIC $=31.148$	AIC $=29.379$
Toussaint and Condamine (2016)	$r^{2}=0.878$,	$r^{2}=0.449$,	$r^{2}=0.027$,	$r^{2}=0.119$,
	$F_{1,4}=28.71$,	$F_{1,4}=3.25$,	$F_{1,4}=0.11$,	$F_{1,4}=0.54$,
	$\boldsymbol{P}=0.006$	$P=0.146$	$P=0.756$	$P=0.503$
	AIC $=31.736$	AIC $=40.774$	AIC $=44.181$	AIC $=43.584$
Frey and Vermeij (2008)	$r^{2}=0.795$,	$r^{2}=0.460$,	$r^{2}=0.322$,	$r^{2}=0.731$,
	$F_{1,3}=11.62$,	$F_{1,3}=2.55$,	$F_{1,3}=1.42$,	$F_{1,3}=8.14$,

Online Appendix D Explaining regional richness patterns
page: 5

	$P=0.042$	$P=0.209$	$P=0.319$	$P=0.065$
	AIC $=44.004$	AIC $=48.847$	AIC $=49.981$	AIC $=45.366$
Ludt et al. (2015)	$r^{2}=0.242$,	$r^{2}=0.242$,	Null	$r^{2}=0.441$,
	$F_{1,3}=0.96$,	$F_{1,3}=0.96$,		$F_{1,3}=2.37$,
	$P=0.400$	$P=0.400$		$P=0.221$
	$\mathrm{AIC}=11.667$	$\mathrm{AIC}=11.667$		AIC $=10.140$
Ma et al. (2016)	$r^{2}=0.927$,	$\mathrm{R}^{2}=0.876$,	$r^{2}=0.557$,	$r^{2}=0.008$,
	$F_{1,4}=\mathbf{5 0 . 5 0}$,	$F_{1,4}=28.15$,	$F_{1,4}=5.03$,	$F_{1,4}=0.03$,
	$P=0.002$	$P=0.006$	$P=0.088$	$P=0.867$
	AIC $=45.383$	$\mathrm{AIC}=48.550$	AIC $=56.171$	AIC $=61.006$
Mariguela et al. (2016)	$r^{2}=0.870$,	$r^{2}=0.913$,	$r^{2}=0.730$,	$r^{2}=0.577$,
	$F_{1,5}=33.32$,	$F_{1,5}=52.76$,	$F_{1,5}=13.49$,	$F_{1,5}=6.83$,
	$P=0.002$	$P=0.0008$	$P=0.014$	$P=0.048$
	AIC $=19.441$	AIC $=16.568$	AIC $=24.542$	AIC $=27.671$
Metallinou et al. (2015)	$r^{2}=0.098$,	$r^{2}=0.580$,	Null	Null
	$F_{1,3}=0.33$,	$F_{1,3}=4.15$,		
	$P=0.608$	$P=0.135$		
	AIC $=21.495$	AIC $=17.673$		
Iverson et al. (2013)	$r^{2}=0.607$,	$r^{2}=0.668$,	$r^{2}=0.019$,	$r^{2}=0.116$,
	$F_{1,9}=13.91$,	$F_{1,9}=18.07$,	$F_{1,9}=0.17$,	$F_{1,9}=1.18$,
	$P=0.005$	$P=0.002$	$P=0.688$	$P=0.306$
	AIC $=46.801$	AIC $=44.963$	AIC $=58.869$	AIC $=55.725$
Tolley et al. (2013)	$r^{2}=0.969$,	$r^{2}=0.809$,	$r^{2}=0.357$,	$r^{2}=0.506$,
	$F_{1,4}=126.10$,	$F_{1,4}=16.98$,	$F_{1,4}=2.22$,	$F_{1,4}=4.09$,
	$\boldsymbol{P}=0.0004$	$P=0.015$	$P=0.211$	$P=0.113$

Online Appendix D Explaining regional richness patterns
page: 6

	AIC $=\mathbf{4 6 . 0 7 9}$	$\mathrm{AIC}=57.026$	$\mathrm{AIC}=64.323$	AIC $=62.742$
Beckman and Witt	$r^{2}=0.012$,	$r^{2}=0.010$,	$\boldsymbol{r}^{2}=\mathbf{0 . 5 7 6}$,	$r^{2}=0.427$,
(2015)	$F_{1,7}=0.09$,	$F_{1,7}=0.07$,	$\boldsymbol{F}_{\mathbf{1}, \mathbf{7}}=\mathbf{9 . 5 2}$,	$F_{1,7}=5.22$,
	$P=0.779$	$P=0.935$	$\boldsymbol{P}=\mathbf{0 . 0 1 8}$	$P=0.056$
	$\mathrm{AIC}=42.911$	$\mathrm{AIC}=43.011$	AIC $=\mathbf{3 5 . 2 9 1}$	$\mathrm{AIC}=38.007$
Buckner et al. (2015)	$r^{2}=0.791$,	$\boldsymbol{r}^{2}=\mathbf{0 . 8 2 4}$,	$r^{2}=0.651$,	$r^{2}=0.017$,
	$F_{1,8}=30.23$,	$\boldsymbol{F}_{\mathbf{1}, \mathbf{8}}=\mathbf{3 7 . 4 3 ,}$	$F_{1,8}=14.90$,	$F_{1,8}=0.14$,
	$P=0.0006$	$\boldsymbol{P}=\mathbf{0 . 0 0 0 3}$	$P=0.005$	$P=0.719$
	$\mathrm{AIC}=35.983$	AIC $=\mathbf{3 4 . 2 5 7}$	$\mathrm{AIC}=41.107$	$\mathrm{AIC}=51.452$

Table D3. Regression analyses of relationships between ln-transformed species richness of regions and four independent variables. $\mathrm{AFC}=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization events; $\mathrm{NCE}=$ number of colonization events per region; NDR = mean net diversification rate. Results in boldface indicated the variable with the lowest AIC (Akaike information criterion). "Null" indicates cases in which regression analysis failed.

