
Building a Kubernetes infrastructure for CERN’s Content
Management Systems

Konstantinos Samaras-Tsakiris1,∗, Rajula Vineet Reddy1,, Francisco Borges Aurindo
Barros1,2,, Eduardo Alvarez Fernandez1,, and Andreas Wagner1

1CERN
2Instituto Superior Técnico

Abstract. The infrastructure behind home.cern and 1000 other Drupal web-
sites serves more than 15,000 unique visitors daily. To best serve the site own-
ers, a small engineering team needs development speed to adapt to their evolv-
ing needs and operational velocity to troubleshoot emerging problems rapidly.
We designed a new Web Frameworks platform by extending Kubernetes to re-
place the ageing physical infrastructure and reduce the dependency on home-
brew components.
The new platform is modular, built around standard components and thus less
complex to operate. Some requirements are covered solely by upstream open
source projects, whereas others by components shared across CERN’s web host-
ing platforms. We leverage the Operator framework and the Kubernetes API
to get observability, policy enforcement, access control and auditing, and high
availability for free. Thanks to containers and namespaces, websites are iso-
lated. This isolation clarifies security boundaries and minimizes attack surface,
while empowering site owners.
In this work we present the new system’s open-source design contrasted with the
one it replaces, demonstrating how we drastically reduced our technical debt.

1 Introduction
Google rewrites most of their software every few years [1]. Despite the cost, they consider
it crucial to long-term success, because software requirements change as technologies evolve
– and with them, user expectations. This practice typically reduces complexity and transfers
knowledge into the new generation of engineers.

All these factors apply to CERN. Despite the much slower pace at which services evolve,
CERN lives in the same dynamic technological environment. Without a constant input of
effort, our software falls behind and fails to address modern expectations of features and
aspects such as security, high availability, portability and isolation. At the same time unnec-
essary complexity accumulates: yesterday’s custom solutions can often be replaced with new
upstream components, the product of continuous standardization of solutions to problems
that affect entire industries.

The increasing divergence between the original and present requirements results in techni-
cal debt [2]. The main purpose of this work is to pay back technical debt in CERN’s Content
Management Systems by modernizing the software architecture and making the service more
secure and flexible (see section 4.1).
∗e-mail: konstantinos.samaras-tsakiris@cern.ch

https://home.cern
https://sdk.operatorframework.io/docs/


1.1 Why Kubernetes?

Kubernetes is for cloud native applications an extension of what the operating system is for
traditional applications. It is becoming the de facto standard for Platform as a Service [3],
abstracting computational infrastructure and standardizing deployment, so that an application
can run unmodified on sites across the globe. Scientific applications are routinely deployed
on Kubernetes [4–6], and even HPC use cases are being investigated [7].

At CERN the uptake is also evident. CERN IT has integrated Kubernetes in the Cloud
Infrastructure and allows instant provisioning of new clusters. The ATLAS experiment is
evaluating the replacement of all Grid computing services with Kubernetes clusters [8]. The
Batch service, consisting of the largest portion of offline computational workloads at CERN,
is prototyping a Kubernetes platform [9]. REANA, a system for Reproducible Analyses, is
targeting Kubernetes as a main execution backend [10].

Many of these use cases are attracted by the promise of development velocity: rapidly
shipping features, while maintaining highly available services [11]. A key element is to
expand the pieces of a software stack that are immutable and versioned, declaratively config-
ured, and self-healing.

Operator Pattern [12]

The Web Frameworks use case is not only about using Kubernetes as a deployment vehi-
cle. Since we develop platforms and are concerned with their operational characteristics, we
extend Kubernetes with custom APIs and controllers, building infrastructure management
applications that are part of Kubernetes. Our applications range from integrating with other
CERN systems to providing website management APIs and automating operations.

But what is included in the task of managing websites? The infrastructure, seen as an
application, needs to have a concept of a website and let users define the website they need:
its name, the technology, parameters, etc. Once a website is specified, the infrastructure needs
to ensure that the website is automatically provisioned and set up. More than just a server,
this task might include setting up storage and database, and integration with external CERN
systems. After that, it needs to ensure that every component stays healthy and synchronized,
propagating changes as requested by the user to every part.

