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Preface

The Journal of High-Performance Storage (JHPS) is a new open-access journal edited by
storage experts that unite key features of journals fostering openness and trust in storage
research. In particular, JHPS offers open reviews, living papers, digital replicability, and free
open access.

The editing team is proud to announce the publication of the first JHPS issue today
representing an important milestone. The first issue contains just one publication, however,
the difficult situation in 2020 has impaired the submission numbers. We use this chance
to look back at the developments during this turbulent year. While the webpage has been
officially started about one year ago in 2020, we knew that the processes and toolchains needed
further development and testing. As it turned out, the year was even more challenging than
we anticipated, not only for HPC and storage experts but for society as a whole facing the
COVID-19 pandemic. For researchers, the pandemic impacted their general research focus,
administrative tasks, and their productivity which impacted their publication behavior.

In 2020, JHPS managed to review the processes revolving around publication; we im-
proved their quality and increased the capabilities of tools based on the feedback of authors
and reviewers. Particularly, we thank the HPC-IODC workshop for the fruitful collaboration
with JHPS to test the open review process on the submitted research papers for HPC-IODC.
Initially, the Google Docs format was explored for the public review process as its suggestion
mode is powerful and allows reviewers to effectively add comments and minor suggestions.
However, it turned out, the text setting features provided by Google Docs does not meet our
aspirations for high-quality camera-ready publications. Therefore, we developed a LaTeX
template and a Google Docs plugin to allow annotations to LaTeX files hosted at GitHub. It
turned out that this tooling yields high-productivity while it is inclusive for public reviewers.
Additionally, we introduced the JHPS Manuscript Central, a lightweight web-based system
that manages the relevant publication workflows for authors and reviewers.

Now that we are confident in the effectiveness of the established workflows and tools, our
goal is to foster the adoption of the journal and to refine the workflows for digital replicability.

We thank all authors, reviewers, and readers.

Cordially,
Julian Kunkel, Jean-Thomas Acquaviva, Suren Byna, Adrian Jackson, Ivo Jimenez, Anthony
Kougkas, Jay Lofstead, Glenn K. Lockwood, Carlos Maltzahn, George S. Markomanolis,
Lingfang Zeng
JHPS Editors
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Abstract

Every day, supercomputers execute 1000s of jobs with different characteristics. Data
centers monitor the behavior of jobs to support the users and improve the infrastructure,
for instance, by optimizing jobs or by determining guidelines for the next procurement.
The classification of jobs into groups that express similar run-time behavior aids this
analysis as it reduces the number of representative jobs to look into. This work utilizes
machine learning techniques to cluster and classify parallel jobs based on the similarity in
their temporal I/O behavior. Our contribution is the qualitative and quantitative evalua-
tion of different I/O characterizations and similarity measurements and the development
of a suitable clustering algorithm.

In the evaluation, we explore I/O characteristics from monitoring data of one million
parallel jobs and cluster them into groups of similar jobs. Therefore, the time series of
various I/O statistics is converted into features using different similarity metrics that
customize the classification.

When using general-purpose clustering techniques, suboptimal results are obtained.
Additionally, we extract phases of I/O activity from jobs. Finally, we simplify the group-
ing algorithm in favor of performance. We discuss the impact of these changes on the
clustering quality.

Keywords: I/O fingerprinting, performance analysis, monitoring
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1 Introduction

Scientific large-scale applications of different domains have different needs for I/O and, thus,
exhibit a variety of access patterns on storage. Even re-running the same simulation may lead
to different behavior. We can distinguish between a temporal behavior, i.e., the operations
performed over time such as long read/write phases, bursty I/O pattern, and concurrent
metadata operations, and spatial access pattern of individual processes of the application as
they can be, e.g., sequential or random.

On different supercomputers, the same I/O patterns may result in different application
runtimes depending on the nature of the access pattern. For example, machines equipped with
burst buffers [BK18,WOW+14,?] may significantly reduce application runtimes by absorbing
bursty I/O traffic. I/O congestion and file system performance degradation can occur when
several I/O intensive jobs are running on the same machine at the same time. I/O aware
schedulers, like CARS [LCLA19] and Flux [AGG+14], implement new scheduling strategies
that utilize I/O metrics. The analysis of I/O is important not only when I/O begins to take
a considerable amount of application runtime but when I/O patterns begin to degrade the
performance of the shared file system affecting runtimes of other applications and worsening
user experience by unresponsive file systems [KM18].

Understanding the exhibited I/O behavior and implications on the system would give
users and administrators information to support analysis by revealing deficiencies and may
indicate the potential for I/O optimization. Knowing the potential for optimization is im-
portant for the support staff, as it allows them to identify applications that benefit from I/O
optimizations. For example, a widely used parallel application that still utilizes sequential
I/O might be cost-efficient to optimize.

The main question is how to identify such applications automatically from the observed
data. Non-intrusive capturing of I/O metrics and the analysis can be challenging in many
aspects. Firstly, in order to find optimization potential, data must be recorded in an ap-
propriate level of detail to retain temporal characteristics. While capturing statistics on
node level is supported by many monitoring tools, e.g., LASSi [Kar19], Darshan [Car15], and
SIOX [KZH+14]. Detailed metrics on file level are more difficult to obtain. A widespread
method is re-implementation and pre-loading of an I/O interface, which contains monitoring
code.

However, recording the data isn’t enough, the obtained data must be processed but the
manual analysis is infeasible as the number of jobs is large – Monitoring systems of HPC
systems record data of ten thousand jobs each day. Hence, a semi-automatic approach is
required to reduce the number of jobs to investigate.

In different disciplines, machine learning methods have proven to be powerful tools to
extract new information from large data sets. Therefore, we explore clustering strategies on
monitoring data, to reveal hidden information.

In our previous paper [EB20], we proposed a semi-automatic way to find relevant jobs by
computing relevant job characteristics from time series of job behavior. Basically, support
staff could then focus on the I/O-intense jobs that express certain metrics the most. Here,
we extend the approach by grouping similar jobs based on profiles and I/O-phases in order
to simplify the investigation effort. The paper is a significant extension of our previous work
in [BK20] where we demonstrated the relevance of utilizing temporal (time series) data in
the analysis and applied basic machine learning techniques.

This paper is organized as follows: Section 2 outlines the preliminary work and provides
background knowledge that is important to understand the next sections. In Section 3,
we discuss the key problem we are dealing with and introduce related work in Section 4.
In Section 5, we introduce alternative approaches for the clustering, as different goals for
the analysis require different distance metrics, we discuss the variety of approaches. We start
with a simple solution and increase complexity. For complex algorithms, we develop examples
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step by step. After a brief description of the test environment in Section 6.1, we discuss the
clustering results of introduced algorithms in Section 6. The discussion includes a use case
study of an I/O intensive job. Finally, in Section 7 we summarize the results.

2 Preliminary Work

The German Climate Computing Center (DKRZ) maintains a monitoring system that gath-
ers various statistics from the Mistral HPC system. Mistral has 3,340 compute nodes, 24
login nodes, and two Lustre file systems (lustre01 and lustre02) that provide a capacity of 52
Petabytes. The deployed monitoring system is made up of open source components such as
Grafana, OpenTSDB, and Elasticsearch. It includes a lightweight self-developed data collec-
tor that captures node statistics continuously – we decided to implement our own lightweight
collector since the overhead of existing approaches was much higher. Additionally, the system
retrieves various job meta-information from the Slurm workload manager and injects selected
log files.

Our motivation for automatic analysis of parallel jobs is the monitoring situation at
DKRZ. Mistral runs around 10,000 jobs a day, which is too many for manual analysis. In
our previous work [EB20], we found a way to identify I/O intensive jobs and jobs with
inefficient usage by deriving statistics from the node-level statistics. This information can
aid the procurement of new HPC systems or support the extension of an existing one. While
this approach helps to find individual jobs, it doesn’t provide a global overview, which might
be more important for making decisions at the data center perspective. For example, a
discovery of a large group of I/O-intensive and bursty applications would suggest attaching
a burst buffer to the storage, to improve application runtimes. In this paper, we take up
the idea of I/O categorization from the previous work, where we partition job runtime into
equal size segments and map them into three categories (LowIO, HighIO, and CriticalIO),
and continue our work to establish a global overview by allowing to classify similar jobs.

Understanding of the following work requires an understanding of data format, that is
formed by segmentation and categorization of raw monitoring data.

Raw monitoring data. The monitoring system captures periodically I/O metrics on all
client nodes, and sends them to a central database. Figure 2.1 illustrates the structure of
the raw monitoring data using an example. In the example, data is captured on two nodes,
on two file systems, for two metrics, and at nine time points ti, resulting in 4-dimensional
data (Node × File System × Metric × Time). The number of nodes and the time di-
mension are variable by the nature of parallel job execution on a cluster. The other di-
mensions may be fixed for particular HPC systems; here we assume they are variable, to
make the approach portable to arbitrary systems. On Mistral data is gathered every five
seconds, for two Lustre file system, and for nine I/O metrics 1. Five of them (md read,
md mod, md file create, md file delete, md other) are aggregates of metadata activities and
the remaining four (read bytes, read calls, write bytes, write calls) capture data access. The
md read covers metadata read-only operations while md mod covers modifying operations
and md other aggregates rarely used operations such as mknod. The creation and deletion
of files are very important and not aggregated.

Segmentation. We split the time series of each I/O metric into equal-sized time intervals
(segments) and compute a mean performance for each segment. This stage preserves the
performance units (e.g., Op/s, MiB/s) for each I/O metric. The example in Figure 2.1 creates

1A difference to previously utilized job statistics is that the Lustre proc files on Mistral doesn’t offer Object
Storage Client (osc) counters after a major upgrade of Lustre file system from version 2.7 to 2.11. Thus, instead
of 13 metrics, this time our data contains only 9 metrics.
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Figure 2.1: An example of 4-dimensional raw monitoring data (Node × File System × Metric
× Time) and different levels of segmentation (colored boxes).

segments out of three successive time points just for illustration purposes. Depending on
aggregation function, segments can be created of metrics (green boxes), of file systems (yellow
boxes), of nodes (red boxes), or even over all dimensions (blue box). The raw monitoring
data is converted into a time series of ten minute segments, which we found is a good trade-off
to sufficiently represent the temporal behavior of the application while it reduces the size of
the time series.

Categorization. Next, to get rid of specific units of individual metrics, and to allow cal-
culations between different I/O metrics, we introduced a categorization pre-processing step
that takes into account the performance of the underlying HPC system and assigns a unitless
ordered category to each metric segment. For example, how could we compare the metric
that reports 10k file opens with another metric that reports 100 MB data access? We use
three categories, which are the LowIO=0, HighIO=1 and CriticalIO=4 categories. The cat-
egory split points are based on the histogram of the indivudual metrics. For any metrics, a
segment with a value up to the 99%-Quantile it is considered to be LowIO, larger than the
99.9%-Quantile indicates CriticalIO, and between it is HighIO (see [EB20]). This node-level
data can then be used to compute job-statistics by aggregating across dimensions such as
time, file systems, and nodes.