Reference	Ln(richness) vs. AFC	Ln(richness) vs. SAC	Ln(richness) vs. NCE	Ln(richness) vs. NDR
Bengtson et al. (2015)	$\begin{aligned} & r^{2}=0.926 \\ & F_{1,4}=49.71, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & r^{2}=0.085, \\ & F_{1,4}=0.37, \\ & P=0.575 \end{aligned}$	$\begin{aligned} & r^{2}=0.376 \\ & F_{1,4}=2.41 \\ & P=0.196 \end{aligned}$	$\begin{aligned} & r^{2}=0.007 \\ & F_{1,4}=0.03 \\ & P=0.871 \end{aligned}$
	AIC $=\mathbf{- 2 . 6 4 6}$	AIC $=12.404$	AIC $=10.109$	AIC $=12.893$
Sun et al. (2014)	$\begin{aligned} & r^{2}=0.631 \\ & F_{1,5}=8.55 \\ & P=0.033 \end{aligned}$	$\begin{aligned} & r^{2}=0.394, \\ & F_{1,5}=3.25, \\ & P=0.131 \end{aligned}$	$\begin{aligned} & r^{2}=0.009 \\ & F_{1,5}=0.04 \\ & P=0.842 \end{aligned}$	$\begin{aligned} & r^{2}=0.622, \\ & F_{1,5}=8.21, \\ & P=0.035 \end{aligned}$
	AIC $=14.575$	AIC $=18.046$	AIC $=21.492$	AIC $=14.753$
Vitales et al. (2014)	$\begin{aligned} & r^{2}=0.477 \\ & F_{1,3}=2.73 \\ & P=0.197 \end{aligned}$	$\begin{aligned} & r^{2}=0.485 \\ & F_{1,3}=2.83 \\ & P=0.191 \end{aligned}$	$\begin{aligned} & r^{2}=0.003, \\ & F_{1,3}=0.009 \\ & P=0.930 \end{aligned}$	$\begin{aligned} & r^{2}=0.423, \\ & F_{1,3}=2.20, \\ & P=0.235 \end{aligned}$
	AIC $=14.807$	AIC $=14.725$	AIC $=18.031$	AIC $=15.294$
Toussaint and Condamine (2016)	$\begin{aligned} & r^{2}=0.756 \\ & F_{1,4}=12.38 \\ & P=0.025 \end{aligned}$	$\begin{aligned} & r^{2}=0.583 \\ & F_{1,4}=5.60 \\ & P=0.077 \end{aligned}$	$\begin{aligned} & r^{2}=0.003 \\ & F_{1,4}=0.01 \\ & P=0.919 \end{aligned}$	$\begin{aligned} & r^{2}=0.095 \\ & F_{1,4}=0.42 \\ & P=0.552 \end{aligned}$
	AIC $=6.509$	AIC $=9.717$	AIC $=14.950$	AIC $=14.368$
Frey and Vermeij (2008)	$\begin{aligned} & r^{2}=0.959 \\ & F_{1,3}=69.55, \end{aligned}$	$\begin{aligned} & r^{2}=0.809 \\ & F_{1,3}=12.68 \end{aligned}$	$\begin{aligned} & r^{2}=0.064 \\ & F_{1,3}=0.20, \end{aligned}$	$\begin{aligned} & r^{2}=0.939 \\ & F_{1,3}=45.75 \end{aligned}$

Online Appendix D Explaining regional richness patterns
page: 8

	$P=0.004$	$P=0.038$	$P=0.682$	$P=0.007$
	$\mathrm{AIC}=7.732$	AIC $=15.392$	AIC $=23.330$	AIC $=9.720$
Ludt et al. (2015)	$r^{2}=0.242$,	$r^{2}=0.242$,	Null	$r^{2}=\mathbf{0 . 4 4 2}$,
	$F_{1,3}=0.96$,	$F_{1,3}=0.96$,		$F_{1,3}=2.37$,
	$P=0.400$	$P=0.400$		$P=0.221$
	AIC $=8.002$	AIC $=8.002$		AIC $=6.475$
Ma et al. (2016)	$r^{2}=0.977$,	$r^{2}=0.867$,	$r^{2}=0.681$,	$r^{2}=0.0007$,
	$F_{1,4}=170.80$,	$F_{1,4}=26.12$,	$F_{1,4}=8.53$,	$F_{1,4}=0.003$,
	$\boldsymbol{P}=0.0002$	$P=0.007$	$P=0.043$	$P=0.960$
	AIC $=\mathbf{- 4 . 7 6 2}$	AIC $=5.790$	$\mathrm{AIC}=11.053$	AIC $=17.898$
Mariguela et al. (2016)	$r^{2}=0.679$,	$r^{2}=0.758$,	$\mathrm{R}^{2}=0.806$,	$r^{2}=0.625$,
	$F_{1,5}=10.55$,	$F_{1,5}=15.66$,	$F_{1,5}=20.77$,	$F_{1,5}=8.31$,
	$P=0.023$	$P=0.011$	$P=0.006$	$P=0.034$
	AIC $=12.905$	AIC $=10.917$	AIC $=9.368$	AIC $=13.992$
Metallinou et al. (2015)	$r^{2}=0.098$,	$r^{2}=0.580$,	Null	Null
	$F_{1,3}=0.33$,	$F_{1,3}=4.15$,		
	$P=0.608$	$P=0.135$		
	AIC $=11.665$	AIC $=9.953$		
Iverson et al. (2013)	$r^{2}=0.377$,	$r^{2}=0.473$,	$r^{2}=0.136$,	$r^{2}=0.213$,
	$F_{1,9}=5.45$,	$F_{1,9}=8.07$,	$F_{1,9}=1.42$,	$F_{1,9}=2.44$,
	$P=0.044$	$P=0.019$	$P=0.264$	$P=0.153$
	AIC $=24.039$	AIC $=22.209$	AIC $=27.636$	AIC $=26.612$
Tolley et al. (2013)	$r^{2}=0.938$,	$r^{2}=0.804$,	$r^{2}=0.375$,	$r^{2}=0.678$,
	$F_{1,4}=60.11$,	$F_{1,4}=16.36$,	$F_{1,4}=2.40$,	$F_{1,4}=8.44$,
	$P=0.001$	$P=0.016$	$P=0.196$	$P=0.044$

Online Appendix D Explaining regional richness patterns
page: 9

	AIC = 14.682	AIC $=21.565$	AIC $=28.508$	AIC $=24.521$
Beckman and Witt (2015)	$r^{2}<0.001$,	$r^{2}=0.025$,	$\boldsymbol{r}^{2}=\mathbf{0 . 6 7 0}$,	$r^{2}=0.283$,
	$F_{1,7}<0.001$,	$F_{1,7}=0.18$,	$\boldsymbol{F}_{\mathbf{1}, \boldsymbol{7}}=\mathbf{1 4 . 2 3}$,	$F_{1,7}=2.76$,
	$P=0.993$	$P=0.685$	$\boldsymbol{P}=\mathbf{0 . 0 0 7}$	$P=0.141$
Buckner et al. (2015)	AIC $=24.199$	AIC $=23.972$	AIC $=\mathbf{1 4 . 2 1 3}$	AIC $=21.209$
	$\boldsymbol{r}^{2}=\mathbf{0 . 7 4 6}$,	$r^{2}=0.707$,	$r^{2}=0.559$,	$r^{2}=0.080$,
	$\boldsymbol{F}_{\mathbf{1}, \mathbf{8}}=\mathbf{2 3 . 5 0}$,	$F_{1,8}=19.29$,	$F_{1,8}=10.13$,	$F_{1,8}=0.70$,
	$\boldsymbol{P}=\mathbf{0 . 0 0 1}$	$P=0.002$	$P=0.013$	$P=0.428$
	AIC $=\mathbf{1 3 . 7 5 6}$	AIC $=15.188$	AIC $=19.280$	AIC $=26.624$

Table D4. Regression analyses of relationships between species richness (raw and ln-transformed) of regions and four independent variables, for the two less complete datasets. Independent variables are: $\mathrm{AFC}=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization events; $\mathrm{NCE}=$ number of colonization events per region; $\mathrm{NDR}=$ mean net diversification rate. Results in boldface indicate the model with the lowest AIC (Akaike information criterion).