In many cases, the solution has two components: a custom Kubernetes API and a con-
troller that watches the API and ensures certain conditions. This pattern is called Operator,
because it uses Kubernetes primitives to automate high-level operational workflows specific
to the website technology.

1.2 Drupal at CERN

Drupal is an open-source Content Management System (CMS): a tool for site builders to
organize and deliver content to their website visitors. It’s used in 10% of the top-10k websites
with the highest traffic [13, 14].

Who can benefit from a dedicated infrastructure for CMS websites? An organization that
needs a dynamic Drupal environment, with high turnover of sites: universities, organizations
comprising many departments and independent activities. Drupal is frequently embraced
as an open source community-driven project [15], making it strategically attractive for en-
terprise sustainability [16]. Use cases range from simple blogs to professional newspaper
publishing, from enterprise presentation to e-commerce, across government and private sec-
tor entities [17]. A frequently cited feature is the flexibility with which it adapts to bespoke
requirements (custom modules), while scaling to large amounts of content and complicated
editorial workflows. It has become the platform of choice for public outreach.



1.3 Article structure

Having laid down background information on the motivation, technologies and concepts used
in this work, in the following sections we will describe:

Section 2 What are the requirements of Content Management as a Service at CERN?
Section 3 What system currently serves these requirements?
Section 4 What system did we design on Kubernetes to replace section 3?
Section 5 An experimental investigation of the new platform’s efficiency
Section 6 Reflections on this work and plans for the future

2 Requirements for Content Management as a Service

The service supports website admins to host and administer Drupal websites directed to the
grand public, such as experiment or departmental central websites. Some of the most popular
sites based on this service are home.cern, atlas.cern, cms.cern, careers.cern and visit.cern.
They form CERN’s main outreach channel and are critical for the Organization’s reputation.

Users of the service range across a wide spectrum of different professional profiles, and
it’s quite common that the responsibility of site building at CERN falls on administrative
personnel, or personnel with little technical background in web technologies. This in turn
shapes the kind of service we have to provide; it is, for example, impractical to rely on
developer-centric workflows, like GitOps and CLI tools. A small fraction of our user base,
however, indeed have web development experience.

The consequence is that the Content Management service has a dual mission:

1. to ensure the high availability and performance of these communication channels

2. to make site building and administration accessible to a wide-ranging user base, while
remaining extensible for websites needing special features

Control vs. customization

Curating the Drupal distribution, and critically, the application of security updates, is the
responsibility of the infrastructure team. However, many websites need extra features and
Drupal was selected exactly because of its extensibility (see section 1.2). Website admins
should be able to use community modules, thereby extending Drupal specifically for their
website – and assuming limited responsibility to keep custom code secure.

2.1 Load characteristics

home.cern is the most popular website at CERN, as shown in figure 1a. Out of 1043 Drupal
websites currently hosted, it alone serves 32% of monthly unique visitors. The top 10 web-
sites together serve 79% of all unique visitors, leaving only 1/5 of them headed for the other
1033 websites. This is an intrinsic characteristic of the service load, which is heavily skewed
towards a very small number of critical websites.

Unique visitors over 1 month are taken as a measure of a site’s popularity, or how much
impact it has on the Organization’s reputation, but a measure more suitable to assess an
infrastructure on is the rate of HTTP requests. In section 5 we will describe an experiment
on resource optimization in the Kubernetes infrastructure by assigning websites to different
Quality of Service classes.

https://home.cern/
https://atlas.cern
https://cms.cern
https://careers.cern
https://visit.cern
https://home.cern/


(a) Public outreach: The top
10 most popular Drupal web-
sites are shown. home.cern
appears twice as home.cern
and home.web.cern.ch.
timeline.web.cern.ch
has machine traffic.

(b) Maximum sustained throughput for high traffic websites. The maximum
throughput of the highest traffic websites was recorded over a period of 5 days.
The websites with the highest traffic also have the highest throughput, showing
that sustained bursts of traffic are uncommon.

Figure 1: Load characteristics

The 10 websites with the highest traffic are the target of 60% of all requests, and they have
a high overlap with the most popular sites (fig. 1b). The most popular websites therefore,
apart from the highest availability guarantees, need also the highest throughput.