In summary, this data representation has the following key advantages for data analysis.
The ordered categories make the calculations between different metrics feasible, which is not
possible with raw data. Furthermore, the domains are equally scaled and compatible, because
the values are between 0 and 4, and a value has a semantical meaning (low, high, or critical
IO). Besides, the resulting data representation is much smaller compared to the raw data.
This allows us to apply compute-intensive algorithms to large datasets. Finally, as we are
mostly interested in jobs with relevant IO, segments mapped to the LowIO category don’t
distract from significant parts of jobs.

In our previous work, we computed three high-level metrics per job that aid users to
understand job profiles:

� Job-I/O-Balance: indicates how I/O load is distributed between nodes.

� Job-I/O-Utilization: shows the average I/O load during I/O-phases.

� Job-I/O-Problem-Time is the fraction of job runtime that is I/O-intensive; it is
approximated by the fractions of segments that are considered I/O intensive.
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Figure 2.2: Example job-level metric. Score is the sum of all node scores.

In Figure 2.2, we can see the temporal behavior for this particular job when summing
up the node-level metrics. We call an I/O phase a contiguous sequence of non-zero
segments (where the score of the segment is larger than zero). For example, in the figure, we
can see one phase for md file create, and two phases for md mod (one short and non-intrusive
at the beginning, and one critical around 60 minutes).

When looking at categorization at the metric level, i.e., after reduction of the nodes and
file system dimensions, we can observe that many jobs exhibit I/O phases.

3 Similarity Between Jobs

The raw monitoring data of a job in our environment at DKRZ, we obtain a time series of nine
metrics per node, each metric sampled at five seconds intervals. When comparing the time
series of such metrics between two jobs, the key question is how do we define the similarity
between multiple time series that may even be of different length. ML techniques work well
to deal with a fixed number of features, e.g., by creating a fixed-size profile for the jobs and
applying dimension reduction techniques such as PCR, we could reduce the complexity and
potentially obtain a similar representation for, e.g., two time series.

To understand which technique we should use, first, we need to discuss the perception
of similarity of I/O patterns from the user perspective. In Figure 3.1, we illustrate the
time series of two metrics for three different jobs. The figures show the typical behavior of
parallel applications, computation is interrupted by regular I/O phases – by phase, we mean
a consecutive segment of time in which certain behavior is exhibited, i.e., the statistics are
similarly.

Actually, the shape of I/O phases depends on our definition of I/O phase. By applying
dimension reduction techniques, I/O phases from different dimensions can be joined together.
Although several aggregations are possible, in this work we focus on I/O phases on metrics,
i.e, we aggregate nodes and file system dimensions. When investigating the distribution of
I/O phases, we observe that jobs (longer than three segments) exhibit several.

From the user support side, we might be interested in grouping similar suboptimal jobs
and aim to provide one recipe to optimize all that exhibit such a behavior. Similarly, we might
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(a) Job A runs on 13 nodes

(b) Job B runs on 225 nodes

(c) Job C runs on 40 nodes

Figure 3.1: Monitoring data of three jobs. Score is the sum of individual node scores.

be interested to optimize the pattern for a single I/O phase. Optionally, we may be interested
to ignore computation time and focus on I/O phases only. Regardless of the segment of the
time series we look at, we naively would consider an I/O pattern to be identical if the time
series for all metrics of one job is identical to those of another job. Unfortunately, the obtained
measurements vary due to the nature of parallel applications and the environment of the data
center they are executed: In practice, different jobs show a different runtime, and even when
re-running the same job, the obtained time series varies.

Typical sources of variability when observing performance metrics are: The concurrent
usage of the shared storage, a shift between observed I/O phases due to network congestion
or CPU throttling for power/heat reasons, and depending on the location of the data in a
multi-tier storage system. The same application using a different input configuration may
need more compute time, resulting in longer phases between typical I/O patterns; moreover, it
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may change the I/O pattern. A well-known pattern exhibited by a shorter running application
may appear as well in a long-running application. The similarity measure between two jobs
should consider those sources of variability and allow us to provide a robust clustering of jobs
depending on the user question.

There are different goals for the data analysis done by the user running the application
or the support staff of the data center. Whether the timeline is similar when executing an
application with a different configuration and input dataset depends on the purpose of the
analysis and task that follows the analysis. For these reasons, we decided to explore a variety
of alternative options for distance metrics and pre-processing and assess their suitability.

4 Related Work

There are many tracing and profiling tools that are able to record I/O information [KBB+19];
we will discuss a selection of them in more detail in the following. Most of them focus on
individual jobs, and only a few of them apply machine learning for data analysis, in particular
across jobs. As the purpose of applications is computation and, thus, I/O is just a byproduct,
applications often spend less than 10% time with I/O. The issue of performance profiles
is that they remove the temporal dimension and make it difficult to identify relevant I/O
phases. The Altair tools2 include Breeze, a user-friendly offline I/O profiling software, an
automatic I/O report generator Healthcheck, and command line tool Mistral which purpose
is to report on and resolve I/O performance issues when running complex Linux applications
on high performance compute clusters. Mistral is a small program that allows you to monitor
application I/O patterns in real time, and log undesirable behaviour using rules defined in a
configuration file called a contract.

Darshan [CHA+11, Car15] is an open source I/O characterization tool for post-mortem
analysis of HPC applications’ I/O behavior. Its primary objective is to capture concise but
useful information with minimal overhead. Darshan accomplishes this by eschewing end-to-
end tracing in favor of compact statistics such as elapsed time, access sizes, access patterns,
and file names for each file opened by an application. These statistics are captured in a
bounded amount of memory per process as the application executes. When the application
shuts down, this data is reduced, compressed, and stored in a unified log file. The Darshan
eXtended Tracing (DXT) module can be enabled at runtime to increase fidelity by recording
a complete trace of all MPI-I/O and POSIX I/O operations.

This technique allows an application to be traced without modification and with reason-
ably low overhead. Utilities included with Darshan can then be used to analyze, visualize,
and summarize the Darshan log information. Because of Darshan’s low overhead, it is suit-
able for system-wide deployment on large-scale systems. In this deployment model, Darshan
can be used not just to investigate the I/O behavior of individual applications but also to
capture a broad view of system workloads for use by facility operators and I/O researchers.

There are approaches that monitor record storage behavior and aim to identify inefficient
applications in a cluster. TOKIO [LWS+18] integrates logs from various sources to allow an
analysis of data. It allows finding certain inefficient access patterns in the data.

The LASSi tool [SRTL19] was developed for detecting, the so called, victim and aggressor
applications. An aggressor can steal I/O resources from the victim and negatively affect its
runtime. To identify such applications, LASSi calculates metrics from Lustre job-stats and
information from the job scheduler. One metric category shows file system load and another
category describes applications I/O behavior. The correlation of these metrics can help to
identify applications that cause the file system to slow down. In the LASSi workflow this is a
manual step, where a support team is involved in the identification of applications during file
system slow down. Manual steps are disadvantageous when processing large amounts of data

2https://www.altair.com/product-showcase, former Ellexus tools https://www.ellexus.com/products/
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and must be avoided in unsupervised I/O behavior identification. LASSi’s indicates that the
main target group are system maintainers. Understanding LASSi reports may be challenging
for ordinary HPC users, who do not have knowledge about the underlying storage system.

In [KB19], the authors utilized probes to detect file system slow-down. A probing tool
measures file system response times by periodically sending metadata and read/write re-
quests. An increase of response times correlates to the overloading of the file system. This
approach allows the calculation of a slow-down factor identification of the slow-down time
period. This approach is able to detect a file system slow-down, but cannot detect the jobs
that cause the slow-down.

The NEXTGgenIO monitoring system [EMAM16], has four main collectors. The first
two, the PBS and ALPS tools, collect job scheduling information. The proprietary Cray
I/O monitoring tool exploits Lustre I/O counters to capture file system usage on OSTs of
all OSSs and allocated compute nodes. The MAP component provides information about
CPU, memory and network usage. Then all the collected data is clustered for the analysis of
system usage and performance evaluation. In contrast to existing approaches, our approach
focuses on the analysis of job data and investigates clustering strategy to group similar jobs.

HiperJOBVIZ [NCHD19] is a visual analytic tool for visualizing the resource allocations
of data centers for jobs, users, and usage statistics. It provides an overview of the current
resource usage and a detailed view of the resource usage via multi-dimensional representation
of health metrics. TimeRadar3 is a part of the tool, which summaries the resource usage via
radar charts, creating a kind of comprehensible profile for different user groups.

Trace analysis tools such as Vampir [NAW+96] offer clustering strategies to analyze the
per-process time series of a single job, in particular to group similar time series and allow
users to focus on the exceptional cases that may lead to slowdown of the parallel application.
In [WBH+16], a strategy is developed for determining such a clustering based on execution
structure; the paper gives a good introduction for the comparison of two traces as well. The
structural clustering algorithm processes function call traces from monitored processes in
two stages. First, data reduction is achieved by disregarding time information and mapping
function call trees to compact matrix representations. Second, efficient clustering is achieved
by using concept lattices [GW99] instead of all-with-all comparison. The authors demon-
strate quality improvement of existing analysis techniques, if data is pre-clustering with the
introduced structural clustering strategy.

In contrast to existing strategies, we compare a large number of jobs with individual
properties.

5 Methodology

The goal of this article is to research the impact of clustering strategies on many jobs from the
perspective of a user and data center. Generally, machine learning algorithms expect a fixed
number of features, therefore, the time series of statistics that is retrieved on the node-level
needs to be pre-processed. The application of a “specific algorithm” can be understood as a
number of successive processing steps on data. Roughly speaking, there are three basic steps:
data pre-processing (including coding), similarity computation, and clustering. We call one
algorithm representing such a combination a clustering stack. The pre-processing converts the
dynamic-sized monitoring data which depends on the number of captured metrics, allocated
nodes, and application runtime into a suitable representation for the clustering algorithm.
Then the clustering is applied using a specific similarity function. Finally, the quality of the
clustering result is assessed, i.e., how suitable is this strategy for our I/O statistics and use
cases?

3https://idatavisualizationlab.github.io/HPCC/TimeRadar
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Dimension Operation Description

Node Reduce by mean() Aggregate all nodes by mean() function
Reduce by sum() Aggregate all nodes by sum() function

File System Reduce by mean() Aggregate all file systems by mean() function
Reduce by sum() Aggregate all file systems by sum() function

Metric Reduce by sum() Aggregate all nine metrics by sum()
Time Convert segments to coding formats
All Reduce by mean() Reduces time series to a fixed set of values

Table 5.1: Dimension reduction strategies for the original 4D-data.