Reference	Species richness vs. AFC	Species richness vs. SAC	Species richness vs. NCE	Species richness vs. NDR
Martins and Melo (2016)	$r^{2}=0.966$,	$r^{2}=0.872$,	$r^{2}=0.011$,	$r^{2}=0.006$,
	$F_{1,3}=86.17$,	$F_{1,3}=20.35$,	$F_{1,3}=0.03$,	$F_{1,3}=0.18$,
	$P=0.003$	$P=0.020$	$P=0.866$	$P=0.901$
	AIC $=32.419$	AIC $=39.120$	AIC $=49.323$	AIC $=49.348$
Day et al. (2013)	$r^{2}=0.876$,	$r^{2}=0.912$,	$r^{2}=0.038$,	$r^{2}<0.0001$,
	$F_{1,4}=28.22$,	$F_{1,4}=41.25$,	$F_{1,4}=0.16$,	$F_{1,4}<0.0001$,
	$P=0.006$	$P=0.003$	$P=0.713$	$P=0.999$
	$\mathrm{AIC}=38.870$	AIC $=36.832$	AIC $=51.157$	AIC $=51.387$
	Ln(richness) vs. AFC	Ln(richness) vs. SAC	Ln(richness) vs. NCE	Ln(richness) vs. NDR
Martins and Melo (2016)	$r^{2}=0.718$	$r^{2}=0.879$,	$r^{2}=0.069$,	$r^{2}=0.295$,
	$F_{1,3}=7.63$,	$F_{1,3}=21.68$,	$F_{1,3}=0.22$,	$F_{1,3}=1.26$,
	$P=0.070$	$P=0.019$	$P=0.668$	$P=0.344$
	AIC $=16.526$	AIC $=12.314$	AIC $=22.491$	AIC $=21.102$
Day et al. (2013)	$r^{2}=0.523$,	$r^{2}=0.621$,	$r^{2}=0.034$,	$r^{2}=0.151$,
	$F_{1,4}=4.55$,	$F_{1,4}=6.54$,	$F_{1,4}=0.14$,	$F_{1,4}=0.71$,
	$P=0.100$	$P=0.063$	$P=0.727$	$P=0.447$
	AIC $=19.865$	AIC $=18.612$	AIC $=24.218$	AIC $=23.444$

Table D5. Multiple regression analyses of relationships between raw species richness and time, number of colonization events, and diversification rates. $\mathrm{AFC}=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization; $\mathrm{NCE}=$ number of colonization events; NDR $=$ net diversification rates. Results in boldface indicate the model with the lowest AIC (Akaike information criterion). Multiple regression analyses were only applied to some studies and only to some variables (depending on the results of the pairwise analyses, see Methods).

Reference	Richness vs. (AFC+NCE)	Richness vs. $(\mathrm{AFC}+\mathrm{NDR})$	Richness vs. (SAC+NCE)	Richness vs. (SAC+NDR)	Richness vs. (NCE+NDR)	Richness vs. (AFC+NDR+ NCE)	Richness vs. $\begin{aligned} & \text { (SAC+NDR+ } \\ & \text { NCE) } \end{aligned}$
Sun et al. (2014)		$\begin{aligned} & r^{2}=0.933 \\ & F_{2,4}=27.94, \\ & P=0.004 \end{aligned}$					
Vitales et al. (2014)	$\begin{aligned} & r^{2}=0.571, \\ & F_{2,2}=1.33, \\ & P=0.429 \end{aligned}$	$\begin{aligned} & \mathbf{A I C}=\mathbf{3 6 . 5 6 0} \\ & r^{2}=0.933 \\ & F_{2,2}=13.96 \\ & P=0.067 \end{aligned}$	$\begin{aligned} & r^{2}=0.571, \\ & F_{2,2}=1.33, \\ & P=0.429 \end{aligned}$	$\begin{aligned} & r^{2}=\mathbf{0 . 9 3 7}, \\ & \boldsymbol{F}_{\mathbf{2}, 2}=\mathbf{1 4 . 9 2} \\ & \boldsymbol{P}=\mathbf{0 . 0 6 3} \end{aligned}$	$\begin{aligned} & r^{2}=0.348, \\ & F_{2,2}=0.53, \\ & P=0.652 \end{aligned}$	$\begin{aligned} & r^{2}=0.937, \\ & F_{3,1}=4.98, \\ & P=0.316 \end{aligned}$	$\begin{aligned} & r^{2}=0.937, \\ & F_{3,1}=4.98, \\ & P=0.316 \end{aligned}$
Frey and Vermeij (2008)	$\mathrm{AIC}=29.179$	$\begin{aligned} & \mathrm{AIC}=19.886 \\ & r^{2}=0.796, \\ & F_{1,3}=3.89 \\ & P=0.205 \end{aligned}$	AIC $=29.179$	AIC $=19.578$	AIC $=31.276$	$\begin{aligned} & \mathrm{AIC}=21.574 \\ & \boldsymbol{r}^{2}=\mathbf{0 . 9 0 8}, \\ & \boldsymbol{F}_{\mathbf{1 , 3}}=\mathbf{3 . 3 0}, \\ & \boldsymbol{P}=\mathbf{0 . 3 8 0} \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=21.574 \\ & r^{2}=0.875, \\ & F_{3,1}=2.33, \\ & P=0.441 \end{aligned}$
Ludt et al. (2015)	$\begin{aligned} & r^{2}=0.242, \\ & F_{1,3}=0.96 \\ & P=0.400 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=45.986 \\ & \boldsymbol{r}^{2}=\mathbf{0 . 9 7 0} \\ & \boldsymbol{F}_{2,2}=\mathbf{3 1 . 7 9} \\ & \boldsymbol{P}=\mathbf{0 . 0 3 1} \end{aligned}$	$\begin{aligned} & r^{2}=0.242, \\ & F_{1,3}=0.96, \\ & P=0.400 \end{aligned}$	$\begin{aligned} & r^{2}=0.970 \\ & F_{2,2}=31.79 \\ & P=0.031 \end{aligned}$	$\begin{aligned} & r^{2}=0.442, \\ & F_{1,3}=2.37, \\ & P=0.221 \end{aligned}$	$\begin{aligned} & \text { AIC }=\mathbf{4 3 . 9 7 7} \\ & r^{2}=0.970 \\ & F_{2,2}=31.79 \\ & P=0.031 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=45.527 \\ & r^{2}=0.970 \\ & F_{2,2}=31.79 \\ & P=0.031 \end{aligned}$
	AIC $=11.667$	AIC $=\mathbf{- 2 . 3 9 7}$	AIC $=11.667$	AIC $=$-2.397	AIC $=10.140$	AIC $=-2.397$	AIC $=-2.397$