What sustained rate of requests should a website be able to handle with stable response
time? To better understand how the load impacts a single website (and therefore estimate the
required hosting resources), we performed the measurements of figure 1b.

These observations align with expectations and requirements: critical websites should be
able to handle a throughput of 30 requests per second with stable response times.

3 Current implementation

The infrastructure that currently serves the Drupal websites can be seen in figure 2. It runs
on CentOS 7 and uses Puppet for configuration management. All servers run the same envi-
ronment with systemd services, some of which are:

• HAProxy load balancer: routes requests to worker nodes, with an affinity cookie

• Keepalived: floating IP for the load balancer

• Apache httpd: serves Drupal PHP code, WebDAV interface and a few additional PHP
management applications

• php-fpm: maintains a pool of worker processes that generate Drupal content

3.1 Request journey

The journey of an HTTP request can be seen in figure 2. Production websites respond to the
load by spawning PHP workers, up to a maximum of 25. A worker process is always listening
for requests, even without load. Test websites, on the other hand, spawn the first worker on
demand and scale up to a maximum of 10 workers. The PHP memory limit for every website
is 512MB.



3.2 Website isolation

Figure 2: Request journey in the physical infrastructure. The in-
frastructure consists of 8 physical Linux servers behind a float-
ing IP, equipped with NAS storage. The datapath to access a
site is shown in blue. Drupal is configured in multisite mode
to look up a separate directory and database for each site. The
website’s 2 data components: a persistent directory on the NAS
and a database on an external service (DBOD).

Weak isolation is one of the
biggest concerns of this in-
frastructure. Each website is
assigned a Linux user. Its
directory is owned by it and
not accessible by the users
of other websites. When
Apache serves a request, it
chroots the PHP process into
the Drupal directory and sets
the website’s user. This dis-
tinction provides a basic iso-
lation mechanism.

Nevertheless, websites
are coupled in many places.
We’ve never detected a cross-
site security incident, but
there are no cgroup limits to resources, and not enough security layers to defend against
privilege escalation exploits. This is a critical concern, given the vulnerability of CMS
software [18], and the impact that defacing a high-traffic public site would have to CERN’s
reputation.

A fundamental security practice is rapidly update upon security releases [19], but updat-
ing the multisite environment is fraught with dangers. All websites need to be updated in a
massive, forced upgrade campaign, and if any has errors, it needs rapid debugging. Errors
are supposed to be detected in a test environment, but not every website has one.

Furthermore, even though websites can be customized with contributed modules, there is
no workflow to version control the websites.

3.3 Development workflow

Two types of website are supported administratively, corresponding to different Quality of
Service (QoS) expectations: official (production) and test (test and development). There is no
concept of “environments” or branches in this infrastructure. Developing a website involves
maintaining a production website and one or more independent development websites. Data
can be cloned between websites, so that the development website reproduce the production
one.

A site admin that wants to safely develop a new content type or view, add a new module,
or even change configuration, should start by cloning the production website to a development
website. They need to keep track of changes, then reproduce them on the production website.
There is no GitOps.

Despite seeming inefficient from a software engineering perspective, this workflow is
acceptable by most website admins. The ones with development experience though would
benefit significantly from version controlling configuration changes and extra modules.

3.4 Limitations of the current infrastructure

Reiterating the discussion, these are the major limitations of the current infrastructure. In
section 4, the Kubernetes infrastructure lifts all of them.



• Hard to adapt resources, resulting in massive under-utilization

• Not very fault tolerant

• Weak site isolation increases the risk of severe security incidents affecting multiple sites

• Inflexible website environment limits development & testing workflows, makes upgrades
cumbersome

• Technical debt: a lot of homebrew components built with legacy technologies specific to
this system. Far from industry standards.

4 Pilot Kubernetes implementation
4.1 Common Kubernetes infrastructure for all Web Frameworks

Name Indicative use case

EOS web hosting Serve static HTML/CSS/JS/CGI stored on the EOS shared
filesystem with simple deployment requirements

Platform as a Service
(PaaS)

Custom web applications with flexible deployment on
Openshift (Kubernetes)

CMS/Drupal Websites for visual site building (see sec. 1.2)
Discourse A home for communities around a common topic
TWiki Wiki format content creation platform

Table 1: Web Frameworks: web hosting and content creation platforms based on different
technologies. EOS web hosting and PaaS are already using the common Kubernetes infras-
tructure.