5.1 Overview

In the following, we have dedicated a section to each step in the analysis. We are listing
and briefly discussing potential alternatives. The list of alternatives does not intend to be
complete but shows a variety of options.

5.1.1 Data pre-processing

The 4-dimensional data from our monitoring system is too fine-grained for mass analysis.
To be able to analyze millions of jobs, we must apply some data reduction techniques. The
result of the data-preprocessing is a coding of the initial time series data into one or multiple
vectors.

We first convert the time series into segments of ten minutes which we found previously
in [EB20] is a good trade-off to represent the temporal behavior of the application while
it reduces the size of the time series. Hence, for a job and for each of our nine client-side
recorded metrics, we obtain a coarse-grained time series. To simplify the interpretation of
results and the choice of the distance metrics, it is beneficial to have the same unit for all
features which is why we use our category classification which creates a unitless order. For
example, when reduced by node, file system, and across metrics, a point may represent the
mean value across all time series for the job for the ten minutes interval.

On the high-level, the following strategies for data reduction could be considered:

� Job profiles compute a fixed set of statistics across the whole job regardless of dynamic
factors such as runtime or nodes by applying reduction operations such as the arithmetic
mean. A drawback of this simplification is that any temporal pattern is lost.

� Segment statistics compute for each segment a fixed statistics, such as the mean
value across all nodes. This basically preserves the time series and depends on the
job-length.

� Phase statistics computes high-level statistics by analyzing the temporal behavior of
I/O phases further, e.g., computes the average length of IO segments with CriticalIO.
This approach is independent of the job length but requires identifying phases and
determining meaningful job metrics.

We decided to distinguish the different dimensions of a job (Node, File System, Metric,
and Time) defining how the aggregation is performed. Not reducing data in the dimension
would mean that the result would depend on, e.g., the number of nodes of a job, which
makes the comparison of two jobs difficult. For one dimension, you could compute various
statistics; we decided to use mean or sum. Any data reduction is performed in this order
across the dimensions: first File System, Node, and last by Metric. Thus, a time series of
encoded segments remain. The time series of segments can be reduced differently in each
dimension; alternatives that we apply in this paper are listed in Table 5.1. By reducing along
all dimensions, you obtain basically a job profile (as discussed above).
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Operation Description

Binarization Segments are mapped to 9-bit numbers (v), where each position (i) represents a metric. The
bits are set by the following function:

vi =

{
false if segmenti = 0

true otherwise.
, i ∈ [enumerated metrics] (1)

Quantization Quantize segments to NonIO + 16 I/O levels.
Zeros-Aggregation Merge all consecutive zero segments.
Phase-Extraction Extract continuous sequences of non-zero segments.

- Split time series at zero segments in sub time series (I/O phases) and remove zero segments.
- Preserve order of I/O phases.

Table 5.2: Coding operations.

5.1.2 Coding

Segmented data contains a numeric floating-point value for each data, which can be still
too much information for the analysis. Further, we need appropriate data representation
for similarity computation between time series. Therefore, we introduce two condensed data
representations called binary and quantum coding. Additionally, we introduce two operations
on the coding: the first extracts I/O phases – a phase is a consecutive non-zero series of
segments; the second merges all consecutive zero segments into one segment, i.e., removes
compute phases in the statistics. The operations are summarized in Table 5.2 and described
in the following.

B-coding Binary coding represents monitoring data as a sequence of numbers, where each
number represents the overall file system usage. The number is computed based on the nine
metrics found in the segment, e.g., if a phase is read-intense and write-intense, it is encoded
as one type of behavior. In this approach, each conceivable combination of activities has a
unique number.

The approach maps the three categories to the following two states: The LowIO category
is mapped to the non-active (0) state, and HighIO and CriticalIO categories are mapped
to the active (1) state. On one side, by doing this, we lose information about performance
intensity, but on other side, this simplification allows a more comprehensible comparison of
job activities.

In our implementation, we use a 9-bit number to represent each segment, where each
bit represents a metric. The bit is 1 if the corresponding metric is active, and 0 if not.
Translated to the decimal representation, metric segments can be coded as 1, 2, 4, 8, 16, and
so on. Using this kind of coding we can compute a number for each segment, that describes
unambiguously the file system usage, e.g., a situation where intensive usage of md read
(Code=16) and read bytes (Code=32) occur at the same time and no other significant loads
are registered is coded by the value 48. Coding is reversible, e.g., when having value 48, the
computation of active metrics is straightforward.

To reduce the 4-dimensional data, we reduce that structure to two dimensions (segments
metrics) by aggregating other dimensions by applying sum() function on score values. In the
resulting table we leave zero scores, and change scores larger than zero to one. After coding
each segment, the jobs can be represented as a sequence of numbers, e.g.,

1 [1:5: -: -: -: -: -: -:96:96:96:96:96:96:96]

Listing 5.1: B-coding of a 15 segments long job.

The monitoring dataset doesn’t provide information about what happens during the zero
segments, it could be idle time, computational work, or other non-I/O operations. It can
also be that the job script cannot start immediately or run on a slow network. To catch such
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Distance Formula Domain Description

Euclidean de =
√

(
∑n

i (ai − bi)) a, b ∈ Rn The Euclidean distance between two vectors.
Levenshtein dlev = lev(a, b) a, b ∈ Time Series Number of operation (inserts, deletes, and

changes) requires to convert one coding in
another.

Normalized-Difference dnd =
|a−b|
16

0 ≤ a, b ≤ 16 A change from level 2 to level 6 on a 16 level
system would be (6 - 2) / 16 = 0.25.

Relative-Change drc =
min(a,b)
max(a,b)

a, b ∈ R+ A change from level 2 to level 6 system would
be 2/6 = 0.66.

Table 5.3: Selection of distance metrics that can be used to compute similarities.

jobs, we aggregate multiple consecutive zero segments into one zero segment, thus the coding
of the previous job would replace all 0:...:0 sequences just with one 0.

1 [1:5: -:96:96:96:96:96:96:96]

Listing 5.2: B-coding of a 15 segments long job with zero aggregation applied.

Note, that the actual job length is kept for analysis purposes, thus, only the length of the
encoded sequence changes.

Q-coding Quantum coding preserves monitoring data for each metric and each segment.
As the name suggests, the value of a segment is quantized into a number to allow creation of
a string representing the I/O behavior. We use uniform quantization to convert monitoring
data to time series of 16 levels, [0,0.25) → 0, [0.25, 0.5) → 1, . . . , [3.75,4] → F.

The example below shows Q-coding for a job containing 6 segments.

1 ’md_file_create ’ : [ -: -:2:2:2:9]
2 ’md_file_delete ’ : [-:-:-:-:-:-]
3 ’md_mod ’ : [-:-:-:-:-:-]
4 ’md_other ’ : [-:-:-:-:-:-]
5 ’md_read ’ : [-:-:-:9:3:-]
6 ’read_bytes ’ : [5:-:-:-:-:-]
7 ’read_calls ’ : [-:-:-:-:-:-]
8 ’write_bytes ’ : [-:-:-:-:9:9]
9 ’write_calls ’ : [-:-:-:-:-:-]

Listing 5.3: Q-coding of a six segments long job.

5.1.3 Similarity Metrics

Determining the resemblance between two jobs is the main task of this work. Clustering
algorithms need distance metrics to enable construction of the clusters from individual com-
ponents. There are various variants, a selection is listed in Table 5.3. The Euclidean distance
for two vectors can naturally only be applied to vectors of the same length. The Levenshtein
distance is the number of modifications (inserts, deletes, changes) of individual characters
that need to be made to transform one string to another. It can also be applied on other
data types such as vectors and time series.

The Normalized-Difference and Relative-Change distances work with single values, and
can not be applied directly on time series. To make them work with time series we use the fol-
lowing approach. Firstly, we introduce in Table 5.4 two additional operations that transform
time series to the same length. The first operation, Trimming, can remove segments at the
beginning, or/and at the end of the longer job. The second operation, Zeros-Insertions, can
insert zeros (LowIO segments) at the beginning, between, or/and at the end of I/O phases of
both jobs. Both operations create equal sized time series with the highest possible similarity.
Finally, we use a Normalized-Difference-based or Relative-Change-based similarity functions
to compute similarity between segments, and obtain the overall similarity by computing the
mean.
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Operation Description

Trimming Remove segments at the beginning or/and at the end of the longest time series.
Zeros-Insertion Insert zero-segments at the beginning, between I/O phases, or/and at the end of time series.

Table 5.4: Potential length adjustment strategies create time series with the same length.

Algorithm Description

k-means Runs a random initialization, then refines the clusters until the clusters don’t change further.
Density clustering Group nearby elements recursively together as long as they are (ε) close together.
Agglomerative Hierarchically cluster data into groups of elements that belong closer together.
Clustering-Tree Create a hierarchical clustering for subset of data to train a decision tree, then apply the

decision tree on the full dataset.
Simplified-Density Combines ideas from k-means with density clustering. The simplified clustering algorithms

add a job to a cluster if similarity to the cluster centroid is equal or larger than the user
defined similarity (SIM) value.

Table 5.5: Selection of clustering algorithms

5.1.4 Clustering

In the last step, similar jobs need to be grouped in clusters. A subset of potential strategies
is listed in Table 5.5. Often, the k-means algorithm is applied which utilizes a random
strategy to initialize clusters. However, as it requires us to define a fixed number of clusters,
it is problematic as the number of actual clusters are unknown. The large class of density
clustering algorithms such as DBSCAN groups objects that are “close” together into one
class; a user defines the maximum distance of objects that belong to the same class by setting
an ε which represents the similarity value. Agglomerative strategies group similar elements
together to form a hierarchy of some sort, e.g., a tree. One of the challenges for algorithms
like this is that they have a computational complexity that is quadratic or greater, meaning
the computational cost of their implementations increases very quickly with increases in the
size of the input dataset. One of the requirements we have for the techniques we are defining
is that it should be able to complete the analysis in a reasonable amount of time.

We developed two strategies that address the performance issue and the other limitations,
the Clustering-Tree algorithm and the SimplifiedDensity algorithm. These algorithms are able
to handle the large number of jobs but aim to preserve the core ideas of k-means/density
algorithms. They are described in the following:

Clustering-Tree algorithm This algorithm involves three steps:

1. Agglomerative clustering of a small dataset, enumerate similar leaf-level clusters.

2. Training of a decision tree model on the small dataset, i.e., the tree should decide in
which cluster a job is stored.

3. Clustering of the large data set using the decision tree.

Since the number of clusters on leaf-level depends on their similarity, this strategy should
determine a number of suitable clusters that mimics the job distribution in the training set.

Simplified-Density algorithm The algorithm forms clusters around centroids. These
are job codings that form clusters by attracting similar jobs. All jobs in a cluster fulfill only
one condition, the similarity (SIM) to the centroid has to be bigger than the user defined
minimum, in that sense it shares some similarity to DBSCAN. It is approximative as the
order of jobs matters for the creation of the clusters.