Online Appendix D Explaining regional richness patterns
page: 12

Ma et al. (2016)	$\begin{aligned} & r^{2}=0.939, \\ & F_{2,3}=22.94, \\ & P=0.015 \end{aligned}$		$\begin{aligned} & r^{2}=0.884, \\ & F_{2,3}=11.40, \\ & P=0.040 \end{aligned}$			$\begin{aligned} & r^{2}=0.943, \\ & F_{3,2}=11.07, \\ & P=0.084 \end{aligned}$	$\begin{aligned} & r^{2}=0.948, \\ & F_{3,2}=12.05, \\ & P=0.078 \end{aligned}$
Mariguela et al.(2016)	AIC $=46.311$		AIC $=50.145$			AIC $=47.846$	AIC $=47.366$
	$\begin{aligned} & r^{2}=0.923, \\ & F_{2,4}=23.83, \\ & P=0.006 \end{aligned}$	$\begin{aligned} & r^{2}=0.951, \\ & F_{2,4}=39.12, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & r^{2}=0.947, \\ & F_{2,4}=35.91, \\ & P=0.003 \end{aligned}$	$\begin{aligned} & r^{2}=0.925, \\ & F_{2,4}=61.65, \\ & P=0.001 \end{aligned}$	$\begin{aligned} & r^{2}=0.898, \\ & F_{2,4}=17.64, \\ & P=0.010 \end{aligned}$	$\begin{aligned} & r^{2}=0.995, \\ & F_{3,3}=208.10, \\ & P=0.0006 \end{aligned}$	$\begin{aligned} & r^{2}=0.997, \\ & F_{3,3}=382.00, \\ & P=0.0002 \end{aligned}$
Beckman and Witt (2015)	$\mathrm{AIC}=17.788$	AIC $=14.533$	AIC $=15.103$	AIC $=12.778$	$\mathrm{AIC}=19.705$	AIC $=0.298$	AIC $=\mathbf{- 3 . 9 4 0}$
					$\begin{aligned} & r^{2}=0.836, \\ & F_{2,6}=15.32 \\ & P=0.004 \end{aligned}$	$\begin{aligned} & r^{2}=0.942, \\ & F_{3,5}=26.95, \\ & P=0.002 \end{aligned}$	$\begin{aligned} & r^{2}=0.942, \\ & F_{3,5}=26.88, \\ & P=0.002 \end{aligned}$
					AIC $=28.735$	AIC $=21.431$	AIC $=21.453$
Buckner et al.(2015)	$r^{2}=0.791$,		$r^{2}=0.875$,			$r^{2}=0.843$,	$r^{2}=0.941$,
	$F_{2,7}=13.23$,		$F_{2,7}=24.45$,			$F_{3,6}=10.73$,	$F_{3,6}=32.08$,
	$P=0.004$		$P=0.0007$			$P=0.008$	$\boldsymbol{P}=0.0004$
	AIC $=37.980$		AIC $=32.848$			AIC $=37.113$	AIC $=27.269$

Table D6. Multiple regression analyses of relationships between \ln-transformed species richness and time, number of colonization events, and diversification rates. $\mathrm{AFC}=$ Age of first colonization; $\mathrm{SAC}=$ summed ages of colonization; $\mathrm{NCE}=$ number of colonization events; NDR = net diversification rates. Results in boldface indicate the model with the lowest AIC (Akaike information criterion). Multiple regression analyses were only applied to some studies and only to some variables (depending on the results of the pairwise analyses, see Methods).

Reference	Ln(richness) vs. $(\mathrm{AFC}+\mathrm{NCE})$	Ln(richness) vs. (AFC+NDR)	Ln(richness) vs. (SAC+NCE)	Ln(richness) vs. $(\mathrm{SAC}+\mathrm{NDR})$	Ln(richness) vs. (NCE+NDR)	Ln(richness) vs. (AFC+NDR + NCE)	Ln(richness) vs. (SAC+NDR+ NCE)
Sun et al. (2014)		$\begin{aligned} & r^{2}=0.703, \\ & F_{2,4}=4.73, \\ & P=0.088 \end{aligned}$				$\begin{aligned} & r^{2}=0.965, \\ & F_{3,3}=27.80, \\ & P=0.011 \end{aligned}$	
Vitales et al. (2014)	$\begin{aligned} & r^{2}=0.487 \\ & F_{2,2}=0.95, \\ & P=0.513 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=15.057 \\ & r^{2}=0.933, \\ & F_{2,2}=13.87, \\ & P=0.067 \end{aligned}$	$\begin{aligned} & r^{2}=0.487 \\ & F_{2,2}=0.95 \\ & P=0.513 \end{aligned}$	$\begin{aligned} & r^{2}=0.961, \\ & F_{2,2}=24.34, \\ & P=0.039 \end{aligned}$	$\begin{aligned} & r^{2}=0.429, \\ & F_{2,2}=0.75, \\ & P=0.571 \end{aligned}$	$\begin{aligned} & \text { AIC }=\mathbf{2 . 0 3 0} \\ & r^{2}=0.993, \\ & F_{3,1}=47.86, \\ & P=0.106 \end{aligned}$	$\begin{aligned} & r^{2}=0.993, \\ & F_{3,1}=47.86, \\ & P=0.106 \end{aligned}$
Frey and Vermeij (2008)	$\mathrm{AIC}=16.713$	$\begin{aligned} & \mathrm{AIC}=6.551 \\ & \boldsymbol{r}^{2}=\mathbf{0 . 9 7 4}, \\ & \boldsymbol{F}_{2,2}=\mathbf{3 7 . 9 6}, \\ & \boldsymbol{P}=\mathbf{0 . 0 2 6} \end{aligned}$	AIC $=16.713$	$\begin{aligned} & \mathbf{A I C}=\mathbf{3 . 8 8 4} \\ & r^{2}=0.941, \\ & F_{2,2}=15.99 \\ & P=0.059 \end{aligned}$	AIC $=17.246$	$\begin{aligned} & \mathrm{AIC}=-2.823 \\ & r^{2}=0.974, \\ & F_{3,1}=12.69, \\ & P=0.203 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=-2.823 \\ & r^{2}=0.948, \\ & F_{3,1}=6.04, \\ & P=0.289 \end{aligned}$
Ludt et al. (2015)	$\begin{aligned} & r^{2}=0.242, \\ & F_{1,3}=0.96 \\ & P=0.400 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=7.347 \\ & r^{2}=0.970, \\ & F_{2,2}=31.79, \\ & P=0.031 \end{aligned}$	$\begin{aligned} & r^{2}=0.242 \\ & F_{1,3}=0.96 \\ & P=0.400 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=11.495 \\ & \boldsymbol{r}^{2}=\mathbf{0 . 9 7 0} \\ & \boldsymbol{F}_{2,2}=\mathbf{3 1 . 7 9} \\ & \boldsymbol{P}=\mathbf{0 . 0 3 1} \end{aligned}$	$\begin{aligned} & r^{2}=0.442, \\ & F_{1,3}=2.37, \\ & P=0.221 \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=9.332 \\ & \boldsymbol{r}^{2}=\mathbf{0 . 9 7 0} \\ & \boldsymbol{F}_{\mathbf{2}, \mathbf{2}}=\mathbf{3 1 . 7 9}, \\ & \boldsymbol{P}=\mathbf{0 . 0 3 1} \end{aligned}$	$\begin{aligned} & \mathrm{AIC}=12.908 \\ & \boldsymbol{r}^{2}=\mathbf{0 . 9 7 0} \\ & \boldsymbol{F}_{\mathbf{2}, \mathbf{2}}=\mathbf{3 1 . 7 9} \\ & \boldsymbol{P}=\mathbf{0 . 0 3 1} \end{aligned}$