For each web framework there is currently a separate infrastructure, based on different
technologies. This creates silos of operational expertise within the small engineering team
that supports each one, which are costly and inefficient to keep alive in CERN’s dynamic
working environment. At the same time, there are a lot of software components developed
in-house to support a single use case at the time, generating a large technical debt. Many
requirements however are shared, such as interfacing with external CERN systems.

Figure 3: Request journey through the Kubernetes infrastruc-
ture. Contrast with figure 2.

We therefore developed
a common platform on the
Openshift Kubernetes commu-
nity distribution (OKD 4),
leaving only a thin business
logic layer specific to each use
case. OpenShift was chosen
firstly for its production-tested
multitenancy support, which
we relied on for the present
PaaS infrastructure. Openshift
extends Kubernetes with tool-
ing that simplifies our design
[20]: a developer-focused console UI that we expose to end users, in-place upgrades of the
control plane, node (machine) management API, monitoring and logging stacks.

The first web frameworks to use the new infrastructure are EOS web hosting (in produc-
tion since November 2020, and PaaS (in production since March 2021). The Drupal use case
is in Pilot phase, due to enter production in summer 2021.



Figure 4: Drupal cluster architecture. The diagram presents the Kubernetes resources that make up a
Drupal site, the controllers that manage them and the cluster infrastructure, and the external CERN sys-
tems with which the cluster integrates. Policy is handled with Open Policy Agent [21]. The DrupalSite
CRD is an API for website definition. The components are deployed with Helm [22] and maintained
with ArgoCD [23]

4.2 Serving perspective

The physical servers are replaced with virtual machines composing an OKD 4 cluster. Each
website is served by 1 or multiple replicas of a pod with Nginx and PHP-FPM containers, in
different cloud availability zones in case of critical websites. The server perspective can be
seen by following an HTTP request in figure 3.

4.3 DrupalSite API: create and manage websites

The infrastructure can be seen as an application that offers its users functions to manage
websites. It provides an API for website admins to specify the kind of website they need:
what version of Drupal, what amount of resources, which git repository to fetch configu-
ration from. Each Project (Kubernetes namespace) forms the administrative domain of a
website: it serves a single production website. Website admins can similarly create different
environments of their website in the same project for development or test purposes (which
are full websites with independent data stores), clone data between websites, and take and
restore backups. An overview of the components is in figure 4.

Following the operator pattern introduced in section 1.1, the business logic is imple-
mented with the DrupalSite Custom Resource Definition (CRD) and the drupalSite opera-
tor. The DrupalSite, in turn, controls all the resources in the dashed box in the architecture
diagram (figure 4).

Each website runs an immutable version of Drupal code, compiled from a version of
the CERN Drupal distribution (controlled by the Infrastructure team) with a source-to-image
build that injects user dependencies and configuration from a git repository. Site administra-
tors with technical background thus gain extra flexibility in customizing their website.

We describe more technical details of the Operator in [24].

https://gitlab.cern.ch/drupal/paas/cern-drupal-distribution/


Figure 5: Stress test for the Critical QoS. The right Y-axis shows the load for nurseryschool
and fluka. The left Y-axis shows the response time (average over simultaneous requests) for

nurseryschool and fluka.

5 Measuring baseline resource requirements

The Kubernetes infrastructure can easily adjust its size according to the expected load. Each
workload is also adaptable to load peaks: so far we’re exploiting PHP-FPM’s autoscaling
capacity by scheduling server pods with fewer requirements than their memory limits (un-
der the assumption that load is bursty and uncorrelated between websites) 1. Nevertheless,
we performed an experiment to measure the expected baseline resource consumption 2 and
compare against the physical infrastructure, which, as we’ll show, was overprovisioned.

We need a resource estimate to size the Kubernetes infrastructure so that it can handle
the same baseline load as the physical infrastructure. To understand the baseline load and the
resources needed to handle it, we define Quality of Service (QoS) classes based on required
throughput that needs to be handled with a stable response latency. We perform a stress test
to emulate the throughput and define the appropriate baseline resources.