The algorithm can be summarized as follows:
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1. Pick one arbitrary job from the dataset, which will serve as a cluster centroid, and
compute similarity to all other jobs.

2. Create a cluster of jobs that have a minimum similarity and remove them from the
dataset.

3. Repeat step 1 and 2 until no jobs are left in the dataset.

This approach allows a performant implementation, but they also allow a job to be in one
cluster, even if a centroid of another cluster is much closer, as long as the condition is true.
Hence, the result depends on the processing order of the jobs, though it is deterministic.

5.1.5 Clustering Stacks

There are various combinations of the different strategies possible. For simplicity, we refer
to one clustering stack just as an algorithm. During our research, we explored various com-
binations out of the possible combinations, but we found that these do not perform well and
are not interesting to discuss. We don’t mention them in the paper. The operation stack
which we describe in this article is visualized in Figure 5.1. In brief, the algorithms can be
characterized like in Table 5.6.

Figure 5.1: Algorithms and their actual operation stacks.
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Algorithm Characterization

ML a set of traditional machine learning techniques on job profiles.
B ALL Levenshtein distance applied on B-codings.
B AGGZEROS Levenshtein distance applied on B-codings, but with zero aggregation of contiguous zero

segments.
Q LEV Levenshtein distance applied on Q-coding.
Q NATIVE A performance-aware algorithm operating on Q-coding.
Q PHASES A performance-aware and I/O phase-aware algorithm.

Table 5.6: Algorithm characterization

5.2 Algorithms

This section describes the evaluated algorithms in detail.

5.2.1 ML

To apply existing clustering algorithms, first, a job-profile is created in the pre-processing.
The 4d time series can be transformed into the required fixed-size input format accepted by
the general-purpose ML clustering algorithms. In the pre-processing step, the MinMaxScaler
scales the features to values between 0 and 1 using MinMax normalization. The Euclidean
distance is used; therefore, the highest distance between two points can be at most εmax =
d1/d, where d is the dimension of the dataset.

We explored two job profiles: IO-metric and IO-duration. The IO-metric job profile
utilizes three features, Job-IO-Balance, Job-IO-Utilization, and Job-IO-Problem-Time (as
defined in [EB20]). After the data pre-processing, we obtain a set of 3-dimensional data
points with a domain between 0 and 1. The maximum distance between any two jobs (εmax)
is 1.44.

The IO-duration job profile contains the fraction of runtime, a job spent doing the
individual I/O categories leading to 27 columns. The columns are named according to the fol-
lowing scheme: metric category, e.g, bytes read 0 or md file delete 4. The first part is the one
of the nine metric names and the second part is the category number (LowIO=0, HighIO=1
and CriticalIO=4). These columns are used for machine learning as input features. There is
a constraint for each metric (metric 0 + metric 1 + metric 4 = 1), which we can use to reduce
the number of features by 9, because one feature in each metric is redundant. Consider an
example where 20% of application runtime has low write performance (write bytes 0 = 0.2)
and 70% of application runtime the write performance is high (write bytes 1=0.7). Then,
we can conclude that the remaining 10% of write performance was critical (write bytes 4 =
0.1). A similar computation we can do for other metrics, which makes 9 features redundant,
because they can be computed from the other features. So we have to deal with 18 features;
εmax is 1.17.

Clustering algorithm We found that the size of our datasets is the one of the obstacles
to selecting and using the suitable clustering algorithms. For example, the scaling behavior
of the agglomerative clustering algorithm that is used in this work can handle around 10,000
jobs in a reasonable amount of time as the complexity is at least O(N2).

The agglomerative clustering algorithm uses Euclidean distance as a similarity measure,
i.e., if the component wise distance between two job vectors is shorter than the defined
distance (ε), then these jobs belong to the same cluster.

Therefore, to be able to cluster 1,000,000 samples, we created a variant of the algorithm
by utilizing a decision tree. This workaround involves three steps:

1. Cluster and label 10,000 jobs with the agglomerative clustering algorithm

2. Train a decision tree model with data from the previous step
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3. Predict labels of 1,000,000 jobs with the trained decision tree model

5.2.2 B ALL

This algorithm converts the time series data via B-coding to a string and then determines the
relative similarity using the Levenshtein distance. The Levenshtein based similarity between
two jobs is determined using Equation (2).

similarity (jobA, jobB) = 1− levenshtein (jobA, jobB)

max (|jobA|, |jobB|)
(2)

It is the number of Levenshtein operations (changes/deletes/inserts) divided by the length of
the longest sequence, and subtracted from the value one.

1 [1:5: -: -: -: -: -:96:96:96:96:96:96:96]

(a) Job A

1 [ -: -: -: -: -: -: -: -:96:96:96:96:96:98]

(b) Job B

Listing 5.1: B ALL: The similarity between these two jobs is 73 percent

5.2.3 B AGGZEROS

This is a variant of B ALL where subsequent zero-sequences are reduced to a single zero
segment before Equation (3) is applied. This allows us to focus on I/O intensive parts of the
job. The example below shows the reduced codings from the previous example.

similarity (jobA, jobB) = 1− levenshtein (jobA, jobB)

max (|jobA|, |jobB|)
(3)

1 [1:5: -:96:96:96:96:96:96:96]

(a) Job A

1 [ -:96:96:96:96:96:98]

(b) Job B

Listing 5.2: B AGGZEROS: The similarity between these two jobs is 53 percent

5.2.4 Q LEV

This algorithm works on the same principle as the B algorithms, with the difference that it
applies a Q-coding and then computes the mean similarity across all metrics using Leven-
shtein. This adaption allows a comparison of time series where one metric differs as only one
metric string would differ while with binary coding the overall string would be different.

similarity (jobA, jobB) = 1−
∑

m∈Metrics levenshtein
(
jobA,m, jobB,m

)

|Metrics| ·max(|jobA|, |jobB|)
(4)

5.2.5 Q NATIVE

This algorithm computes a performance-aware similarity between two jobs. It works with a
selection of I/O intensive metrics from Q-codings (MetricsIO) and utilizes the Normalized-
Difference distance for similarity computation. Assume there are two jobs, jobA and jobB.
I/O intensive metrics are those, which have either in jobA or in jobB at least one non-zero
segment. Further, assume jobB is larger or equal than jobA. Then the job similarity between
the two jobs can be computed using Equation (5).

SH

∞

J P This article appeared in the Journal of High-Performance Storage, 1 15/40



Classifying Temporal Characteristics of Job I/O Using Machine . . . June 12, 2021

similarity (jobA, jobB) =

∑
m∈MetricsIO

maxSim
(
jobA,m, jobB,m

)

|MetricsIO|
(5)

The algorithm assumes that the metric codings jobB,m and jobA,m can be of different
lengths. Therefore, to compute similarity, it trims the most irrelevant segments of the longer
time series, which are determined by the sliding window approach, with the goal to find
maximum similarity between two metrics. That means, we take the shortest coding sequence
(CA) and check how it fits best on the longer coding sequence (CB). The best fitted slice is
denoted as (SB).

1 float maxSim(CA , CB) {
2 max = 0
3 LA = length(CA)
4 LB = length(CB)
5 for pos in 0..(LB -LA) { // LB -LA is the boundary , as stated: LB > LA
6 SB = substr(str=CB, start=pos , len=LA)
7 sim = sliceSim(CA , SB)
8 if sim > max {
9 max = sim

10 }
11 }
12 return max
13 }

Listing 5.4: Pseudo code of the maxSim() function

The sliceSim() in Equation (6) computes similarity between two codings of the same
length. It iterates over all positions of the coding CA and slice SB, computes segment sim-
ilarities, and the sum. Lastly, it normalizes the sum by the length of jobB. This function
maps the differences between performance levels of the same segments (values between 0 and
16) to a relative value between 0 and 1.

sliceSim (CA, SB) =
1

|jobB|

|jobA|∑

pos=1

(
1− |CA,pos − SB,pos|

16

)
, with |jobB| ≥ |jobA| (6)

For illustration, we apply the approach to compute similarity between two jobs listed in
Listing 5.3. First, we determine and trim the I/O intensive metrics and use the Equation (6)
to compute individual metrics similarities. The results are listed in Table 5.7. Then, we
compute the mean in Table 5.8. According to this algorithm, the two jobs in the table are
similar to 73% as the performance values of the I/O metrics are actually close to each other.

1 md_file_create [-:-:-:-]
2 md_file_delete [-:-:-:-]
3 md_mod [-:-:-:-]
4 md_other [-:-:-:-]
5 md_read [1:1:-:-]
6 read_bytes [1:1:2:2]
7 read_calls [-:-:-:-]
8 write_bytes [-:-:-:-]
9 write_calls [-:-:-:-]

(a) Coding of Job A

1 md_file_create [-:-:-:-:-]
2 md_file_delete [-:-:-:-:-]
3 md_mod [-:-:-:-:-]
4 md_other [-:-:-:-:-]
5 md_read [5:5:-:-:-]
6 read_bytes [1:1:1:2:2]
7 read_calls [-:-:-:-:-]
8 write_bytes [-:-:4:8:-]
9 write_calls [-:-:-:-:-]

(b) Coding of Job B

Listing 5.3: Q NATIVE: Q-codings of two jobs and I/O intensive metrics.
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MetricIO CA CB pos SB,pos sliceSim(CA, SB)

md read [1:1:-:-] [5:5:-:-:-] 0 [5:5:-:-] 0.7
md read [1:1:-:-] [5:5:-:-:-] 1 [5:-:-:-] 0.7375
read bytes [1:1:2:2] [1:1:1:2:2] 0 [1:1:1:2] 0.7875
read bytes [1:1:2:2] [1:1:1:2:2] 1 [1:1:2:2] 0.8
write bytes [-:-:-:-] [-:-:4:8:-] 0 [-:-:4:8] 0.65
write bytes [-:-:-:-] [-:-:4:8:-] 1 [-:4:8:-] 0.65

Table 5.7: Q NATIVE: Slice similarities SB,pos = substr(str = CB, start = pos, len = LA)

MetricIO CA CB maxSim(CA, CB)

md read [1:1:-:-] [5:5:-:-:-] 0.7375
read bytes [1:1:2:2] [1:1:1:2:2] 0.8
write bytes [-:-:-:-] [-:-:4:8:-] 0.65

Mean() Similarity ≈ 0.73

Table 5.8: Q NATIVE: Similarity computation.

5.2.6 Q PHASES

The developed phase-matching quantization algorithm allows us to cluster variable length
jobs by aligning IO phases. First, using a Q-coding, phases of consecutive I/O segments are
detected and extracted. Then, the best match between the (disjoint) phases is determined,
finally the similarity is computed. We will discuss the details of each step on the example
jobs in Listing 5.4.