Online Appendix D Explaining regional richness patterns
page: 14

Ma et al. (2016)	$\mathrm{AIC}=8.002$	AIC $=\mathbf{- 6 . 0 6 2}$	$\mathrm{AIC}=8.002$	AIC $=\mathbf{- 6 . 0 6 2}$	$\mathrm{AIC}=6.475$	$\mathrm{AIC}=-6.062$	$\mathrm{AIC}=-6.062$
	$r^{2}=0.982$,		$r^{2}=0.903$,			$r^{2}=0.988$,	$r^{2}=0.958$
	$F_{2,3}=79.81$,		$F_{2,3}=14.02$,			$F_{3,2}=53.90$,	$F_{3,2}=15.06$,
	$P=0.003$		$P=0.030$			$P=0.018$	$P=0.063$
	AIC $=-4.055$		AIC $=5.884$			AIC $=\mathbf{- 4 . 5 2 7}$	AIC $=2.936$
Mariguela et al.(2016)	$r^{2}=0.856$,	$r^{2}=0.836$,	$r^{2}=0.780$,	$r^{2}=0.864$,	$r^{2}=0.984$,	$r^{2}=0.990$,	$r^{2}=0.994$,
	$\begin{aligned} & F_{2,4}=11.90, \\ & P=0.021 \end{aligned}$	$\begin{aligned} & F_{2,4}=10.18 \\ & P=0.027 \end{aligned}$	$\begin{aligned} & F_{2,4}=17.68, \\ & P=0.008 \end{aligned}$	$\begin{aligned} & F_{2,4}=12.68, \\ & P=0.019 \end{aligned}$	$\begin{aligned} & F_{2,4}=124.90, \\ & P=0.0002 \end{aligned}$	$\begin{aligned} & F_{1,5}=98.72 \\ & P=0.002 \end{aligned}$	$\begin{aligned} & F_{1,5}=172.30, \\ & P=0.0007 \end{aligned}$
	$\mathrm{AIC}=9.279$	AIC $=10.204$	AIC $=52.884$	AIC $=8.896$	AIC $=-6.205$	AIC $=-7.368$	AIC $=\mathbf{- 1 1 . 2 3 8}$
Tolley et al. (2013)		$r^{2}=0.985$,		$r^{2}=0.916$,		$r^{2}=0.985$,	$r^{2}=0.985$,
		$F_{2,3}=96.43$,		$F_{2,3}=16.35$,		$F_{3,2}=43.60$,	$F_{3,2}=43.60$,
		$P=0.002$		$P=0.024$		$P=0.023$	$P=0.023$
		AIC $=8.256$		AIC $=18.470$		AIC $=10.153$	$\mathrm{AIC}=10.153$
Beckman and Witt(2015)	$r^{2}=0.707$,	$r^{2}=0.366$,	$r^{2}=0.697$,	$r^{2}=0.501$,	$r^{2}=0.810$,	$r^{2}=0.971$,	$r^{2}=0.964$,
	$F_{2,6}=7.25$,	$F_{2,6}=1.73$,	$F_{2,6}=6.90$,	$F_{2,6}=3.01$,	$F_{1,7}=12.75$,	$F_{1,7}=55.47$,	$F_{1,7}=44.85$,
	$P=0.025$	$P=0.255$	$P=0.028$	$P=0.124$	$P=0.007$	$\boldsymbol{P}=0.0003$	$P=0.0005$
	AIC $=15.144$	AIC $=22.094$	AIC $=15.453$	AIC $=19.946$	AIC $=11.276$	AIC $=\mathbf{- 3 . 6 1 2}$	AIC $=-1.761$
Buckner et al.(2015)	$r^{2}=0.752$,		$r^{2}=0.735$,			$r^{2}=0.911$,	$r^{2}=0.928$,
	$F_{2,7}=10.59$,		$F_{2,7}=9.70$,			$F_{3,6}=20.52$,	$F_{3,6}=25.67$,
	$P=0.008$		$P=0.010$			$P=0.001$	$\boldsymbol{P}=0.0008$
	AIC $=15.532$		AIC $=16.184$			AIC $=7.249$	AIC $=5.188$

Table D7. Contributions of each independent variable to the multiple regression models of raw species richness. Only the best-fitting multiple regression model for raw richness for each clade is shown. Only clades for which multiple regression analyses were performed are shown. Note that the multiple regression model is not necessarily the best-fitting model for each dataset. The overall best-fitting model for each clade (including single vs. multiple regression models and raw vs. ln-transformed richness) is shown in Table 2. SPRC = standardized partial regression coefficients, showing how much of the adjusted r^{2} of the best-fitting model is explained by each variable (when the other variables are held constant). AFC $=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization; $\mathrm{NCE}=$ number of colonization events; $\mathrm{NDR}=$ net diversification rates.

References	Multiple regression model	Contribution of each independent variable in best-fitting model		
Sun et al. (2014)	Richness vs. (AFC+NDR)	Richness vs. AFC	Richness vs. NDR	
	$r^{2}=0.933$	SPRC $=0.819$	$\mathrm{SPRC}=0.081$	
	Adjusted $r^{2}=0.900$	$P=0.012$	$P=0.692$	
	$P=0.004$			
Vitales et al.(2014)	Richness vs. (SAC+NDR)	Richness vs. SAC	Richness vs. NDR	
	$r^{2}=0.937$	$\mathrm{SPRC}=0.509$	$\mathrm{SPRC}=0.362$	
	Adjusted $r^{2}=0.871$	$P=0.045$	$P=0.084$	
	$P=0.063$			
Frey and Vermeij (2008)	Richness vs. $(\mathrm{AFC}+\mathrm{NDR}+\mathrm{NCE})$	Richness vs. AFC	Richness vs. NDR	Richness vs. NCE
	$r^{2}=0.908$	SPRC $=0.326$	$\mathrm{SPRC}=0.114$	SPRC $=0.193$
	Adjusted $r^{2}=0.633$	$P=0.653$	$P=0.865$	$P=0.467$

Online Appendix D Explaining regional richness patterns
page: 16

	$P=0.380$			
Ludt et al. (2015)	Richness vs. (AFC+NDR)	Richness vs. AFC	Richness vs. NDR	
	$r^{2}=0.970$	$\mathrm{SPRC}=0.432$	$\mathrm{SPRC}=0.507$	
	Adjusted $r^{2}=0.939$	$P=0.028$	$P=0.020$	
	$P=0.031$			
Ma et al. (2016)	Richness vs. $(\mathrm{AFC}+\mathrm{NCE})$	Richness vs. AFC	Richness vs. NCE	
	$r^{2}=0.939$	$\mathrm{SPRC}=0.762$	$\mathrm{SPRC}=0.135$	
	Adjusted $r^{2}=0.898$	$P=0.023$	$P=0.499$	
	$P=0.015$			
Mariguela et al.(2016)	Richness vs. $(\mathrm{SAC}+\mathrm{NDR}+\mathrm{NCE})$	Richness vs. SAC	Richness vs. NDR	Richness vs. NCE
	$r^{2}=0.997$	$\mathrm{SPRC}=0.487$	$\mathrm{SPRC}=0.249$	$\mathrm{SPRC}=0.259$
	Adjusted $r^{2}=0.995$	$P=0.002$	$P=0.005$	$P=0.008$
	$P=0.0002$			
Beckman and Witt (2015)	Richness vs.	Richness vs. AFC	Richness vs. NDR	Richness vs. NCE
	(AFC+NDR+NCE)			
	$r^{2}=0.942$	SPRC $=0.197$	$\mathrm{SPRC}=0.313$	SPRC $=0.336$
	Adjusted $r^{2}=0.846$	$P=0.048$	$P=0.009$	$P=0.004$
	$P=0.002$			
Buckner et al.(2015)	Richness vs.	Richness vs. SAC	Richness vs. NDR	Richness vs. NCE
	(SAC+NDR+NCE)			
	$r^{2}=0.941$	SPRC $=0.548$	$\mathrm{SPRC}=0.095$	$\mathrm{SPRC}=0.270$
	Adjusted $r^{2}=0.912$	$P=0.002$	$P=0.026$	$P=0.040$

Online Appendix D Explaining regional richness patterns

$$
P=0.0004 r^{2}
$$

Table D8. Contribution of each independent variable to the best-fitting multiple regression models of ln-transformed species richness. Only the best-fitting multiple regression model for \ln-transformed richness for each clade is shown. Only clades for which multiple regression analyses were performed are shown. Note that the multiple regression model is not necessarily the best-fitting model for each dataset. The overall best-fitting model for each clade (including single vs. multiple regression models and raw vs. In-transformed richness) is shown in Table 2. SPRC $=$ standardized partial regression coefficients, showing how much of the adjusted r^{2} of the best-fitting model is explained by each variable (when the other variables are held constant). $\mathrm{AFC}=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization; $\mathrm{NCE}=$ number of colonization events; $\mathrm{NDR}=$ net diversification rates.