5.1 Service level objectives

To define the load each QoS class needs to handle, we use the physical infrastructure as
starting point (fig. 1b). Throughput peaked on the most popular website at around 16000
requests per hour, which averages on 4.4 requests per second. We define 3 QoS classes,
which serve as Service Level Objectives (SLO), against the Service Level Indicator (SLI) of
response latency under load. Because the latency depends on the complexity of each website,
which is in the hands of the website admins and not the infrastructure, the SLO is met not by
defining a set value of the SLI, but by asserting that the SLI be stable 3. The 3 QoS classes
are:

1So far we haven’t found the Horizontal Pod Autoscaler useful, because the traffic on most "standard" QoS
websites is too low to warrant multiple pods.

2The server pod’s memory needs to satisfy each website’s Quality of Service requirements. CPU in the CERN
cloud is virtual and shared, so we don’t take it into account when scheduling.

3Stability is interpreted as the latency settling to a fixed value after some time with steady load



• Critical: the most popular websites and therefore the most important to have high avail-
ability and request throughput (see section 2.1). They need to handle 30 requests per second
(around 8 times the average on peak usage).

• Standard: these websites usually don’t handle as much traffic and therefore don’t need to
have high request throughput. They need to handle 5 requests per second.

• Test: as in the name itself, these websites are used by website managers to test new features,
and therefore are used by testers and developers. They only need to handle 1 request per
second.

5.2 Stress test

website Stress (req/s) Response (ms)
nurseryschool 10 510
fluka 26 570

(a) Test

website Stress (req/s) Response (ms)
nurseryschool 18 240
fluka 48 103

(b) Standard

website Stress (req/s) Response (ms)
nurseryschool 41 870
fluka 74 400

(c) Critical

Table 2: Stress test values for each QoS
class: max response latency and minimum load
throughput.

The stress test consists of multiple
simulated clients requesting URLs on
the same website over a period of time.
We copied a few websites (nursery
and fluka used as examples) with vary-
ing content complexity from the phys-
ical infrastructure to experiment with
on the Kubernetes infrastructure. The
websites are stressed with load appro-
priate for the QoS class under investi-
gation, and we tweak their configura-
tion (mainly number of PHP workers),
to get the lowest possible values for
reasonable and stable response times.

The simulated clients live on a ded-
icated Kubernetes cluster that deploys
a custom tool based on Locust [25] to
make multiple requests to the targeted
website on the new infrastructure. We
spread the clients across multiple pods,
each containing multiple processes that simulate users by requesting URLs at random 4.

Stress load

Multiple runs have been made with different configurations in order to find a suitable one for
each QoS class to process the desired throughput with minimal resource consumption.

The throughput is affected by the load times on the website, meaning, a website with less
content will take less time to handle a request and thefore the User will be able to do a new
request faster than it would take on a website with more content.

Measurements

Figure 5 shows the load and the response during stress test for the evaluated websites. The
stress tests ramp up during the first minute, after which they maintain the stress load for 9
more minutes. 10 minutes were sufficient for the response time to settle.

4First a URL discovery crawling of the website is performed, and only after having all the URLs, it picks URLs
at random for the duration of the test

https://nurseryschool.web.cern.ch/
https://fluka.cern/


(a) nurseryschool (b) fluka

Figure 6: Memory use

The resource consumption was also monitored under load. The memory usage for nursery
and fluka respectively can be seen in figure 6. Tables 2 show the highest response time under
full stress and lowest requests per second for each QoS. Table 3 summarizes the test results
in terms of resources needed by each QoS class under load.

5.3 Optimized resource allocation vs. physical infrastructure

QoS CPU RAM(MiB)
test 0.3 104
standard 2.3 257
critical 3 800

Table 3: Peak resource consumption per QoS
during stress tests

Based on the results in section 5.2, we
can see that response time may vary be-
tween QoS but remain under acceptable
values. We can now estimate the base-
line resources for the new infrastructure.
The Expected Load is the maximum load
registered during the tests plus 25% over-
head.