1 md_file_create [ -: -:2:2:2:9:3: -:9:1:1:1: -]
2 md_file_delete [-:-:-:-:-:-:-:-:-:-:-:-:-]
3 md_mod [-:-:-:-:-:-:-:-:-:-:-:-:-]
4 md_other [-:-:-:-:-:-:-:-:-:-:-:-:-]
5 md_read [-:-:-:-:-:-:-:-:-:-:-:-:-]
6 read_bytes [-:-:-:9:3:-:-:-:-:-:1:-:-]
7 read_calls [-:-:-:-:-:-:-:-:-:-:-:-:-]
8 write_bytes [-:-:-:-:-:-:-:-:-:-:-:-:-]
9 write_calls [-:-:-:-:-:-:-:-:-:-:-:-:-]

(a) Coding of Job A

1 [[2,2,2,9,3], [9,1,1,1]]
2 []
3 []
4 []
5 []
6 [[9,3], [1]]
7 []
8 []
9 []

(b) I/O phases of Job A

1 md_file_create [1:-:-:-:-:-:-:-:-:-:-:-:-:-:-]
2 md_file_delete [-:-:-:-:-:-:-:-:-:-:-:-:-:-:-]
3 md_mod [-:-:-:-:-:-:-:-:-:-:-:-:-:-:-]
4 md_other [-:-:-:-:-:-:-:-:-:-:-:-:-:-:-]
5 md_read [-:-:-:-:-:-:-:-:-:-:-:-:-:-:-]
6 read_bytes [2:2:2:2:8:2:2: -: -:1: -: -:8:1:1]
7 read_calls [-:-:-:-:-:-:-:-:-:-:-:-:-:-:-]
8 write_bytes [-:-:-:-:-:-:-:-:-:-:-:5:-:-:-]
9 write_calls [-:-:-:-:-:-:-:-:-:-:-:-:-:-:-]

(c) Coding of Job B

1 [[1]]
2 []
3 []
4 []
5 []
6 [[2,2,2,2,8,2,2], [1], [8,1,1]]
7 []
8 [[5]]
9 []

(d) I/O phases of Job B

Listing 5.4: Q PHASES: Q-codings of two jobs and their I/O phases.

Phase detection According to our I/O phase definition, phases are separated by zeros.
This definition makes the detection of individual phases to a trivial task. Relevant for sim-
ilarity computation are only metrics that contain at least one non-zero segment. In this
example, that are the md file create, read bytes and write bytes metrics.

Phase matching In Listing 5.5 we slide the shorter phase over the longer and compute
similarity to the corresponding part such that we can find the best match. In this example,
the best match is found on position four.

After repeating this step for all possible combinations of I/O phases, we chose those with
the pairs with the highest similarity, and computed the match between them. They are listed
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1 [2:2:2:2:8:2:2]
2 [9:3:-:-:-:-:-]
3 similarity
4 = (2/9+2/3) /7
5 = 13%

(a) Shift 0 positions

1 [2:2:2:2:8:2:2]
2 [-:9:3:-:-:-:-]
3 similarity
4 = (2/9+2/3) /7
5 = 13%

(b) Shift 1 position

1 [2:2:2:2:8:2:2]
2 [-:-:9:3:-:-:-]
3 similarity
4 = (2/9+2/3) /7
5 = 13%

(c) Shift 2 positions

1 [2:2:2:2:8:2:2]
2 [-:-:-:9:3:-:-]
3 similarity
4 = (2/9+3/8) /7
5 = 8%

(d) Shift 3 positions

1 [2:2:2:2:8:2:2]
2 [-:-:-:-:9:3:-]
3 similarity
4 = (8/9+2/3) /7
5 = 22%

(e) Shift 4 positions

1 [2:2:2:2:8:2:2]
2 [-:-:-:-:-:9:3]
3 similarity
4 = (2/9+2/3) /7
5 = 13%

(f) Shift 5 positions

Listing 5.5: Phase matching example.

Metric I/O Phase A I/O Phase B Match Length

md file create [-:-:-:-:-] [2:2:2:9:3] 0 5
[-:1:-:-] [9:1:1:1] 1 4

read bytes [2:2:2:2:8:2:2] [-:-:-:-:9:3:-] 8/9 + 2/3 7
[1] [1] 1 1
[8:1:1] [-:-:-] 0 3

write bytes [5] [-] 0 1

Sum 3.56 21

Table 5.9: Best combination of I/O phases, that achieves the highest possible similarity.

in Table 5.9. I/O phases without a pair are assigned virtually to empty phases, and their
match is zero. To compute the match we divide the lowest value for each segment and sum
up the values. The example below shows the pairs of I/O phases and their matches.

Similarity Next, the similarity for coding with different lengths must be adjusted. Sim-
ilarity between two jobs is the sum of matches divided by the sum of lengths of the longer
phases. The calculation is done in Equation (7). In this example, we get a similarity of 17%.

similarity(jobA, jobB) =

∑
m,i matchm,i∑
m,i lengthm,i

=
3.56

21
≈ 0.17, with m ∈ Metrics, i ∈ Phases of m

(7)

5.3 Assessment

Lastly, the quality of the obtained clusters must be assessed. Overall, we will assess their
suitability using quantitative metrics such as the number of generated clusters and their sizes
and qualitatively by manually exploring clusters of relevant jobs. We want to emphasize that
our goal is to find similar jobs. Depending on data, the clustering algorithms may create
thousands of clusters. Unfortunately, it is not feasible to analyze all of them qualitatively
with reasonable effort and there are no tools that can assess the cluster quality automatically.

Therefore, for the assessment, we look inside clusters and inspect segment sequences of
the corresponding jobs. For the quantitative analysis, we attempted to find clusters that
show the characteristic weakness of the algorithm and discuss them. We also define cluster
relevance as a metric that assists in determining which cluster bears the best optimization
potential and, hence, could be investigated first by the support staff.

For the qualitative analysis, we start by looking into a job that is given to user support,
then similar jobs need to be found. In the same cluster, we expect the sequences to be similar.
If not, the clustering algorithm is not effective.
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Algorithm Number of I/O intensive jobs

B ∗, Q NATIVE 583.000
Q LEV, Q PHASES 395.000

Table 6.1: Numbers of I/O-intensive jobs.

6 Evaluation

6.1 Test Environment

For the performance tests, we allocate a compute node on Mistral supercomputer. It is
equipped with 2x Intel® Xeon® CPU E5 2680 v3 @ 2.50GHz, 64GB DDR4 RAM. For
clustering of job profiles, we use the agglomerative clustering algorithm, decision trees, and
the MinMaxScaler from the Scikit-Learn 0.22.1 library and Python 3.8.0. For clustering of
B-codings and Q-codings we use a clustering algorithm implemented in Rust 1.42.0, and run
it on a single core.

6.2 Description of Our Data Set

This section describes the job data extracted from Mistral, originally we gathered 1 million
jobs from a period of 203 days. Mostly, jobs are allowed to run up to 8-hours, leading to
time series with up to 48 segments. From the perspective of this work, analysis of non-I/O-
intensive jobs (jobs with zero in all segments) is irrelevant, these jobs can be grouped into one
class easily. For that reason, we detect zero-jobs early and remove them from the dataset;
these are about 40% of jobs.

The number of zero-jobs is different for Q-codings and B-codings. The reason is the
quantization to Q-coding which computes mean performance values for all segments and
then quantizes them into NonIO + 16 levels. Hereby, some segments can be quantized to
zeros, if the mean value is lower than 0.125. Therefore, it may happen that some jobs fall into
the zero-job category, if all segments are quantized to zeros. It can not happen in B-coding,
because it preserves all active segments. Interestingly, it affects around 14% of jobs. Table 6.1
shows the number of jobs that are analyzed further.

6.2.1 Data exploration

I/O phases are, according to our definition, contiguous sequences of I/O-intensive segments.
The statistics of the number phases for each different metric are visualized in Figure 6.1.
These histograms show for one metric how many I/O phases a job has. Most jobs exhibit
up to 5-phases in one metric. The metrics (md bytes, md mod, and md file delete) have the
longest tail; some job use up to 22-phases, meaning that almost every other segment the
value is zero or ≥ 1.

6.3 Explored Algorithm Parameters

ML We explored our discussed job profiles: IO-metric and IO-duration. For both datasets
we explore ε ∈ [0.03, 0.06, 0.09, 0.1, 0.2, 0.3].

B/Q-algorithms In the experiments with B/Q-algorithms, we cluster jobs varying the
similarity parameter SIM ∈ [0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99]. Additionally, we capture the
clustering progress each time after clustering 10,000 jobs.
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Figure 6.1: Histogram showing the number of I/O phases for all metrics.

6.4 Limitations of the ML Algorithms on Job-Profiles

This section contains data statistics, and the clustering results in Figure 6.2 for applying the
ML algorithm (hierarchical clustering + decision tree) but using the two different job profiles
(IO-Metric and IO-Duration). Due to lack of tools, we determine cluster quality on a small
scale.

6.4.1 Results

We conducted several experiments with different ε values between 0 and εmax. The Top 20
largest clusters and total number of clusters is visualized in Figure 6.2a and Figure 6.2b for
IO-metric and IO-duration job-profiles, respectively.

We can see that IO-duration generated two very large clusters regardless of ε. From Clus-
ter 3 of IO-duration, the number of jobs inside looks similar as for IO-metric. In IO-metric,
we can see that with increasing ε, the number of jobs per cluster increases (as expected).

A look inside clusters reveals chaotic clustering results. For both datasets and for all ε
values we could find many coding sequences in a cluster that we wouldn’t locate together
– while the job profiles are similar, the timelines are absolutely different. The examples in
Table 6.2 show some jobs in one cluster for a high similarity (ε = 0.03).

We looked in the Top 10 largest clusters and a random selection of clusters to find the
same picture: Even with low ε values the algorithms appear to produce polluted clusters, i.e,
with samples from other clusters. Generally, the algorithm does the intended job – clustering
jobs with similar profiles together. However, it becomes apparent that the time series data
is very important and the two job profiles are not enough to define similarity. However, even
with a good feature set that works on our test system, it is unlikely that the strategy and
trained model will be portable to other systems. Therefore, we conclude that this adapted
version of hierarchical clustering based on job profiles isn’t suitable to analyze the I/O time
series data of jobs and we must compare time series to obtain suitable similarity metrics.
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(a) IO-metric (b) IO-duration

Figure 6.2: The Top 20 largest clusters for two different job-profiles.
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0.009 0.019 0.250 0.028 0.005 0.009 0.005 0.032 [340:510:272]
0.013 0.013 0.245 0.006 0.006 0.006 0.013 0.013 [510:-:-]
0.017 0.017 0.250 0.017 0.000 0.000 0.000 0.017 [14:280]

(b) IO-duration job profiles

Table 6.2: Jobs found in the same cluster with their profiles coding (ε = 0.03). Columns
containing zeros only are omitted.