References	Multiple regression model	Contribution of each independent variable in best-fitting model		
Sun et al. (2014)	Ln(richness) vs. $(\mathrm{AFC}+\mathrm{NDR}+\mathrm{NCE})$	Ln(richness) vs. AFC	Ln(richness) vs. NDR	Ln(richness) vs. NCE
	$r^{2}=0.965$	SPRC $=0.364$	$\mathrm{SPRC}=0.258$	SPRC $=0.309$
	Adjusted $r^{2}=0.931$	$P=0.033$	$P=0.070$	$P=0.018$
	$P=0.011$			
Vitales et al.(2014)	Ln (richness) vs. (SAC+NDR)	Ln(richness) vs. SAC	Ln(richness) vs. NDR	
	$r^{2}=0.988$	SPRC $=0.511$	$\mathrm{SPRC}=0.464$	
	Adjusted $r^{2}=0.975$	$P=0.010$	$P=0.013$	
	$P=0.012$			
Frey \& Vermeij (2008)	Ln (richness) vs. (AFC+NDR)	Ln(richness) vs. AFC	Ln(richness) vs. NDR	Ln(richness) vs. NCE
	$r^{2}=0.974$	$\mathrm{SPRC}=0.539$	$\mathrm{SPRC}=0.350$	$\mathrm{SPRC}=0.008$
	Adjusted $\underline{\underline{r}}^{2}=0.898$	$P=0.450$	$P=0.582$	$P=0.965$

Online Appendix D Explaining regional richness patterns
page: 19

	$P=0.026$			
Ludt et al. (2015)	Ln(richness) vs. (AFC+NDR)	Ln(richness) vs. AFC	Ln(richness) vs. NDR	
	$r^{2}=0.970$	$\mathrm{SPRC}=0.432$	$\mathrm{SPRC}=0.507$	
	Adjusted $r^{2}=0.939$	$P=0.028$	$P=0.020$	
	$P=0.031$			
Ma et al. (2016)	Ln(richness) vs. $(\mathrm{AFC}+\mathrm{NDR}+\mathrm{NCE})$	Ln(richness) vs. AFC	Ln(richness) vs. NDR	Ln(richness) vs. NCE
	$r^{2}=0.988$	$\mathrm{SPRC}=0.641$	$\mathrm{SPRC}=0.137$	$\mathrm{SPRC}=0.192$
	Adjusted $r^{2}=0.970$	$P=0.062$	$P=0.318$	$P=0.419$
	$P=0.018$			
Mariguela et al.(2016)	$\begin{aligned} & \text { Ln(richness) vs. } \\ & (\mathrm{SAC}+\mathrm{NDR}+\mathrm{NCE}) \end{aligned}$	Ln(richness) vs. SAC	Ln(richness) vs. NDR	Ln(richness) vs. NCE
	$r^{2}=0.994$	$\mathrm{SPRC}=0.150$	$\mathrm{SPRC}=0.356$	$\mathrm{SPRC}=0.482$
	Adjusted $r^{2}=0.989$	$P=0.107$	$P=0.005$	$P=0.004$
	$P=0.0007$			
Tolley et al. (2013)	Ln(richness) vs. (AFC+NDR)	Ln(richness) vs. AFC	Ln(richness) vs. NDR	
	$r^{2}=0.985$	$\mathrm{SPRC}=0.700$	$\mathrm{SPRC}=0.274$	
	Adjusted $r^{2}=0.975$	$P=0.004$	$P=0.056$	
	$P=0.002$			
Beckman and Witt (2015)	Ln(richness) vs.	Ln(richness) vs. AFC	Ln(richness) vs. NDR	Ln(richness) vs. NCE
	($\mathrm{AFC}+\mathrm{NDR}+\mathrm{NCE}$)			
	$r^{2}=0.971$	$\mathrm{SPRC}=0.242$	$\mathrm{SPRC}=0.290$	$\mathrm{SPRC}=0.406$
	Adjusted $r^{2}=0.938$	$P=0.048$	$P=0.009$	$P=0.004$

Online Appendix D Explaining regional richness patterns
page: 20

	$P=0.0003$			
Buckner et al.	Ln(richness) vs.	Ln(richness) vs. SAC	Ln(richness) vs. NDR	Ln(richness) vs. NCE
(2015)	$($ SAC+NDR+NCE $)$	SPRC $=0.498$		
	$r^{2}=0.928$	$P=0.003$	$P=0.007$	SPRC $=0.267$
	Adjusted $r^{2}=0.892$			$P=0.040$
	$P=0.0008$			

Table D9. Relationships between variables among clades. Clade age, total species richness of the clade, completeness of the taxon sampling in the phylogeny, and the number of regions per study are given in table 1 . The variance in species richness among regions that is explained by time (AFC or SAC) is taken directly from table 2 for those clades in which AFC or SAC is the only variable in the best-fitting model. For those five clades in which other variables are included in the best model besides time, we multiplied the standardized partial regression coefficient for the time-related variable (table 3) by the overall percentage of the variance explained by the best model (table 2) to obtain the amount of variance explained by time. The specific values obtained were 0.491 (Vitales et al. 2014), 0.419 (Ludt et al. 2015), 0.486 (Mariguela et al. 2016), 0.234 (Beckman and Witt 2015), and 0.516 (Buckner et al. 2015). For mean area of regions, we estimated the mean area of all of the regions in each study, and then $\log 10$ transformed the mean. Values for area are given in appendix C.

Independent variable	Dependent variable	r^{2}	P
clade age	richness	0.189	0.1052
richness	completeness	0.193	0.1014
richness	variance explained by time	0.536	0.0019
completeness	variance explained by time	0.168	0.1290
clade age	variance explained by time	0.399	0.0115
mean area of regions	variance explained by time	0.162	0.1367
number of regions	variance explained by time	0.151	0.1520

Table D10. Testing the impacts of richness, clade age, taxon sampling, and global distributions on the overall results. We used unpaired t-tests to evaluate whether those clades in which richness patterns were explained primarily by time (i.e. best-fitting model includes only time-related variables AFC or SAC: 10 of 15 clades; table 2) tended to be older, more species rich, or more completely sampled (data in table 1). We also tested whether the geographic scope of the study (global vs. not; table 1) was associated with differences in clade age, species richness, taxon sampling, and the amount of variance in richness explained by time (see table D9).