The expected memory is:

TotalMem = 1.25 ∗ (C ∗ Lc + S ∗ Ls + T ∗ Lt)
= 20 ∗ 1000MiB + 600 ∗ 322MiB + 500 ∗ 130MiB
= 277750MiB ≈ 336GB

Where:

Li = Expected max memory for each QoS class (table 3)
C = Total number of Critical Websites
S = Total number of Standard Websites
T = Total number of Test Websites

The physical infrastructure has 2TB of memory. To meet our SLO, the memory estimate
for the Kubernetes infrastructure is 336GB. This is only 16.8% of the memory required in
the physical infrastructure, resulting in significant potential cost savings, even disregarding
cluster autoscaling.

6 Reflections

It makes a big difference to discuss a design with 10 engineers rather than 3, and to have the
peace of mind in case of emergency that many colleagues can take part. This is the hidden
benefit of sharing a common platform. Especially in CERN’s dynamic environment where
the turnover of people is high, knowledge silos can be ill afforded.

The Pilot phase of this new infrastructure is still too immature to provide significant oper-
ational insights. We iterated on many design choices: the way to mark releases of the CERN



Drupal Distribution, the DrupalSite update logic, the Cephfs integration (remote storage)...
Now we consider the design stable, while focusing development on Drupal-specific aspects,
such as SSO integration. Functionality has been verified by copying and instantiating in Ku-
bernetes many websites from the physical infrastructure, while the experiments of section 5
validate basic performance requirements. On the other hand, all the limitations of the physical
infrastructure of section 3.4 have been lifted.

The next big challenge will be the production migrations in summer 2021. It is important
to keep them as transparent to the website admins as possible and minimize disruption. From
the power users however we expect the new features to receive a warm welcome and open
new doors in their workflows.

Directions to explore

Develop once, run everywhere is a yet-to-be materialized promise. Plans for disaster recovery
from a catastrophic failure of the CERN data center hinge on maintaining a public communi-
cations channel accessible. With Kubernetes cluster federation, using Public Cloud resources
as a safety net is conceivable.

We will explore adding WordPress as a Service to the same infrastructure. Fundamentally,
it should take no more than introducing a new build configuration.

The CNCF landscape [26] provides a salient overview of industry-standard solutions that
can take this project the proverbial extra "mile". We plan to experiment with runtime security,
root cause analysis, chaos engineering and serverless for the non-production environments.
Kubernetes turns a homebrew system into a cosmopolitan denizen of the brave new world of
the Cloud.

Acknowledgements

This work relies upon the contributions of all members of the Web Frameworks section of
CERN’s IT department, especially those that designed and implemented the common compo-
nents. We thank specifically Alex Lossent, Ismael Posada Trobo, Joao Esteves Marcal, Iago
Santos Pardo, Aleksandra Wardzinska, Michal Kolodziejski and Emmanouil Fokas.

References

[1] F. Henderson, Software Engineering at Google (2020), 1702.01715, http://arxiv.
org/abs/1702.01715

[2] G. Fairbanks, Ur-Technical Debt (2020), ISSN 1937-4194
[3] N. Kaviani, D. Kalinin, M. Maximilien, Towards Serverless as Commodity: A Case

of Knative, in Proceedings of the 5th International Workshop on Serverless Computing
(Association for Computing Machinery, 2019), WOSC ’19, pp. 13–18, ISBN 978-1-
4503-7038-7

[4] C. Banek, A. Thornton, F. Economou, A. Fausti, K.S. Krughoff, J. Sick, Why Is the
LSST Science Platform Built on Kubernetes? (2019), 1911.06404, http://arxiv.
org/abs/1911.06404

[5] S. Hariri, M.C. Kind, Batch and Online Anomaly Detection for Scientific Applications
in a Kubernetes Environment, in Proceedings of the 9th Workshop on Scientific Cloud
Computing (Association for Computing Machinery, 2018), ScienceCloud’18, pp. 1–7,
ISBN 978-1-4503-5863-7

http://arxiv.org/abs/1702.01715
http://arxiv.org/abs/1702.01715
http://arxiv.org/abs/1911.06404
http://arxiv.org/abs/1911.06404


[6] D.Y. Yuan, T. Wildish, Bioinformatics Application with Kubeflow for Batch Processing
in Clouds, in High Performance Computing, edited by H. Jagode, H. Anzt, G. Juckeland,
H. Ltaief (Springer International Publishing, 2020), Lecture Notes in Computer Science,
pp. 355–367, ISBN 978-3-030-59851-8