6.5 Quantitative Evaluation

This section contains data statistics, clustering progress, and clustering results when applying
the five customized algorithms: B ALL, B AGGZEROS, Q LEV, Q NATIVE, Q PHASES.

6.5.1 Impact of the User-Defined Similarity

In the introduced algorithms, the user-defined similarity (SIM) that the jobs in a cluster
must fulfill to the cluster centroid controls the cluster formation. It is expected that low SIM
values produce a smaller number of noisy clusters and a high SIM value produces a large
number of clean clusters. We suppose the optimal value is application dependent. Although
an optimal SIM value depends on use case and dataset, a parameter exploration may provide
important hints to find a good value and achieve optimal cluster qualities.

Figure 6.3 shows the number of clusters created when clustering an increasing total num-
ber of jobs for different SIM values; each point represents the number for an analyzed number
of jobs in increments of 10,000 jobs. For all algorithms, we can see that with an increase
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in SIM value, the number of clusters created increases, and the number of total clusters
created slows down the more jobs have been processed as jobs are allocated to existing clus-
ters. B ALL creates most clusters while Q NATIVE creates the least and Q PHASES is in
between. For SIM of 99%, B* and Q LEV can barely group jobs together.

Figure 6.4 shows the clustering runtimes for the same experiment. The clustering time
depends heavily on the number of created clusters. The reason is that the algorithm tries
to put each job in existing clusters first. It iterates over them, and only if it is not able
to find a suitable cluster, it creates a new one. The more clusters exist, the longer is the
processing time. Since, for low SIM values there is a low number of clusters, the clustering is
much faster. Q PHASES has exceptionally high runtimes due to quadratic runtimes of phase
matching. In one case, the runtimes clustering of 10,000 jobs took up to 4.3 hours (the few
outliers are not shown in the picture). We suppose this is caused by the quadratic runtimes
of the phase matching procedure.

From this initial considerations, it appears that Q NATIVE is well suited, it generates the
least number of clusters and is efficient. However, looking at the overall number of created
clusters isn’t enough to assess the quantity of the aggregation. Additional quantitative metrics
need to be used, such as the number of small clusters.

To understand the aggregation behavior better, alternative visualizations are investigated.
In Figure 6.5, the number of clusters created for a given similarity value is plotted. The red
line approximates the overall number of clusters, the green line shows how many contain
at least two jobs and the blue line shows how many of them contain at least 10 jobs. The
maximum number of clusters is equivalent to the number of jobs; it is visualized by the gray
line. Coding with 100% similarity are of the same job phenotype, i.e, they have exactly the
same length and I/O behavior.

The gradient of the curve shows the generalization capabilities of each algorithm for
different SIM values. Apparently, for all algorithms (except Q LEV and Q NATIVE) there is
a SIM value, where the number of clusters with more than ten and two jobs is decreasing, i.e.,
the clustering algorithms start to split clusters into individual job clusters. That is something
we usually want to prevent, because the algorithms stop finding similar jobs, but focus on
refining clusters.

In Figure 6.6, the distribution of the relative cluster size for all jobs. The B* algorithms
tend to create many small clusters. Q PHASES creates a variety of different cluster sizes
and Q NATIVE the biggest clusters. Interestingly after scaling both axes with log10, we can
observe a linear behavior for all algorithms.

When looking for an optimal SIM, we consider the following criteria: we need to select a
SIM value where a further increase of it doesn’t increase the number of clusters significantly,
i.e., we can see a flattening curve with increasing numbers of jobs, which indicates that more
jobs are placed in clusters and less clusters are created. Q PHASES and B* algorithms work
best for SIM values between 0.7 and 0.9, and for other Q-algorithms the SIM value between
0.90 and 0.99.

Another strategy could be to start with a high SIM value and then decrease it until the
clusters are big enough while appearing to be sufficiently similar for the current analysis.

6.6 Cluster Relevance

To assess the quality of the quantitative clustering better and to aid support staff to identify
relevant clusters, we define a relevance of clusters as listed in Equation (8). The idea behind
the relevance definition is the following: the larger the cluster (in terms of jobs) and the longer
the jobs, the more potential load these jobs can produce. Therefore, it is worth investigating
these clusters first. Note that the relevance could include the number of occupied nodes as
well to effectively indicate the usage of all jobs on the supercomputer. We use the listed
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Figure 6.3: Clustering progress.

Figure 6.4: Runtime for executing the clustering.
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Figure 6.5: Similarity value exploration.

Figure 6.6: Cumulative number of jobs with different sizes.
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definition of weighted relevance as an example how it changes rankings.

Relevance = ClusterSize ·MeanJobLength (8)

To give you an impression of cluster qualities for different SIM values, we visualize the Top
10 relevant clusters in Figure 6.7. The figure confirms that each algorithm creates different
clusters as the length of the most relevant clusters and amount is dissimilar. For a small
SIM value, the first few clusters contain a large quantity of shorter (but not so similar) jobs.
However, due to our definition of the relevance metrics, we can observe that smaller clusters
with longer jobs are more relevant. This can be as extreme as a cluster with average length
of > 40 segments is ranked next to one with average length of 1 segment. We believe that
clustering by relevance (potentially extended by the occupied node number) is useful for
support staff to identify optimization potential.

6.7 Qualitative Evaluation

The analysis so far does not mean that the quality of the clusters is acceptable. After
manual exploration of selected clusters, we noticed some show a SIM-value independent
characteristics. To explain them, for each algorithm we investigate one cluster of these in
detail.

For the presentation of the clusters, we provide a description of particular observations
followed by a table containing statistics, then the codings for centroid and most frequent
unique jobs in the cluster – we call such a unique representation a job phenotype. At the
end, we include an illustration which describes the segment length distribution of jobs in the
cluster that indicates how much the algorithm groups across different job runtimes.

6.7.1 Algorithm characteristics

The SIM value selection strategy can vary from use case to use case. As criteria, we choose
a SIM value that creates a moderate number of clusters (around 50% of job phenotypes)
and keeps its generalization capabilities (the number of clusters with more than 1 job is
considerable). For the B-algorithms and Q PHASES we chose a SIM = 0.7, and the other
Q-algorithms SIM ≥ 0.9.
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Figure 6.7: Top 10 relevant jobs ordered by relevance. The colors indicate the mean similarity
of the jobs in a cluster to the cluster centroid. The number above a bar denotes the mean
job length of the cluster.
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Coding sequence Cluster size

[511] 37,272
[32] 14,536
[272] 11,338
[160] 11,014
[128] 10,228
[8] 9,446

Table 6.3: B-algorithms: Top 6 largest clusters created with SIM = 0.7.

Number of jobs 4378
Number of job phenotypes 3332

(a) Cluster statistics.
B-coding of the centroid Type
-:-:-:-:-:-:294:-:-:-:-:32:-:-:-:-:-:-:-:-:-:-:-:32:-:-:-:-:-:-:-:-:-:-:-:32:-:-:-:-:-:-:-:-:-:- centroid

B-coding of jobs in the cluster Count
-:-:-:-:-:-:359:96:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 95
-:-:-:-:-:-:295:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 62
-:-:-:-:-:-:-:-:-:-:-:-:4:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 47
-:-:-:-:-:-:359:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 44
-:-:-:-:-:6:6:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 40

(b) Centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.8: B-algorithm: Information of the selected cluster (SIM=0.7).

B ALL For the B-algorithms, we show the statistics of the largest clusters as well in Ta-
ble 6.3 as there is an important aspect. Looking at Table 6.3, the six largest clusters contain
the shortest possible jobs (one segment long). In each cluster, all jobs have the identical
coding; these short running jobs are likely pre/post-processing jobs.

Therefore, the selected cluster for inspection is further down in the Top 5, information is
shown in Figure 6.8. There are about 3300 different types of unique jobs, it contains jobs with
a length between 38 and 67. Most jobs in the cluster are shorter than 49 segments, because
the main Mistral partitions can allocate jobs for at most 8 hours, and that is the majority of
jobs. Since each segment is ten minutes long, the runtime of jobs with 49 segments is about
8.16 hours. The other jobs must be special allocations.

By inspecting individual jobs in Figure 6.8b, we can see that the centroid has 4 segments
6= 0 and the jobs are mostly empty. As the similarity of 70% considers empty segments as
well, jobs with few I/O segments are found in this cluster.

The following general characteristic observations are made:

1. Job phenotypes can significantly differ from centroid and from each other.

2. Lengths of job phenotypes in a cluster are relatively close to the centroid.

B AGGZEROS The first clusters are identical to B ALL, e.g., as shown in Table 6.3. The
reason that both algorithms create the same clusters is that the zero aggregation has no effect
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Number of jobs 2285
Number of job phenotypes 452

(a) Cluster statistics.
B-coding of the centroid Type
-:-:191:272:272:287:287:272:272:272:272:272:272:272:272:272:272:272:272:272:272 centroid

B-coding of jobs in the cluster Count
272:272:272:272:272:278:286:272:272:272:272:272:272:272:272:272:272 543
272:272:272:272:272:278:286:272:272:272:272:272:272:272:272:272:272:272:272 530
272:272:272:272:272:406:286:272:272:272:272:272:272:272:272:272 96
272:272:272:272:272:272:272:272:272:272:272:278:286:272:272:272 90
272:272:272:272:272:272:272:272:272:272:272:406:286:272:272:272 70

(b) Centroid and Top 5 job phenotypes

(c) Job length distribution in the cluster.

Figure 6.9: B AGGZEROS algorithm: Information of the selected cluster (SIM=0.7).

on formation of short jobs: the minimum job length required for effective zero aggregation is
at least three segments.

We chose again a cluster of the Top 20, information related to the cluster is shown in
Figure 6.9. The following is characteristic for this algorithm:

1. Job types can significantly differ from centroid and from each other.

2. I/O intensive clusters appear to be cleaner than B ALL.

3. If codings contain many zero segments (not included in the example), lengths of job
phenotypes in a cluster may be relatively far from the centroid and compared to B ALL.

Q LEV Due to the longer Q-codings, smaller changes in the SIM value don’t change the
clusters as quickly, compared to B-codings. Therefore, for this exploration, we chose a SIM
value higher than for B-algorithms. We observe the following cluster characteristics:

1. Similar job lengths.

2. Mostly clean clusters, but a cluster can contain outlier jobs.

We observe that even with a high SIM value, some jobs have a different I/O behavior
than the centroid and the rest of the jobs. The reason is that for the Levenshtein distance
the distance between value 1 and 2 is the same as for 1 and 8; however, in the former case
the performance is more similar than in the latter case.