Best model includes only time			
Species richness Only time mean $=82.30$ Clade age (ma)	Not mean $=21.00$	Mean difference $=-61.300$	$P=0.0404$
Only time mean $=60.16$ Taxon sampling (percent) Only time mean $=84.88$	Not mean $=9.40$	Mean difference $=-50.760$	$P=0.0065$
	Mean difference $=-7.080$	$P=0.2571$	
Global distribution $=91.96$			
Richness (species) Global mean $=82.00$	Not global mean $=48.44$	Mean difference $=33.556$	$P=0.2711$
Clade age $($ Ma)	Mean difference $=32.517$	$P=0.0967$	
Global mean $=62.75$ Taxon sampling (percent) Global mean $=88.250$	Not mean $=86.567$	Mean difference $=1.683$	$P=0.7846$
Variance explained by time Global mean $=0.855$	Not mean $=0.642$	Mean difference $=0.213$	$P=0.1110$

Table D11. Regression analyses of relationships between the four independent variables. AFC = age of first colonization; SAC $=$ summed ages of colonization events; $\mathrm{NCE}=$ number of colonization events per region; $\mathrm{NDR}=$ net diversification rate .
"Null" indicates that the analysis failed for that pair of variables.

Reference	AFC vs. NCE	AFC vs. NDR	SAC vs. NCE	SAC vs. NDR	NCE vs. NDR
Bengtson et al. (2015)	$r^{2}=0.314$,	$r^{2}=0.022$,	$r^{2}=0.286$,	$r^{2}=0.479$,	$r^{2}=0.576$,
	$P=0.247$	$P=0.778$	$P=0.275$	$P=0.128$	$P=0.080$
Sun et al. (2014)	$r^{2}=0.195$,	$r^{2}=\mathbf{0 . 6 1 2 ,}$	$r^{2}=0.067$,	$r^{2}=0.254$,	$r^{2}=0.143$,
	$P=0.321$	$\boldsymbol{P}=\mathbf{0 . 0 3 8}$	$P=0.574$	$P=0.249$	$P=0.403$
Vitales et al. (2014)	$r^{2}=0.048$,	$r^{2}=0.005$,	$r^{2}=0.016$,	$r^{2}=0.007$,	$r^{2}=0.015$,
	$P=0.723$	$P=0.909$	$P=0.837$	$P=0.893$	$P=0.846$
Toussaint and	$r^{2}=0.143$,	$r^{2}=0.218$,	$r^{2}=0.006$,	$r^{2}=0.102$,	$r^{2}=0.511$,
Condamine (2016)	$P=0.460$	$P=0.351$	$P=0.884$	$P=0.534$	$P=0.110$
Frey and Vermeij (2008)	$r^{2}=0.079$,	$r^{2}=\mathbf{0 . 9 0 1 ,}$	$r^{2}=0.003$,	$r^{2}=\mathbf{0 . 8 2 0 ,}$	$r^{2}=0.054$,
	$P=0.648$	$\boldsymbol{P}=\mathbf{0 . 0 1 4}$	$P=0.930$	$\boldsymbol{P}=\mathbf{0 . 0 3 4}$	$P=0.707$
Ludt et al. (2015)	Null	$r^{2}=0.091$,	Null		$r^{2}=0.091$,

Online Appendix D Explaining regional richness patterns
page: 24

	$\boldsymbol{P}=0.037$	$P=0.939$	$P=0.033$	$P=0.744$	$P=0.349$
Mariguela et al. (2016)	$\begin{aligned} & r^{2}=0.568, \\ & P=0.050 \end{aligned}$	$\begin{aligned} & r^{2}=0.314, \\ & P=0.190 \end{aligned}$	$\begin{aligned} & r^{2}=0.595, \\ & P=0.042 \end{aligned}$	$\begin{aligned} & r^{2}=0.375, \\ & P=0.144 \end{aligned}$	$\begin{aligned} & r^{2}=0.215, \\ & P=0.295 \end{aligned}$
Metallinou et al. (2015)	$\begin{aligned} r^{2} & =0.098, \\ P & =0.600 \end{aligned}$	$\begin{aligned} r^{2} & =0.098, \\ P & =0.600 \end{aligned}$	Null	$\begin{aligned} & r^{2}=0.580, \\ & P=0.135 \end{aligned}$	$\begin{aligned} & r^{2}=0.153, \\ & P=0.515 \end{aligned}$
Iverson et al. (2013)	$\begin{aligned} & r^{2}=0.018, \\ & P=0.696 \end{aligned}$	$\begin{aligned} & r^{2}=0.015, \\ & P=0.717 \end{aligned}$	$\begin{aligned} & r^{2}<0.001, \\ & P=0.960 \end{aligned}$	$\begin{aligned} & r^{2}=0.004, \\ & P=0.858 \end{aligned}$	$\begin{aligned} & r^{2}=0.022, \\ & P=0.664 \end{aligned}$
Tolley et al. (2013)	$\begin{aligned} & r^{2}=0.431, \\ & P=0.157 \end{aligned}$	$\begin{aligned} & r^{2}=0.473, \\ & P=0.131 \end{aligned}$	$\begin{aligned} & r^{2}=0.772, \\ & P=0.021 \end{aligned}$	$\begin{aligned} & r^{2}=0.394, \\ & P=0.182 \end{aligned}$	$\begin{aligned} & r^{2}=0.172, \\ & P=0.413 \end{aligned}$
Beckman and Witt (2015)	$\begin{aligned} & r^{2}=0.050, \\ & P=0.562 \end{aligned}$	$\begin{aligned} & r^{2}=0.216, \\ & P=0.208 \end{aligned}$	$\begin{aligned} r^{2} & =4.26 \mathrm{e}-05, \\ P & =0.987 \end{aligned}$	$\begin{aligned} & r^{2}=0.214, \\ & P=0.210 \end{aligned}$	$\begin{aligned} & r^{2}=0.044, \\ & P=0.589 \end{aligned}$
Buckner et al. (2015)	$\begin{aligned} & r^{2}=0.815, \\ & P=0.0003 \end{aligned}$	$\begin{aligned} & r^{2}=0.011, \\ & P=0.773 \end{aligned}$	$\begin{aligned} & r^{2}=0.904 \\ & P<0.0001 \end{aligned}$	$\begin{aligned} & r^{2}=0.011, \\ & P=0.777 \end{aligned}$	$\begin{aligned} & r^{2}=7.739 \mathrm{e}-05, \\ & P=0.981 \end{aligned}$
Day et al. (2013)	$\begin{aligned} & r^{2}=0.204, \\ & P=0.368 \end{aligned}$	$\begin{aligned} & r^{2}=0.106, \\ & P=0.530 \end{aligned}$	$\begin{aligned} & r^{2}=0.084, \\ & P=0.576 \end{aligned}$	$\begin{aligned} & r^{2}=0.057, \\ & P=0.647 \end{aligned}$	$\begin{aligned} & r^{2}=0.473, \\ & P=0.131 \end{aligned}$
Martins and Melo (2016)	$\begin{aligned} & r^{2}=0.036, \\ & P=0.760 \end{aligned}$	$\begin{aligned} r^{2} & =0.008, \\ P & =0.887 \end{aligned}$	$\begin{aligned} & r^{2}=0.022, \\ & P=0.811 \end{aligned}$	$\begin{aligned} r^{2} & =0.049, \\ P & =0.722 \end{aligned}$	$\begin{aligned} & r^{2}=0.187, \\ & P=0.467 \end{aligned}$

Table D12. Spearman's rank correlation analyses of relationships between \ln-transformed species richness of regions and four independent variables. $\mathrm{AFC}=$ age of first colonization; $\mathrm{SAC}=$ summed ages of colonization events; $\mathrm{NCE}=$ number of colonization events per region; $\mathrm{NDR}=$ mean net diversification rate. Compare to the results based on least-squares regression in table 2. For Bengston et al. (2015), the non-parametric results here confirm that AFC shows the strongest correlation with richness. For Ludt et al. (2015), the results confirm that richness is correlated most strongly with NDR (but also shows a high correlation with time). For Tolley et al. (2013) the non-parametric results differ somewhat, suggesting a stronger correlation with NDR than with AFC (but also showing a high correlation with time), whereas the regression results show a strong relationship with AFC alone. For Metallinou et al. (2015), the non-parametric results also differ somewhat showing stronger correlations between NCE and NDR than with AFC or SAC alone, whereas the parametric regression results show the strongest relationship with SAC and weaker relationships with all other variables.

