

Characterization of Concentrated Nano-Scaled Droplets, Soft and Hard Particles by Fiber-Optical Photon Density Wave Spectroscopy

A. Krause^{a,b}, S. Schlappa^a, L. Bressel^{a,b}, O. Reich^a, M. Münzberg^{a,b}, and R. Hass^b

^aPhysical Chemistry - innoFSPEC Potsdam, University of Potsdam, Am Mühlenberg 3, D-14476 Potsdam, Germany ^bPDW Analytics GmbH, Geiselbergstr. 4, D-14476 Potsdam, Germany

1 Photon density wave spectroscopy

- In-line Process Analytic Technology (PAT) for concentrated and strongly scattering dispersions
- Dilution and calibration free
- Based on multiple-light scattering
- Independent characterization of reduced scattering coefficient μ_s ' (linked to particle size) and absorption coefficient μ_a

2 Experimental

2.1 Setup

Photon density =

4 Fundamentals of particle sizing

4.1 Variable absorber concentration

5 PDW for PAT

5.1 Radical fed-batch polymerization of vinyl acetate in water in 1 L scale

- μ_a analogous to Lambert-Beer -> slope = ε_a (Absorber)
- $\mu_{\rm s}$ ' constant
- Allows determination of absorber concentration
- **4.2 Variable scatterer concentration**

- $\mu_{\rm s}'$ increases linearly with slope $\tau_{\rm s}'$
- μ_a decreases due to reduced water content
- Allows determination of particle size or volume fraction ϕ

4.3 Determination of particle sizes

10:00 12:00 14:00 16:00 Time t / hh:mm

Temperature T, monomer volume fraction ϕ , reduced scattering coefficient μ_s ' at 637 nm, mean diameter d and its distribution width Δd as function of time t for the polymerization of vinyl acetate.

Nano particle size characterization of PVAc

• Good agreement with electron microscopy

• Result from process measurement reflects number based particle size distribution by PDW spectroscopy, reference analysis by static light scattering agrees well with volume based distribution from PDW spectroscopy

3 Theory

5.2 Ostwald ripening of nano emulsions

innoFSPEC, Am Mühlenberg 3 D-14476 Potsdam/Golm, Germany krause17@uni-potsdam.de

(grant 03Z22AN12 and 03Z22AB1B) as well as the European Union's Horizon 2020 research and innovation programme (grant 862583).

Horizon 2020 European Union funding Commission for Research & Innovation

European

UNTERNEHMEN 🥮 Die BMBF-Innovationsinitiative Neue Länder **REGION**