Information related to the selected cluster is provided in Figure 6.10. In the selected
cluster, there is mostly one segment of I/O activity.
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Number of jobs 4453
Number of job phenotypes 1955

(a) Cluster statistics.
Q-coding
md file delete md mod md other Type
-:-:-:-:-:-:-:-:-:-:-:-:2:-:-:-:- -:-:-:-:-:-:-:-:-:-:-:2:2:-:-:-:- -:...:- centroid

Q-coding
md file delete md mod md other Count
-:...:- -:-:-:-:-:-:-:-:-:-:-:-:2:-:-:-:- -:...:- 299
-:...:- -:-:-:-:-:-:2:-:-:-:-:-:-:-:-:-:- -:...:- 212
-:...:- -:-:-:-:-:-:4:-:-:-:-:-:-:-:-:-:- -:...:- 179
-:...:- -:...:- -:-:-:-:-:-:-:-:-:-:-:-:2:-:-:- 120
-:...:- -:...:- -:-:-:-:-:-:-:-:-:-:-:-:2:-:-:-:- 87

(b) Centroid and Top 5 job phenotypes. The metrics that have no I/O activity are not included in
the table.

(c) Length distribution in the cluster.

Figure 6.10: Q LEV algorithm: Information of the selected cluster (SIM=0.9).

Q NATIVE The SIM value exploration shows that this algorithm works best with high
SIM ≥ 0.9 values. Clustering with SIM=0.99 results in clusters that have equal job lengths.
From the definition of the equation, for a similarity of 99% the centroid must be longer than
100 segments to attract jobs with 99 or 101 length. Due to space restrictions, we could not
visualize a representative example. Instead of that we take a short one, although it doesn’t
include all the typical characteristics.

General cluster characteristics:

1. Similar job lengths (even for lower SIM).

2. Jobs are relatively close to the centroid.

3. Low number of outliers.

Information related to the selected cluster is given in Figure 6.11. In the selected cluster,
jobs with a length of 4 have mostly the activity of one segment in common.
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Number of jobs 6246
Number of job phenotypes 23

(a) Cluster statistics.
Q-coding
md file delete md mod md other read bytes Type
-:...:- -:...:- -:-:1:- -:...:- centroid

md file delete md mod md other read bytes Count
-:...:- -:...:- -:-:1:- -:...:- 6115
-:...:- -:-:1:- -:-:1:- -:...:- 31
-:...:- -:...:- -:-:1:- -:-:1:- 25
-:1:-:- -:...:- -:-:1:- -:...:- 12
-:...:- -:1:-:- -:-:1:- -:...:- 10

(b) Centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.11: Q NATIVE algorithm: Information of the selected cluster (SIM=0.99).

Q PHASES Information related to the selected cluster is shown in Figure 6.12. The first
thing to mention are the high generalization capabilities of the algorithm, i.e., that many
jobs are mapped to a relatively low number of types. The next typical property is shown
in Figure 6.12c, where we can see that almost the full range of job lengths is represented in
the cluster. This happens, because the Q PHASES ignores zero segments. For example, for
Q PHASES, the job phenotypes in Figure 6.12b in the row one and two are 100% similar,
despite of different lengths. The centroid and other jobs contain very quite similar I/O
patterns.

General cluster characteristics:

1. Low number of job phenotypes represented in a cluster.

2. Relatively large number of job lengths represented in a cluster.

3. I/O pattern of jobs in a cluster are similar.
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Number of jobs 3015
Number of job phenotypes 254

(a) Cluster statistics.
Q-coding
md file delete md mod Type
2:-:-:-:-:- 2:-:-:-:-:- centroid

md file delete md mod Count
2 2 958
-:-:-:-:-:-:2:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- -:-:-:-:-:2:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 322
2:-:-:-:-:- 2:-:-:-:-:- 309
-:-:2:- -:-:2:- 140
2:- 2:- 95

(b) Centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.12: Q PHASES algorithm: Information of the selected cluster (SIM=0.7).

Figure 6.13: One I/O-intense job running on 46 nodes. Score is the sum of all nodes stacked
by the node. A color represents one of the nodes.

6.8 Use Case: Tracking an I/O-Intensive Job

The demonstration in this section shows how this approach can be used to identify a cluster
of I/O-intensive jobs similar to an existing job.

Firstly, we find an I/O intensive job that we use to identify similar jobs. The selected job
is visualized in Figure 6.13. This relatively long job (27 segments) reveals one heavily used
metric. The job reads data over its runtime but doesn’t have any noteworthy activities in
any other metrics. At beginning, only a subset of the nodes is reading most of the data, later
more nodes participate in the reading. The amount of transmitted data is not large but the
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Number of jobs 8
Number of job phenotypes 8

(a) table

Cluster statistics.
B-coding Type
192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 job
511:238:192:510:192:224:228:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 centroid

B-coding Count
-:224:192:192:192:192:228:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 1
192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 1
192:192:193:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64 1
192:193:193:198:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64:64 1
207:463:225:495:246:224:198:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64:64 1

(b) Job, centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.14: B ALL algorithm: Information of the selected cluster (SIM=0.7).

number of read calls is high and may potentially degrade the file system performance. Now,
we identify and investigate the cluster that contains this job for the different algorithms and
discuss if these jobs are similar.

Overall, we find this job leads to good conditions for all algorithms, i.e., all the algorithms
work well in this use case.

B ALL Information related to the cluster is in Figure 6.14. Compared to B AGGZEROS,
the cluster is smaller but the jobs have a more similar ending.

B AGGZEROS Information related to the cluster of the job is in Figure 6.15. We find
that the identified jobs in the cluster are sufficiently related.
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Number of jobs 223
Number of job phenotypes 190

(a) Cluster statistics.
B-coding Type
192:192:192:192:192:192:196:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:64:64:64:64:64 job
-:-:-:-:-:-:228:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192 centroid

B-coding Type
192:192:192:192:192:454:230:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192 10
192:192:192:192:192:454:230:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192 10
192:192:192:192:192:454:198:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192 5
-:-:-:-:-:-:228:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192:192 4
192:192:192:192:192:192:192:192:192:192:192:454:230:192:192:192:192:192:192:192:192:192:192:192 3

(b) Job, centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.15: B AGGZEROS algorithm: Information of the selected cluster (SIM=0.7).

Q LEV Information related to the cluster is in Figure 6.16. Overall, the job is matched
partially, jobs in the cluster may contain at the beginning an idle phase.

Notice that there is a discrepancy between the job visualization in Figure 6.13 and the
quantum codings. While in Figure 6.16 we can see a less intensive phase in the beginning
and a high intensive phase afterwards, the quantum coding contains a more or less single
high intensive I/O phase. The reason is that we use different reduction functions. While in
the illustration we aggregate segments by the sum() function, for the coding we use mean()
function for the same set of values. While sum() is better for visualization, the mean value
allows the algorithms to assess data independent of the number of nodes used in a job.
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Number of jobs 225
Number of job phenotypes 205

(a) Cluster statistics.
Q-coding
md other read calls Type
-:...:- 3:3:8:8:7:4:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 job
-:...:- -:-:-:-:-:-:6:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 centroid

md other read calls Count
-:...:- -:-:-:-:-:-:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 5
-:...:- -:-:-:-:-:-:2:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3
-:...:- 8:8:8:8:8:2:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3
-:...:- 8:8:8:8:8:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3
-:-:-:3:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- -:-:-:-:-:-:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3

(b) Job, centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.16: Q LEV algorithm: Information of the selected cluster (SIM=0.9).

Q NATIVE Information related to the cluster is in Figure 6.17. Again, the jobs look
similar, however, for read calls the increase in performance and the drop in Segment 5 is not
captured.
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Number of jobs 95
Number of job phenotypes 94

(a) Cluster statistics.
Q-coding
read calls Type
3:3:8:8:7:4:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 job
-:-:-:-:-:-:5:8:8:8:8:8:8:8:-:8:8:8:8:8:8:8:8:8:8:8:8 centroid

read calls Count
-:-:-:-:-:-:3:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 2
-:-:-:-:-:-:2:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:7:8:8:8:8 1
-:-:-:-:-:-:4:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 1
-:-:-:-:-:-:5:8:8:8:8:8:8:8:-:8:8:8:8:8:8:8:8:8:8:8:8 1
-:-:-:-:-:-:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 1

(b) Job and centroid coding sequences.

(c) Length distribution in the cluster.

Figure 6.17: Q NATIVE algorithm: Information of the selected cluster (SIM=0.90).

Number of jobs 222
Number of job phenotypes 202

(a) Cluster statistics.
Q-coding
md other read calls Type
-:...:- 3:3:8:8:7:4:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 job
-:...:- -:-:-:-:-:-:6:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 centroid

md other read calls Count
-:...:- -:-:-:-:-:-:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 5
-:...:- -:-:-:-:-:-:2:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3
-:...:- 8:8:8:8:8:2:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3
-:...:- 8:8:8:8:8:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3
-:-:-:3:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- -:-:-:-:-:-:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8 3

(b) Job, centroid and Top 5 job phenotypes.

(c) Length distribution in the cluster.

Figure 6.18: Q PHASES algorithm: Information of the selected cluster (SIM=0.7).

Q PHASES Information related to the cluster is in Figure 6.18. Even with a smaller SIM
value, the jobs appear related while they cover a variety of job length as well.
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6.9 Discussion

We evaluated similarity between jobs quantitatively and qualitatively for the different algo-
rithms. As most jobs contain only a subset of I/O-intensive segments, the assessment of
similarity should ignore these phases. There may be specific use cases where the exact job-
length play a role but generally it appears that a user or support member should be interested
in similar I/O-patterns as otherwise the clusters will be polluted with irrelevant jobs.

Coding. The coding of the time series data has a big impact on the potential similarity
that can be uncovered. We explored binary, quantized values.

We noticed in the experiments with native coding that the amount of generated clusters
skyrocketed. The reason is that similarity for short jobs exceed a high SIM value quickly and
this leads to the creation of new clusters, which in turn leads to long clustering runtimes. An
example illustrates a typical case: Assume there are two jobs: one running on 16 nodes and
other running on 32 nodes. Both are one segment long and only one I/O node that writes data
to storage with a moderate performance. Without quantization, we would represent these
jobs by the following sequences: [..., [0.0625], . . . ] and [..., [0.03125], ...], where only active
metrics have values larger than zero. Using the similarity function without quantization, i.e.,
with mean performance, would result in a similarity of 50%, and for SIM > 0.5 they would
be placed in separate clusters.

The Q-coding quantizes the data, making them identical, and filters many jobs auto-
matically. Segments with mean performance less than 0.125 are rounded to zero and zero
sequences are removed from the dataset.

Rounding is not necessary for Q PHASES. It can work directly with floating-point num-
bers. As it generalized better for smaller similarity, it wouldn’t create that many clusters
as for the other methods. The initial motivation behind the use of quantum coding was to
apply string methods such as Levenshtein and make data comparable with other algorithms.