[7] A. Beltre, P. Saha, M. Govindaraju, A. Younge, R. Grant, Enabling HPC Workloads on
Cloud Infrastructure Using Kubernetes Container Orchestration Mechanisms, in 2019
IEEE/ACM International Workshop on Containers and New Orchestration Paradigms
for Isolated Environments in HPC (CANOPIE-HPC) (2019)

[8] F.H.B. Megino, J.R. Albert, F. Berghaus, K. De, F. Lin, D. MacDonell, T. Maeno,
R.B.D. Rocha, R. Seuster, R.P. Taylor et al., 245, 07025 (2020)

[9] L.F. Alvarez, O. Datskova, B. Jones, G. McCance, 245, 07048 (2020)
[10] T. Šimko, L. Heinrich, H. Hirvonsalo, D. Kousidis, D. Rodríguez, 214, 06034 (2019)
[11] B. Burns, J. Beda, K. Hightower, Kubernetes: up and running: dive into the future of

infrastructure (O’Reilly Media, 2019)
[12] Operator pattern, https://kubernetes.io/docs/concepts/

extend-kubernetes/operator (2021), accessed: 2021-06-03
[13] Open Source Usage Distribution in the Top 10k Sites, https://trends.builtwith.

com/cms/open-source/traffic/Top-10k (2021), accessed: 2021-02-21
[14] WordPress vs. Drupal usage statistics, February 2021, https://w3techs.com/

technologies/comparison/cm-drupal,cm-wordpress (2021), accessed: 2021-
02-21

[15] D. Buytaert, State of Drupal presentation (October 2019), https://dri.es/
state-of-drupal-presentation-october-2019

[16] V. Brasseur, ed., The Real Costs of Open Source Sustainability, CERN Computing Sem-
inar (2019)

[17] Explore featured case studies, https://www.drupal.org/case-studies (2021),
accessed: 2021-02-21

[18] B. Shteiman, Why CMS Platforms Are Breeding Security Vulnerabilities, in Network
Security (2014), Vol. 2014, pp. 7–9

[19] B. Csontos, I. Heckl, Accessibility, Usability, and Security Evaluation of Hungarian
Government Websites, in Universal Access in the Information Society (2021)

[20] R. Jarvinen, Extending Kubernetes with the Operator Pattern (2019)
[21] Open policy agent, https://www.openpolicyagent.org/ (2021), accessed: 2021-

06-03
[22] Helm, https://helm.sh/ (2021), accessed: 2021-06-03
[23] Argo cd – declarative gitops cd for kubernetes, https://argo-cd.readthedocs.

io/en/stable/ (2021), accessed: 2021-06-03
[24] Cern’s 1500 drupal websites on kubernetes: Sailing with operators, https://sched.

co/iE362 (2021), accessed: 2021-06-03
[25] Locust, https://locust.io/ (2021), accessed: 2021-06-03
[26] Cncf landscape, https://landscape.cncf.io/ (2021), accessed: 2021-06-03

https://kubernetes.io/docs/concepts/extend-kubernetes/operator
https://kubernetes.io/docs/concepts/extend-kubernetes/operator
https://trends.builtwith.com/cms/open-source/traffic/Top-10k
https://trends.builtwith.com/cms/open-source/traffic/Top-10k
https://w3techs.com/technologies/comparison/cm-drupal,cm-wordpress
https://w3techs.com/technologies/comparison/cm-drupal,cm-wordpress
https://dri.es/state-of-drupal-presentation-october-2019
https://dri.es/state-of-drupal-presentation-october-2019
https://www.drupal.org/case-studies
https://www.openpolicyagent.org/
https://helm.sh/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://sched.co/iE362
https://sched.co/iE362
https://locust.io/
https://landscape.cncf.io/

	Introduction
	Why Kubernetes?
	Drupal at CERN
	Article structure

	Requirements for Content Management as a Service
	Load characteristics

	Current implementation
	Request journey
	Website isolation
	Development workflow
	Limitations of the current infrastructure

	Pilot Kubernetes implementation
	Common Kubernetes infrastructure for all Web Frameworks
	Serving perspective
	DrupalSite API: create and manage websites

	Measuring baseline resource requirements
	Service level objectives
	Stress test
	Optimized resource allocation vs. physical infrastructure

	Reflections