Reference	Ln(richness) vs. AFC	Ln(richness) vs. SAC	Ln(richness) vs. NCE	Ln(richness) vs. NDR
Bengtson et al. (2015)	rho $=\mathbf{0 . 9 7 1}$	rho $=\mathbf{0 . 3 1 4}$	rho $=-0.514$	rho $=0.000$
	$\boldsymbol{P}=\mathbf{0 . 0 2 9 9}$	$\boldsymbol{P}=\mathbf{0 . 0 2 9 8}$	$P=0.2502$	$P=0.9999$
Ludt et al. (2015)	rho $=0.750$	rho $=0.750$	rho $=0.625$	rho $=0.975$
Tolley et al. (2013)	$P=0.4533$	$P=0.4533$	$P=0.2113$	$P=0.0512$
	rho $=0.771$	rho $=0.771$	rho $=0.600$	rho $=\mathbf{0 . 9 4 3}$
Metallinou et al. (2015)	$P=0.0845$	$P=0.0845$	$P=0.1797$	$\boldsymbol{P}=\mathbf{0 . 0 3 5 0}$
	rho $=0.500$	rho $=0.750$	rho $=\mathbf{1 . 0 0 0}$	rho $=\mathbf{1 . 0 0 0}$
	$P=0.3173$	$P=0.1336$	$\boldsymbol{P}=\mathbf{0 . 0 4 5 5}$	$\boldsymbol{P}=\mathbf{0 . 0 4 5 5}$

Table D13. Regression analyses of relationships between species richness of regions and net diversification rates (NDR) based on mean rates across colonization events. In the main analyses, NDR is weighted based on the number of species associated with each colonization event. Significant relationships are boldfaced. Compare to tables D2 and D3. Overall, relationships that were significant using weighted NDR were also significant using unweighted NDR, whereas relationships that were not significant using weighted NDR were also not significant using unweighted NDR. Nevertheless, we strongly prefer use of weighted NDR (see Methods).

Reference	Richness vs. mean NDR	ln-richness vs. mean NDR
Bengtson et al. (2015)	$r^{2}=0.496$,	$r^{2}=0.483$,
	$P=0.118$	
Sun et al. (2014)	$\boldsymbol{r}^{2}=\mathbf{0 . 7 3 7}$,	$\boldsymbol{P}=\mathbf{0 . 6 5 4}$,
	$\boldsymbol{P}=\mathbf{0 . 0 1 3}$	
Vitales et al. (2014)	$r^{2}=0.340$,	$r^{2}=0.395$,
	$P=0.302$	$P=0.257$
Toussaint and Condamine (2016)	$r^{2}=0.133$,	$r^{2}=0.062$,
	$P=0.477$	$P=0.633$
Frey and Vermeij (2008)	$r^{2}=0.723$,	$r^{2}=\mathbf{0 . 9 3 7 ,}$
	$P=0.068$	$\boldsymbol{P}=\mathbf{0 . 0 0 7}$,
Ludt et al. (2015)	$r^{2}=0.442$,	$r^{2}=0.442$,

Online Appendix D Explaining regional richness patterns

	$P=0.221$	$P=0.221$
Ma et al. (2016)	$\begin{aligned} & r^{2}=0.096, \\ & P=0.551 \end{aligned}$	$\begin{aligned} & r^{2}=0.054, \\ & P=0.658 \end{aligned}$
Mariguela et al. (2016)	$\begin{aligned} & r^{2}=0.661, \\ & P=0.026 \end{aligned}$	$\begin{aligned} & r^{2}=0.668, \\ & P=0.025 \end{aligned}$
Metallinou et al. (2015)	Null	Null
Iverson et al. (2013)	$\begin{aligned} & r^{2}=0.263, \\ & P=0.107 \end{aligned}$	$\begin{aligned} & r^{2}=0.350, \\ & P=0.055 \end{aligned}$
Tolley et al. (2013)	$\begin{aligned} & r^{2}=0.486, \\ & P=0.124 \end{aligned}$	$\begin{aligned} & r^{2}=0.657, \\ & P=0.050 \end{aligned}$
Beckman and Witt (2015)	$\begin{aligned} & r^{2}=0.274, \\ & P=0.148 \end{aligned}$	$\begin{aligned} & r^{2}=0.225, \\ & P=0.197 \end{aligned}$
Buckner et al. (2015)	$\begin{aligned} & r^{2}=0.027, \\ & P=0.650 \end{aligned}$	$\begin{aligned} & r^{2}=0.102, \\ & P=0.368 \end{aligned}$
Day et al. (2013)	$\begin{aligned} & r^{2}=0.069, \\ & P=0.616 \end{aligned}$	$\begin{aligned} & r^{2}=0.358, \\ & P=0.210 \end{aligned}$

Online Appendix D Explaining regional richness patterns
page: 29

Martins and Melo (2016)	$r^{2}=0.011$,	$r^{2}=0.262$,
	$P=0.867$	$P=0.378$

Online Appendix D Explaining regional richness patterns

Table D14. Regression analyses of relationships between species richness and area of regions for the 15 clades analyzed here. Significant relationships are boldfaced. Asterisks indicate negative relationships between richness and area; otherwise all relationships positive.

Study	Raw richness vs. area		Log10-richness vs. $\log 10$-area	
	r^{2}	P	r^{2}	P
Tolley et al. (2013)	0.007	0.8707	0.205	0.3672
Toussaint and Condamine (2016)	0.361	0.1222	0.445	0.1480
Beckman and Witt (2015)	0.0004	0.9611	0.077	0.4712
Buckner et al.	0.293^{*}	0.1060	0.313^{*}	0.0927
Sun et al. (2014)	0.191^{*}	0.3275	0.276^{*}	0.2261
Frey and Vermeij (2008)	$\mathbf{0 . 9 7 4}$	$\mathbf{0 . 0 0 1 8}$	0.684	0.0840
Day et al. (2013)	0.001	0.9606	0.067	0.6214
Vitales et al. (2014)	0.320	0.3200	0.353	0.2909
Bengston et al. (2015)	0.320	0.2419	0.295	0.2658
Ludt et al. (2015)	0.170	0.4901	0.270	0.3697
Martins and Melo (2016)	0.072	0.6636	0.486	0.1910
Iverson et al. (2013)	0.015^{*}	0.7224	0.016^{*}	0.7144
Mariguela et al. (2016)	$\mathbf{0 . 7 9 9}$	$\mathbf{0 . 0 0 6 7}$	$\mathbf{0 . 8 2 8}$	$\mathbf{0 . 0 0 4 4}$
Ma et al. (2016)	0.335	0.2286	0.476	0.1294
Metallinou et al. (2015)	0.016	0.8377	0.001	0.9711