Lengths-invariance. With the Levenshtein distance, we attempted to resolve the issue of
lengths-invariance allowing the assignment of jobs of different length into the same cluster.
However, the Levenshtein distance cannot consider the performance of a segment. For exam-
ple, the following three codings would be considered to be all different by one symbol, since
they differ in one position only.

1 phase_coding_1 : [2:2:2:2:2:9:2:2]
2 phase_coding_2 : [2:2:2:2:2:8:2:2]
3 phase_coding_3 : [2:2:2:2:2: -:2:2]

Intuitively, we would say that phase coding 1 and phase coding 2 are more similar than
phase coding 2 and phase coding 3, because the difference at 6th position is smaller for 8
and 9 than to 8 to 0. Short runtimes lead to more polluted clusters.

Here is another example that illustrated the issue of noise in clusters for Levenshtein:
Suppose two jobs [-:6:-:-] and [-:388:174:-] are in the same cluster with the centroid [-:388:-
:-]. After applying one replacement operation (replace 6 by 388) on the first job [-:6:-:-]
we can obtain the centroid [0:388:0:0]. Similarly, we can replace one element in the second
job (replace 174 by -) to obtain the same centroid According to the algorithm we obtain a
similarity of 75% in both cases, but intuitively we would say that these jobs are completely
different, not even close to the 75% mark. We can also easily construct another sequence,
e.g., [-:389:-:-], where a similarity of 75% is justified. For this reason, we found that the
Levenshtein distance is generally not suitable.
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I/O Phases. The current version of the Q PHASES algorithm ignores NonIO parts (se-
quences of zeros) of the monitoring data, and handles segment sequences like [-,-,-,-,1] and
[1] equally:

1 job1_metric1 : [-,-,-,-,1]
2 job1_metric1 : [1]

These sequences would produce different average I/O loads on the storage. Depending on
the use case, we would judge these jobs exhibit different I/O behaviour as the ratio between
computational and I/O load is different.

One could argue that the phase definition (of separating phases by idle phases) isn’t
capturing the behavior sufficiently. Currently, phases are defined for each metric individually,
without consideration of the overall behavior on other metrics. For illustration, consider the
following two jobs:

1 job1_metric1 : [-:1]
2 job1_metric2 : [1:-]
3 job2_metric1 : [1:-]
4 job2_metric2 : [1:-]

Currently, the algorithm recognizes the I/O patterns to be 100% similar as it extracts in
all cases a phase of [1]. Alternatively, one could say that running two metrics at the same
time is another I/O pattern, as running them shifted, because on a storage system the jobs
would produce different I/O loads. For jobs with many I/O phases, this situation is less likely
but for shorter jobs, it may happen. The benefit of ignoring these aspects is simplicity; this
clustering reduces the number of clusters and results are easier to understand.

Characterization of I/O. The main questions for a user that applies a clustering algo-
rithm remain: how to define similarity. Depending on the use case, the relevant I/O-behavior
and characteristics involved in job comparison must be defined to allow identification of jobs
depending on temporal behavior. In our case, we discussed similarity based on profiles and
time series data. We explored various variants for the handling of fluctuation in the time
series data that consider time series of different length, omit empty phases, and allow some
reordering of phases. To answer these questions, a discussion with the community about the
use cases and a study of more use cases is necessary. It appears likely that multiple similarity
metrics must be defined that serve different purposes.

7 Conclusion

In this work, we described various approaches to cluster 1 million jobs based on their I/O
behavior. Clustering of jobs is important for data-center support staff to focus their effort
on relevant jobs. Therefore, we pre-processed the periodically gathered node metrics by
converting this fine-grained resolution into 10-minute segments using various stacks. Our
contribution is the systematic evaluation and discussion of various approaches for the clus-
tering. The success of clustering algorithms depends on the right feature selection and data
transformation.

After a series of experiments with general purpose algorithms on profile data, we could
not achieve acceptable results for the clustering of originally time series data. While we
could have applied traditional approaches such as k-means on profiles, we found that the
large number of classes and unknown knowledge about the jobs doesn’t suit this use case.
We believe this is due to the nature of reducing the time series to flat job profiles, which isn’t
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suitable to capture the behavior of the IO jobs. Even if a better solution would be found,
there is no guarantee that the generated model could be applied on another system.

In the evaluation, we investigated the quantitative and qualitative behavior of different
algorithms. The investigation of clusters shows that particularly clusters with little I/O
activity are noisy and do not meet our expectation. Depending on the similarity chosen by
the user, there are many different clusters with phenotypes of jobs found. Thus, exceeding
the ability for manual inspection and manual labeling.

Our analysis shows that considering the relative I/O performance and I/O phases improves
the clustering. The integration of the awareness of I/O performance produces better, but
still not perfect results. Therefore, we found that the Levenshtein distance is generally not
suitable for similarity of I/O behavior of jobs.

Absolute coding aggregates three dimensions (Metric, Nodes, and FileSystems) resulting
in a nine times shorter coding sequence than quantum coding, which aggregates only two
dimensions (Nodes, and FileSystems). Using quantum coding allows a more precise job
comparison than binary coding because it contains information for all metrics. However,
using the actual native floating-point value is problematic for the developed algorithms as for
high similarity it will generate too many clusters. Therefore, we consider the quantization is
appropriate for this use case.

The phase matching algorithm detects phases and differentiates performance values. In
our analysis, even small SIM values produced good results. We found that this algorithm
identifies similar jobs sufficiently good to be usable on production systems. The cluster
relevance computation makes the algorithm even more valuable, since it aids data center
employees to select jobs of relevance.

We believe that the community must identify and define suitable similarity metrics for
the different analysis purposes.

7.1 Future Work

To address the issue with the large number of clusters we will research three additional
functions: 1) filter irrelevant clusters, 2) sort clusters by criteria, and 3) automatic labeling.

We intend to conduct a survey and discussion with users to answer the question what
similarity of I/O jobs means. We will extend relevance to cover node count as well to represent
the actual costs of running a job better.

We see a high potential in the new clustering algorithms to apply them on the fly to jobs
of interest. For this case, the jobs could be grouped based on distance to this particular job
and allowing the user to modify the similarity online.
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Reviews

This section is optional for reviewers and shows their assessment that lead to the acceptance
of the original manuscript. Reviewers may or may not update their review for a major update
of the paper, the exact trail is available in GitHub repository of this article. The reviews are
part of the article and validate the acceptance. Please check the details on the JHPS webpage.

Reviewer: JT Acquaviva, Date: 2020-10-07

Overall summary and proposal for acceptance The paper address a key topic in I/O
analysis. As instrumentation and profiling are starting to get in place in data centers the
amount of information generated in unmanageable at the human scale and methods need to
be developed to summarize the I/O profile ad provide insight. Taking this problem at its
inception the article proposes, discuss and compares several ways to describe an job in respect
of its I/O characteristics. Not only the metrics are discussed but also the level of accuracy
for the measurements. Thus the authors explore the trade-off between accurate description
and the need to accept loss of information to build clusters. The quality of the clustering is
analyzed and overall the authors are able to summarize 100.000 jobs in a limited amount of
clusters. Some qualitative analysis is performed on the clustering. Overall the paper address
an important problem, with broad implications for I/O architectures, job scheduling and
work-flow organization in a data center. The paper is well written and clear. The data set
is large enough to back-up the relevance of the method. It remains that data are all coming
from a single site (DKRZ) which is OK to assess the method but somehow limit the scope of
the findings.

Scope Yes, it’s a good fit.

Significance Above average

Readability Good

Presentation Good

References Yes

Correctness Yes

Reviewer: Suren Byna, Date: 2020-07-07

Overall summary and proposal for acceptance This paper describes an exploration to
cluster one million jobs that ran on the Mistral system at DKRZ. The authors used 10,000 jobs
for training and then used the 1 million jobs for clustering. It was found that general purpose
clustering algorithms were not creating meaningful clusters, hence, the authors explored
quantitative and qualitative analysis of clusters using knowledge of I/O patterns.

What does the “score” mean in Figure 2.2? Please define it as it is not obvious based on
the figure’s caption.

In general, the motivation of this paper is interesting. One thing I wasn’t clear at the
end, may be due to my lack of expertise in clustering, which clustering method should a
data center use. Understandably, clustering depends heavily on similarity, but selection of a
similarity could be a daunting task for users.
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Overall, this paper is interesting to the I/O community, as the effort is attempting to find
clustering of jobs based on I/O, which is difficult, and defining similarity requires more work.
Added minor edits as suggestions in the text.

The paper could be accepted for publication after the authors address minor editing
suggestions and adding some minor details.

Scope Yes, it’s a good fit.

Significance Above average

Readability Good

Presentation Good

References Yes

Correctness Yes

Reviewer: George Markomanolis, Date: 2020-11-19

Overall summary and proposal for acceptance During the profiling of the I/O on a
supercomputer to analyze data, a scientist has to handle a problem, there are a lot of data
from various jobs. New methodologies need to be developed for more efficient analysis. The
authors propose an approach that is applied on Mistral system at DKRZ to map the I/O on
some specific metrics where they can apply clustering techniques to avoid having a million
different profiling data to analyze. Moreover, the authors did quantitative and qualitative
analysis regarding their approach. They evaluated many algorithms and the coding technique
helped them to use the time series data to study the similarity. The outcome was to have
a small number of clusters that could analyze. There are many frameworks that produce a
lot of data, thus this work is really important and could potentially be also used on other
big systems. The paper is lengthy but needs to provide a lot of details for the reader to
understand better. It would be great if more sites were included in these experiments but
this could be future work.

Scope Yes.

Significance Above average

Readability Good

Presentation Good

References Yes

Correctness Yes
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Reviewer: Adrian Jackson, Date: 2021-01-25

Overall summary and proposal for acceptance This paper, outlining as it does a
study of I/O job metrics and methods for automatically analysing I/O usage data on large
scale systems, is generally of publishable quality, and presents interesting research.

There are some places where the language or the discussion in the paper needs to be
addressed, and this has been added in comments in the paper. Of most importance are the
figures Figure 6.15 and Figure 6.14 where I think the labels are the wrong way around at the
moment. There are also some issues around how levenshtein distance has been used in the
research that could be improved or at least clarified, because it is not currently clear how
text manipulations are being undertaken, i.e. in the example [-:6:-:-] -¿ [-:388:-:-] is described
as requiring one change, but for classical Levenshtein distance that should be a minimum of
3 changes.

There are other minor areas where the text could be improved, but in general the rest of
the paper is good.

I would suggest this paper can be accepted provided the corrections outlined in the com-
ments have been sufficiently addressed.

Scope Yes, the investigation of I/O monitoring metrics and analysis is a good fit to the
journal

Significance The work has good significance in the topic of I/O metrics and analysis

Readability In general the readability is good, although there are a number of places where
the language could be improved or where text is not completely understandable. Comments
have been added in the text outlining these issues.

Presentation Good

References Good

Correctness The research is thorough and well documented.
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